Institute of

Theoretical Computer Science

Carl-Friedrich-Gauß-Fakultät

Technische Universität Braunschweig

Lecture: Games with perfect information

Summer term 2019

News

17. Juni
In Absprache mit den Teilnehmern findet der Rest der Vorlesung als Reading Course statt.

Für die Prüfung relevant ist der folgende Stoff:
  • 1. Woche: Einführung, Nim
  • 2. Woche: Grundlegende Definitionen
  • 3. Woche: Erreichbarkeits- & Safetyspiele
  • 4. Woche: Keine Vorlesung wegen Feiertag
  • 5. Woche: Online-Scheduling
  • 6. & 7 Woche: Paritässpiele
  • 8. & 9 Woche: Rabin's tree theorem
    Skript: Kapitel 15 bis 15.31
    Übungsaufgaben 15.43, 15.44, 15.45, 15.46 und 15.47.
    (Der restliche Stoff in Kapitel 15, die Logik S2S, ist nicht prüfungsrelevant.)
  • 10. & 11 Woche: Muller games
    Skript: Kapitel 7 (vollständig)
    Übungsaufgaben 7.20 - 7.23
    alternativ (freie Auswahl) 10. & 11 Woche: Mean payoff games
    Skript: Kapitel 8 bis einschließlich Proposition 8.23
    Übungsaufgaben 8.28 - 8.32 (nicht 8.33)
    (Der restliche Stoff in Kapitel 8, "The complexity of mean payoff games", ist nicht prüfungsrelevant.)
  • 12. & 13 Woche: Von Automaten induzierte Spiele, Spiele auf Counter-Netzen
    Skript: Kapitel 10 & Kapitel 11 (vollständig)
    Übungsaufgaben 10.19 - 10.22
  • 14. Woche: Kontextfreie Spiele
    Skript: Kapitel 12 bis einschließlich Example 12.8
    Übungsaufgaben: keine
    (Der restliche Stoff in Kapitel 12, insb. "Proof of correctness", ist nicht prüfungsrelevant.)
Die organisatorischen Details schicke ich euch per Mail.
3. Mai
Am 5. Mai findet (genau wie am 29. April) keine Vorlesung statt. Bitte arbeitet Kapitel 15 der Vorlesungsnotizen eigenständig durch und macht einen Termin mit mir aus, um den Stoff zu besprechen.
  • Woche 1: Kapitel 15 bis 15.14, Übungsaufgaben 15.43, 15.44 und 15.45
  • Woche 2: Kapitel 15 bis 15.31, Übungsaufgaben 15.46 und 15.47
  • Der restliche Stoff (15.32 - 15.42, Übungsaufgabe 15.48) ist nicht prüfungsrelevant.
3. Mai
Die Vorlesungsnotizen wurden aktualisiert. Sie beinhalten jetzt einen Korrektheitsbeweis für Zielonkas rekursiven Algorithmus zum Lösen von Paritätsspielen.
25. April
Die Vorlesung am 1. Mai entfällt aufgrund des Feiertags. Das 3. Übungsblatt soll zu Beginn der Übung am 2. Mai abgegeben werden.
17. April
Der Termin der Übung hat sich geändert, und zwar zu Donnerstag, 15:00 - 16:30 Uhr, in Raum IZ 305.
10. April
Das erste Aufgabenblatt ist online!
Sorry für das Überziehen der Vorlesungszeit - In Zukunft hören wir pünktlich um 13:00 Uhr auf!
April 3
The first lecture is on Wednesday, April 10, in room IZ 358.
The exercises will start in the second week.

Organisation

Lecture Notes

TeXed lecture notes from last year's lecture are available.

Lecture notes.

If you have questions or spot a bug in the notes, please contact Sebastian.

Exercises

The exercise sheets are made available here. Please hand in your solutions during the lecture (in the week after the sheet has been released). You may submit alone or in groups of two students If you have questions or encounter problems with the exercises, please contact Sebastian.

Module

Successfully finishing the module consists of two parts:

Description

When we consider non-deterministic systems (like NFAs), we usually either consider the non-determinism as controllable (Reachability problem: "Can we resolve the non-determinism such that we reach state q?"), or as uncontrollable (Safety problem: "Does the system avoid state q, no matter how non-determinism is resolved?"). It is a natural extensions to consider two types of non-determinism at once: a controllable ("angelic") non-determinism, and an uncontrollable ("demonic") one. This setting gives rise to a two-player game, in which each player represents one type of non-determinism. We are now able to ask questions like "Can one player enforce that state q is reached, no matter what the other player does?"
In this lecture, we will focus on games with perfect information, in which both players know the "rules" of the game (the possible states of the game and the moves), as well as the current state of the game whenever it is their turn. Many board games that you know from real life are of this type (e.g. Chess), while others use hidden/imperfect information (e.g. Battleships), randomness (e.g. Mensch ärgere dich nicht), or both (e.g. Poker).
Games with perfect information have numerous applications in automata theory, verification and synthesis that will be presented throughout the lecture (while games with imperfect information are usually studied e.g. in economy).

We will first consider games on finite graphs, where we have a finite set of configurations ("states"), transitions ("moves"), an ownership assignment of the configurations ("Who has the turn?") and a winning condition. We first consider simple winning conditions like reachability ("Reach a configuration in set W in finitely many moves") and safety ("Avoid visiting all configuration in set W for all time"). This is already sufficient to model the board games that you know from real life, but for the applications in verification, more complicated winning conditions are also of interest. Instead of considering all infinite plays as won (safety) or lost (reachability), the winning condition can consider infinite plays as won or lost depending on some property (e.g. "A play is winning if it has visited region W infinitely often.") In this part, the theory naturally gives rise to algorithms that compute the winner of a game.

If we find the time to do so, we will also consider games on infinite graph. We need to assume that the configuration space has some underlying structure. For example, we can study games played in the configuration graphs of pushdown automata. In this case, there are algorithms that use the finite representation to compute properties of the infinite game.

Contents

Literature

The lectures will be based upon the following books and articles. Most of them are available online, the remaining ones can be found in the library.