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What is a programming model?

World

Application

Infrastructure

How to specify the interface to the outside world?

How to write a correct implementation?

How to reason about the correctness of an
application?

What interfaces and which guarantees are
provided by the infrastructure.
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Outline

1. Introduction: Replication, System topologies, Infrastructure, CRDTs

2. Programming models:

Cloud types
SwiftCloud
Riak

3. Correctness
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Replication

Replication: Storing the same data at multiple locations

Motivation:

High availability

High throughput

Low delay, geo-replication

Systems, which are not always connected

Cheap hardware

. . .
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System topologies
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System topology

Where are the borders of our application?

Where is state stored (persistently)?

Which connections are possible?

Where do we have concurrency?

. . .
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Data store infrastructure:

Distinguishing points:

Transactions

Atomicity

Isolation

Failure model

Causality (How exactly is causality defined, how is it tracked)

Extending the database (Define own datatypes)

Which parts are active, which parts just respond to requests?

Level of concurrency

. . .
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Simple example: Replicated integer variable x

x=2 x=4 x=?

x=2 x=3

replica A:

replica B:

update

update

merge
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Replicated counter

x=2 x=4 x=5

x=2 x=3

replica A:

replica B:

x+=2

x+=1

merge
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Replicated multi-value register

x=2 x=4 x={3,4}

x=2 x=3

replica A:

replica B:

x:=4

x:=3

merge

10



Replicated data types1

Data types, for example

Counters
Registers
Sets
Maps
Graphs
. . .

Replicated on several nodes

Integrated consistency

1Shapiro, N. Preguiça, Baquero, and Zawirski, A comprehensive study of Convergent and
Commutative Replicated Data Types.
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“Cloud types”23 programming model - overview

Central database + clients with full replication

Single-threaded clients with implicit transactions

Everything between two yield statements is considered as a transaction

Explicit flush operation to get latest state

Cloud types for handling concurrent updates to data

2Burckhardt, Fähndrich, Leijen, and Wood, “Cloud Types for Eventual Consistency”.
3Burckhardt, Leijen, and Fahndrich, Cloud Types: Robust Abstractions for Replicated Shared State.
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“Cloud types” programming model - consistency model

Global log of update transactions (GLUT)
Clients see some prefix of GLUT and own updates
Merging with GLUT = appending to GLUT
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“Cloud types” programming model - cloud types

Similar to CRDTs but more flexible
Because operations are totally ordered in the GLUT updates can be
non-commutative

Types:
Cloud integer

get, set, add

Cloud string
get, set, setIfEmpty

Cloud table
Key→Value store with explicit creation and deletion

Cloud index
Key→Value store with default values for all keys

. . .

Not possible to define own types
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SwiftCloud4 programming model - consistency model

4Zawirski, Bieniusa, Balegas, Duarte, Baquero, Shapiro, and N. M. Preguiça, “SwiftCloud:
Fault-Tolerant Geo-Replication Integrated all the Way to the Client Machine”.
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SwiftCloud programming model - consistency model

Transactions see some causally consistent snapshot + local updates
Monotonic: Later snapshot → later state

Clients execute transactions sequentially
No total order on transactions, but parallel transactions always commute

Commutativity ensured by using CRDTs

Clients only have a cache, no full replication
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Riak5 - consistency model

5http://basho.com/riak/ 17

http://basho.com/riak/


Riak - consistency model

No cross-object consistency

No transactions, just bundling of several updates on one object

Causality independent of program order

Parallel updates handled by CRDTs
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Example

Task: Store the maximum score a player has reached

Sequential solution:

function updateScore(player, newScore)
if (score[player] < newScore)

score[player] := newScore
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Example - Cloud types

function updateScore(player, newScore)
if (score[player] < newScore)

score[player] := newScore

Just taking the sequential solution does not work:

1. Initially score[p] = 1 (everywhere)
2. client1.updateScore(p, 3)

→ client1.score[p] = 3
3. client2.updateScore(p, 4)

→ client2.score[p] = 4
4. client2 yield

→ global.score[p] = 4
5. client1 yield

→ global.score[p] = 3
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Example - Cloud types

“The anti-pattern here is that updates to a cloud value must make sense even if some
‘earlier’ updates are not yet visible to the local client”6

6Burckhardt, Leijen, and Fahndrich, Cloud Types: Robust Abstractions for Replicated Shared State.
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Example - Cloud types

Possible solution: Store operation in a log (cloud table)

function updateScore(player, newScore)
if (score[player] < newScore)

scoreLog.newEntry(player, newScore)

When reading: calculate maximum (and purge log)

Using a log is a general pattern

No lost updates, no conflicts
Idempotence and commutativity
Fault tolerant

Disadvantages:

Much work for clients
Efficiency
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Example - SwiftCloud

SwiftCloud already includes a CRDT for keeping track of maximum values:

function updateScore(player, newScore)
transaction

MaxCRDT scoreCRDT = score[player]
scoreCRDT.set(newScore)

General pattern:

Find right CRDT for the problem

Write new CRDT no suitable type exists
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Example - Riak

Riak does not have a MaxCRDT, but Multi-Value-Registers can be used as a fall-back:

function updateScore(player, newScore)
oldScore, context := getScore(player)
if (oldScore < newScore)

setScore(context, player, newScore)

General pattern:

Use Multi-Value-Register for mutable state7

Merge values in application when reading
Write back merged value

Causality tracking:

Explicit context value
Reading a value yields a context
Context can be given in write operations

7DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, and
Vogels, “Dynamo: Amazon’s Highly Available Key-value Store”. 24



Example - Riak

Riak does not have a MaxCRDT, but Multi-Value-Registers can be used as a fall-back:

function updateScore(player, newScore)
oldScore, context := getScore(player)
if (oldScore < newScore)

setScore(context, player, newScore)

General pattern:

Use Multi-Value-Register for mutable state7

Merge values in application when reading
Write back merged value

Causality tracking:

Explicit context value
Reading a value yields a context
Context can be given in write operations

7DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, and
Vogels, “Dynamo: Amazon’s Highly Available Key-value Store”. 24



Example - Riak

Riak does not have a MaxCRDT, but Multi-Value-Registers can be used as a fall-back:

function updateScore(player, newScore)
oldScore, context := getScore(player)
if (oldScore < newScore)

setScore(context, player, newScore)

General pattern:

Use Multi-Value-Register for mutable state7

Merge values in application when reading
Write back merged value

Causality tracking:

Explicit context value
Reading a value yields a context
Context can be given in write operations

7DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, and
Vogels, “Dynamo: Amazon’s Highly Available Key-value Store”. 24



Fault tolerance

function updateScore(player, newScore)
updatePlayerScore(player, newScore)
updateLeaderBoard(player, newScore)

Problem:

Two updates, second might fail

Process might crash

Database operation might timeout

Solutions:

Use a transaction
Use a queue + idempotent operations8

Repeat until successful
8Pritchett, “BASE: An Acid Alternative”; Ramalingam and Vaswani, “Fault Tolerance via

Idempotence”; Helland and Haderle, “Engagements: Building Eventually ACiD Business Transactions”.
25



Correctness

function tryJoinGame(player, minScore)
if score[player] >= minScore

assert global.score[player] >= minScore
joinGame(player)

Is this assertion always true?

Score grows monotonically

Condition is monotonic

26



Correctness

function tryJoinGame(player, minScore)
if score[player] >= minScore

assert global.score[player] >= minScore
joinGame(player)

else
assert global.score[player] <= minScore
print(”You are not good enough for this game.”)

Is this assertion always true?

Could read old value of score

Might print a wrong message
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Correctness

Monotonicity as a programming model9:

CALM principle (consistency and logical monotonicity)

use monotonicity as much as possible

use synchronization otherwise

prototype implementation “Bud” as a domain specific language embedded in
Ruby

Programming with tables, lattices, streams and monotonic operations on them
Static program analysis finds places which might need synchronization

9Conway, Marczak, Alvaro, Hellerstein, and Maier, “Logic and lattices for distributed
programming”.
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Correctness - Reservations

function tryBuyItem(item)
if localMoney >= item.cost

buyItem(item)
else if globalMoney >= item.cost

tryToReserveMoneyLocally()
retry

else
print(”Insufficient money”)

Split resource

Replicas own parts of a resource and have the rights to use it

Needs some protocols to transfer rights

Best case: local check sufficient, no synchronization necessary

Worst case: fall back to synchronization
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Correctness - Reservations

References10

10Najafzadeh, Shapiro, Balegas, and N. M. Preguiça, “Improving the Scalability of Geo-replication
with Reservations”; N. Preguiça, Martins, Cunha, and Domingos, “Reservations for Conflict Avoidance
in a Mobile Database System”; O’Neil, “The Escrow Transactional Method”; Shrira, Tian, and Terry,
“Exo-Leasing: Escrow Synchronization for Mobile Clients of Commodity Storage Servers”; Kraska,
Hentschel, Alonso, and Kossmann, “Consistency Rationing in the Cloud: Pay Only when It Matters”.
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Other patterns

Avoid execution order dependencies

Implicit object creation

Cloud index vs cloud array

Object deletion by tombstones

Use unordered types when possible

set instead of list data type

Generate unique identifiers locally

Repair invariants when reading

Example: graph
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Specification of applications

State based specifications (e.g. pre- and post-conditions)
Hard to base specification on states, because there are different states at different
replicas
Talking about the “state after all updates are merged” not always useful
Usable when state changes monotonically

Equivalence to sequential execution
Not always possible (e.g. Multi-Value Register)

principle of permutation equivalence11

If all possible sequential executions of the updates yield the same state, then the
concurrent execution should yield the same state.
Other cases?

Axiomatic specification12

Specification is a predicate on the visible events, the causal order between events,
and the arbitration order between events.
Expressive, powerful, but difficult to use

11Bieniusa, Zawirski, N. M. Preguiça, Shapiro, Baquero, Balegas, and Duarte, “Brief
Announcement: Semantics of Eventually Consistent Replicated Sets”.

12Burckhardt, Gotsman, and Yang, Understanding Eventual Consistency. 32



Conclusion

Some programming models accepted for most models:

Causality
Replicated Data Types
Monotonicity and idempotence

In discussion / it depends:

Transactions
Monotonic / dataflow programming
Reservations

Still lacking:

Methods for specification and reasoning about correctness
Advanced tools which simplify writing applications

33



References I

Bieniusa, Annette, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro, Carlos Baquero,
Valter Balegas, and Sérgio Duarte. “Brief Announcement: Semantics of Eventually
Consistent Replicated Sets”. In: DISC. Ed. by Marcos K. Aguilera. Vol. 7611.
Lecture Notes in Computer Science. Springer, 2012, pp. 441–442. isbn:
978-3-642-33650-8.

Burckhardt, Sebastian, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood.
“Cloud Types for Eventual Consistency”. In: ECOOP. Ed. by James Noble.
Vol. 7313. Lecture Notes in Computer Science. Springer, 2012, pp. 283–307. isbn:
978-3-642-31056-0.

34



References II

Burckhardt, Sebastian, Alexey Gotsman, and Hongseok Yang. Understanding Eventual
Consistency. Tech. rep. MSR-TR-2013-39. This document is work in progress. Feel
free to cite, but note that we will update the contents without warning (the first
page contains a timestamp), and that we are likely going to publish the content in
some future venue, at which point we will update this paragraph. Mar. 2013. url:
http://research.microsoft.com/apps/pubs/default.aspx?id=189249.

Burckhardt, Sebastian, Daan Leijen, and Manuel Fahndrich. Cloud Types: Robust
Abstractions for Replicated Shared State. Tech. rep. MSR-TR-2014-43. Mar. 2014.
url: http://research.microsoft.com/apps/pubs/default.aspx?id=211340.

Conway, Neil, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and
David Maier. “Logic and lattices for distributed programming”. In: SoCC. Ed. by
Michael J. Carey and Steven Hand. ACM, 2012, p. 1. isbn: 978-1-4503-1761-0.

35

http://research.microsoft.com/apps/pubs/default.aspx?id=189249
http://research.microsoft.com/apps/pubs/default.aspx?id=211340


References III

DeCandia, Giuseppe, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. “Dynamo: Amazon’s Highly Available Key-value Store”. In:
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles. SOSP ’07. Stevenson, Washington, USA: ACM, 2007, pp. 205–220. isbn:
978-1-59593-591-5. doi: 10.1145/1294261.1294281. url:
http://doi.acm.org/10.1145/1294261.1294281.

Helland, Pat and Don Haderle. “Engagements: Building Eventually ACiD Business
Transactions”. In: CIDR. www.cidrdb.org, 2013.

Kraska, Tim, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. “Consistency
Rationing in the Cloud: Pay Only when It Matters”. In: Proc. VLDB Endow. 2.1
(Aug. 2009), pp. 253–264. issn: 2150-8097. doi: 10.14778/1687627.1687657.
url: http://dx.doi.org/10.14778/1687627.1687657.

36

http://dx.doi.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
http://dx.doi.org/10.14778/1687627.1687657
http://dx.doi.org/10.14778/1687627.1687657


References IV

Najafzadeh, Mahsa, Marc Shapiro, Valter Balegas, and Nuno M. Preguiça. “Improving
the Scalability of Geo-replication with Reservations”. In: UCC. IEEE, 2013,
pp. 441–445.

O’Neil, Patrick E. “The Escrow Transactional Method”. In: ACM Trans. Database
Syst. 11.4 (Dec. 1986), pp. 405–430. issn: 0362-5915. doi: 10.1145/7239.7265.
url: http://doi.acm.org/10.1145/7239.7265.

Preguiça, Nuno, J. Legatheaux Martins, Miguel Cunha, and Henrique Domingos.
“Reservations for Conflict Avoidance in a Mobile Database System”. In:
Proceedings of the 1st International Conference on Mobile Systems, Applications
and Services. MobiSys ’03. San Francisco, California: ACM, 2003, pp. 43–56. doi:
10.1145/1066116.1189038. url:
http://doi.acm.org/10.1145/1066116.1189038.

37

http://dx.doi.org/10.1145/7239.7265
http://doi.acm.org/10.1145/7239.7265
http://dx.doi.org/10.1145/1066116.1189038
http://doi.acm.org/10.1145/1066116.1189038


References V

Pritchett, Dan. “BASE: An Acid Alternative”. In: Queue 6.3 (May 2008), pp. 48–55.
issn: 1542-7730. doi: 10.1145/1394127.1394128. url:
http://doi.acm.org/10.1145/1394127.1394128.

Ramalingam, Ganesan and Kapil Vaswani. “Fault Tolerance via Idempotence”. In:
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’13. Rome, Italy: ACM, 2013, pp. 249–262.
isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429100. url:
http://doi.acm.org/10.1145/2429069.2429100.

Shapiro, Marc, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Anglais. Rapport de
recherche RR-7506. INRIA, Jan. 2011, p. 50. url:
http://hal.inria.fr/inria-00555588.

38

http://dx.doi.org/10.1145/1394127.1394128
http://doi.acm.org/10.1145/1394127.1394128
http://dx.doi.org/10.1145/2429069.2429100
http://doi.acm.org/10.1145/2429069.2429100
http://hal.inria.fr/inria-00555588


References VI

Shrira, Liuba, Hong Tian, and Doug Terry. “Exo-Leasing: Escrow Synchronization for
Mobile Clients of Commodity Storage Servers”. English. In: Middleware 2008.
Ed. by Valérie Issarny and Richard Schantz. Vol. 5346. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008, pp. 42–61. isbn: 978-3-540-89855-9. doi:
10.1007/978-3-540-89856-6_3. url:
http://dx.doi.org/10.1007/978-3-540-89856-6_3.

Zawirski, Marek, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Baquero,
Marc Shapiro, and Nuno M. Preguiça. “SwiftCloud: Fault-Tolerant Geo-Replication
Integrated all the Way to the Client Machine”. In: CoRR abs/1310.3107 (2013).

39

http://dx.doi.org/10.1007/978-3-540-89856-6_3
http://dx.doi.org/10.1007/978-3-540-89856-6_3

