Memory Model-aware Testing
 a Unified Complexity Analysis

Florian Furbach, Roland Meyer, Klaus Schneider, and Maximilian Senftleben

University of Kaiserslautern
Department of Computer Science Germany

ACSD 2014
June 26, 2014

Introduction

Motivation

- Programmers expect sequential consistency.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005

Introduction

Motivation

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005

Introduction

Motivation

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.
- Modern architectures employ weak memory models.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005

Introduction

Motivation

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.
- Modern architectures employ weak memory models.
- Weak memory models may introduce undesired states.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005

Introduction

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.
- Modern architectures employ weak memory models.
- Weak memory models may introduce undesired states.
- State explosion for reachability analysis.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005

Introduction

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.
- Modern architectures employ weak memory models.
- Weak memory models may introduce undesired states.
- State explosion for reachability analysis.
- Complexity of Testing?

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005

Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0 .

Example: Test \mathcal{T}

Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0 .

Example: Test \mathcal{T}


```
4:
x: 0
```


Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0 .

Example: Test \mathcal{T}

4: $(w, x, 1)$
$x: 1$

Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0 .

Example: Test \mathcal{T}

4: $(w, x, 1) \cdot(r, x, 1)$
$x: 1$

Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0 .

Example: Test \mathcal{T}

4: $(w, x, 1) \cdot(r, x, 1) \cdot(w, x, 2)$

$$
x: 2
$$

Serial View

- Processes observe operations in different orders (views).
- A serial view $4=\operatorname{Serial} \operatorname{View}(\mathcal{O},<)$ is a sequence of operations from \mathcal{O} that respects some partial order $<$.
- Always read from last write.

Serial View

- Processes observe operations in different orders (views).
- A serial view $4=\operatorname{Serial} \operatorname{View}(\mathcal{O},<)$ is a sequence of operations from \mathcal{O} that respects some partial order $<$.
- Always read from last write.
- A Test \mathcal{T} is executable under sequential consistency if:

$$
\exists \boldsymbol{\iota}=\operatorname{Seria} / \operatorname{View}(\mathcal{T},<P O) .
$$

Example 4: $(w, x, 1) \cdot(r, x, 1) \cdot(w, x, 2)$

The Testing Problem

Testing Problem of model M :

Given test \mathcal{T}, is it executable under model \mathbf{M} ?

The Testing Problem

Testing Problem of model M :

Given test \mathcal{T}, is it executable under model \mathbf{M} ?

The Testing Problem

Testing Problem of model M :

Given test \mathcal{T}, is it executable under model \mathbf{M} ?

The Testing Problem

- Testing Problem is in NP for all models
- Testing Problem is NP-hard for most models
- Testing Problem is in P for some models

Testing is in NP

Uniform Reduction to SAT:

- Formula:

$$
\begin{aligned}
& W T(\mathcal{T}) \wedge \mathrm{SV}_{1} \wedge . . \wedge \mathrm{SV}_{k} \\
& W T: \text { Unique Writes-To } \\
& S V: \text { SerialView properties }
\end{aligned}
$$

Testing is in NP

Uniform Reduction to SAT:

- Formula:

$$
\begin{aligned}
& W T(\mathcal{T}) \wedge \mathrm{SV}_{1} \wedge . . \wedge \mathrm{SV}_{k} \\
& W T: \text { Unique Writes-To } \\
& S V: \text { SerialView properties }
\end{aligned}
$$

- Boolean variable:

$$
s v_{i, j} \leftrightarrow\left(o p_{i} \triangleleft o p_{j}\right)
$$

- Serial view properties:

Totality, Asymmetry, Transitivity, Read-Last-Write

The Testing Problem

- Testing Problem is in NP for all models
- Uniform SAT reduction.
- Optimal solution if NP-hard.
- Testing Problem is NP-hard for most models
- Testing Problem is in P for some models

The Testing Problem

- Testing Problem is in NP for all models
- Testing Problem is NP-hard for most models
- Testing Problem is in P for some models

The Testing Problem

- Testing Problem is in NP for all models
- Testing Problem is NP-hard for most models
- Our proofs cover multiple models
- Testing Problem is in P for some models

NP-hard for most models

Range reduction
$\mathbf{M}_{\text {Strong }} \leq \mathbf{M}_{\text {Weak-range }}$ reduction f of SAT to testing:

(i) ϕ is SAT \Longrightarrow test $f(\phi)$ is executable under $\mathrm{M}_{\text {Strong }}$.
(ii) test $f(\phi)$ is executable under $\mathrm{M}_{\text {Weak }} \Longrightarrow \phi$ is SAT.

NP-hard for most models

Range reduction
$\mathbf{M}_{\text {Strong }} \leq \mathbf{M}_{\text {Weak-range }}$ reduction f of SAT to testing:

(i) ϕ is SAT \Longrightarrow test $f(\phi)$ is executable under $\mathrm{M}_{\text {Strong }}$.
(ii) test $f(\phi)$ is executable under $\mathrm{M}_{\text {Weak }} \Longrightarrow \phi$ is SAT.

NP-hard for most models

Range reduction
$\mathbf{M}_{\text {Strong }} \leq \mathbf{M}_{\text {Weak-range }}$ reduction f of SAT to testing:

(i) ϕ is SAT \Longrightarrow test $f(\phi)$ is executable under $\mathrm{M}_{\text {Strong }}$.
(ii) test $f(\phi)$ is executable under $\mathrm{M}_{\text {Weak }} \Longrightarrow \phi$ is SAT.

NP-hard for most models

Range reduction
$\mathbf{M}_{\text {Strong }} \leq \mathbf{M}_{\text {Weak-range }}$ reduction f of SAT to testing:

(i) ϕ is SAT \Longrightarrow test $f(\phi)$ is executable under $\mathrm{M}_{\text {Strong }}$.
(ii) test $f(\phi)$ is executable under $\mathrm{M}_{\text {Weak }} \Longrightarrow \phi$ is SAT.

NP-hard for most models

SC \leq SLOW-Range-Reduction

NP-hard for most models

Slow Consistency

Writes from one process to one variable are observed in same order by all processes.

NP-hard for most models

Slow Consistency

Writes from one process to one variable are observed in same order by all processes.

- The program order is respected.
- For each process p and variable x : there exists a serial view on all writes to x and reads from x of p.
$\forall x, p \exists \boldsymbol{\iota}=$ SerialView $\left(\left.\left.\mathcal{T}\right|_{w, x} \cup \mathcal{T}\right|_{p, x},<{ }_{p O}\right)$
$\exists \boldsymbol{\bullet}=$ SerialView (\mathcal{T}
<PO)

NP-hard for most models

Slow Consistency

Writes from one process to one variable are observed in same order by all processes.

- The program order is respected.
- For each process p and variable x : there exists a serial view on all writes to x and reads from x of p.
$\forall x, p \exists \boldsymbol{\iota}=$ SerialView $\left(\left.\left.\mathcal{T}\right|_{w, x} \cup \mathcal{T}\right|_{p, x},<{ }_{p O}\right)$
$\exists \boldsymbol{\bullet}=$ SerialView (\mathcal{T}
<PO)

NP-hard for most models

Slow Consistency

Writes from one process to one variable are observed in same order by all processes.

- The program order is respected.
- For each process p and variable x : there exists a serial view on all writes to x and reads from x of p.

$\exists \boldsymbol{\bullet}=$ SerialView $(\mathcal{T}$
<PO)

NP-hard for most models

$\mathrm{SC} \leq$ SLOW-Range-Reduction of SAT

Reduction Idea

- Test uses only one variable ξ.
- Test has only one process with reads.
- \Rightarrow Test behaves the same from Slow to SC.

$$
\begin{array}{rlrlrl}
\forall x, p \exists \longleftarrow & =\text { SerialView }(& \left.\left.\mathcal{T}\right|_{w, x} \cup \mathcal{T}\right|_{p, x} & \left.,<_{P O}\right) & & {[\text { Slow }]} \\
\exists \longleftarrow & =\operatorname{Serial} \operatorname{View}(\mathcal{T} & ,<p O) & & {[S C]}
\end{array}
$$

NP-hard for most models

$\mathrm{SC} \leq$ SLOW-Range-Reduction of SAT

Reduction Idea

- Test uses only one variable ξ.
- Test has only one process with reads.
- \Rightarrow Test behaves the same from Slow to SC.

SAT-Reduction

- We associate clauses and variables with values of ξ.

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c l_{1}} \wedge \underbrace{\neg a}_{c l_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c l_{1}} \wedge \underbrace{\neg a}_{c l_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

True $_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) .(w, \xi, a)$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c l_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

True $_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

```
    \(\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)\)
False \(_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)\)
\(\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)\)
False \(_{b}:=(w, \xi, b)\)
```

 Eval := \((r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)\)
 $\xi: 0$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c 1_{1}} \wedge \underbrace{\neg a}_{c /_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

```
\(\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)\)
False \(_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)\)
True \(_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)\)
False \(_{b}:=(w, \xi, b)\)
```

Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4: $(w, \xi, c / 1)$
$\xi: 1$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

```
\(\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)\)
False \(_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)\)
True \(_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)\)
False \(_{b}:=(w, \xi, b)\)
```

Eval:= $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4 : $(w, \xi, c / 1) \cdot(w, \xi, a)$
$\xi: \quad a$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

```
\(\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)\)
False \(_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)\)
\(\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)\)
False \(_{b}:=(w, \xi, b)\)
```

Eval:= $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$
«: $(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a)$
$\xi: \quad a$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

True $_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4 : $(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b)$
$\xi: \quad b$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

True $_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4 : $(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b) \cdot(r, \xi, b)$
$\xi: \quad b$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

$\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4 : $\quad(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b) \cdot(r, \xi, b)$. $(w, \xi, c / 1)$
$\xi: 1$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

$\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4: $\quad(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b) \cdot(r, \xi, b)$

$$
.(w, \xi, c / 1) \cdot(r, \xi, c / 1)
$$

$\xi: 1$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c l_{1}} \wedge \underbrace{\neg a}_{c l_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

$\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4: $(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b) \cdot(r, \xi, b)$

$$
\cdot(w, \xi, c / 1) \cdot(r, \xi, c / 1) \cdot(w, \xi, c / 2)
$$

$\xi: 2$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

$\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4: $(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b) \cdot(r, \xi, b)$

$$
\cdot(w, \xi, c / 1) \cdot(r, \xi, c / 1) \cdot(w, \xi, c / 2) \cdot(r, \xi, c / 2)
$$

$\xi: 2$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

$\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4 : $\quad(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b) \cdot(r, \xi, b)$

$$
\cdot(w, \xi, c / 1) \cdot(r, \xi, c / 1) \cdot(w, \xi, c / 2) \cdot(r, \xi, c / 2) \cdot(w, \xi, a)
$$

$\xi: \quad a$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

$\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4: $(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b) \cdot(r, \xi, b)$

$$
\cdot(w, \xi, c / 1) \cdot(r, \xi, c / 1) \cdot(w, \xi, c / 2) \cdot(r, \xi, c / 2) \cdot(w, \xi, a) \cdot(w, \xi, b)
$$

$\xi: \quad b$

SC-Slow Reduction - Example

$$
\underbrace{(a \vee b)}_{c c_{1}} \wedge \underbrace{\neg a}_{c c_{2}} \quad \begin{aligned}
& a=\text { false } \\
& b=\text { true }
\end{aligned}
$$

$\operatorname{True}_{a}:=(w, \xi, c / 1) \cdot(w, \xi, a)$
False $_{a}:=(w, \xi, c / 2) \cdot(w, \xi, a)$
$\operatorname{True}_{b}:=(w, \xi, c / 1) \cdot(w, \xi, b)$
False $_{b}:=(w, \xi, b)$
Eval := $(r, \xi, a) \cdot(r, \xi, b) \cdot(r, \xi, c / 1) \cdot(r, \xi, c / 2)$

4: $(w, \xi, c / 1) \cdot(w, \xi, a) \cdot(r, \xi, a) \cdot(w, \xi, b) \cdot(r, \xi, b)$

$$
\cdot(w, \xi, c / 1) \cdot(r, \xi, c / 1) \cdot(w, \xi, c / 2) \cdot(r, \xi, c / 2) \cdot(w, \xi, a) \cdot(w, \xi, b)
$$

$\xi: \quad b$

Results

Results

Memory Model	Complexity Class of Test(M)			
	General	Process	Length	Variables
SC	NPC(by 1)			NPC(by 1)
TSO	NPC(by 1)			NPC(by 1)
PSO	NPC(by 1)			NPC(by 1)
PC-G	NPC(by 1)			NPC(by 1)
PC-D	NPC(by 1)			NPC(by 1)
GAO	NPC(by 1)			NPC(by 1)
GPO+GDO	NPC(by 1)			NPC(by 1)
Causal	NPC(by 1)			NPC(by 1)
PRAM-M	NPC(by 1)			NPC(by 1)
GWO				
CC	NPC(by 1)			NPC(by 1)
PRAM	NPC(by 1)			NPC(by 1)
SLOW	NPC(by 1)			NPC_{1}
LOCAL	P_{2}	\mathbf{P} (by 2)	\mathbf{P} (by 2)	\mathbf{P} (by 2)

Results

Memory Model	Complexity Class of Test(M)			
	General	Process	Length	Variables
SC	NPC(by 1)		NPC(by 3)	NPC(by 1)
TSO	NPC(by 1)			NPC(by 1)
PSO	NPC(by 1)			NPC(by 1)
PC-G	NPC(by 1)			NPC(by 1)
PC-D	NPC(by 1)			NPC(by 1)
GAO	NPC(by 1)			NPC(by 1)
GPO+GDO	NPC(by 1)			NPC(by 1)
Causal	NPC(by 1)		NPC(by 3)	NPC(by 1)
PRAM-M	NPC(by 1)			NPC(by 1)
GWO	NPC(by 3)		NPC_{3}	
CC	NPC(by 1)			NPC(by 1)
PRAM	NPC(by 1)			NPC(by 1)
SLOW	NPC(by 1)			NPC ${ }_{1}$
LOCAL	\mathbf{P}_{2}	\mathbf{P} (by 2)	\mathbf{P} (by 2)	\mathbf{P} (by 2)

Results

Results

Results

Results

Results

