
Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Atomic CISC Instructions

atomic read-modify-write (RMW) instructions
test a certain condition σ referring to some memory addresses
if σ holds, modify (some of) the memory addresses
particular instances

particular instances
atomic test-and-set instructions
atomic fetch-and-increment
atomic fetch-and-decrement

! old fashioned, not in spirit of modern load/store architectures

80 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Load/Store RMW Primitives

load/store architectures offer other RMW primitives to
guarantee exclusive access to a memory address

instruction pairs I1, I2 are used
I1 starts a critical code region by noting some information
about the memory address that has to be protected
critical code instructions between I1 and I2
I2 checks by consulting information written by I1 whether the
execution from I1 to I2 had exclusive access to the considered
memory address
if so, proceed execution
otherwise do something else (usually retry)

81 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Load/Store RMW Primitives

how can instructions I1 and I2 be implemented?

consider MIPS instruction set

I1 :≡ LL rt,c(rs) is called load linked
load Mem[c + Reg[rs]] to Reg[rt]
store address c + Reg[rs] in a special register L

I2 ≡ SC rt,c(rs) is called store conditional
if L ̸= 0, store Reg[rt] to memory address Mem[c + Reg[rs]]
and set Reg[rt] := 1
if L = 0, set Reg[rt] := 0

82 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Semantics of Load/Store RMW Primitives

I1 :≡ LL rt,c(rs) does the following

next(Reg[rt]) := Mem[c + Reg[rs]];
next(L) := c + Reg[rs];

cache controller executes the following in each cycle

if (WriteOnBus&(L = AdrOnBus)) next(L) := 0;

finally, I2 ≡ SC rt,c(rs) does the following

if (L ̸= 0) {
next(Mem[c + Reg[rs]]) = Reg[rt];
next(Reg[rt]) := 1;

}else next(Reg[rt]) := 0;

! the cache controller helps I2 to detect if there has been a
write to Mem[L] between the execution of I1 and I2

83 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Implementing Other Atomic Primitives

example: exchange contents of Reg[4] and Mem[Reg[1]]

try: OR R3,R4,R0 ; Reg[3] := Reg[4]
LL R2,0(R1) ; load and protect Mem[Reg[1]]
SC R3,0(R1) ; try Mem[Reg[1]] := Reg[3]
BEQZ R3,try ; if not atomically executed, retry
ADD R4,R2,R0 ; Reg[4] := Reg[2]

84 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Implementing Other Atomic Primitives

example: fetch-and-increment memory location

try: LL R2,0(R1) ; load and protect Mem[Reg[1]]
ADDIU R3,R2,#1 ; increment Reg[2]
SC R3,0(R1) ; try Mem[Reg[1]] := Reg[3]
BEQZ R3,try ; if not atomically executed, retry

85 / 163



Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Implementing Other Atomic Primitives

example: protect critical region by a lock variable
Mem[Reg[1]]

try: ADDI R3,R0,#1 ; Reg[3] := 1
LL R2,0(R1) ; load and protect Mem[Reg[1]]
SC R3,0(R1) ; try Mem[Reg[1]] := Reg[3]
BEQZ R3,try ; if not atomically executed, retry
BNEZ R2,try ; if region is locked, retry

process can proceed if lock Mem[Reg[1]] is zero

after critical code is executed, lock Mem[Reg[1]] must be reset

note serialization of load/stores due to bus arbitration

86 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Barrier Synchronization

lock(counterlock);
if counterlock=0 then
release:=0

end
counter := counter+1;
unlock(counterlock);
if counter=N then
counter := 0;
release := 1

else
await(release=1)

end

left hand side is the code of one
process

variable counterlock protects variable
counter , so that it can be atomically
incremented

count is the number of processes that
have reached the barrier

release = 1 allows the processes to
pass the barrier

release is set to 1 iff all N processes
have reached the barrier

87 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Problem: Barrier Synchronization in a Loop

the previous code must not be used in loop bodies

the following could happen:
if all processes reached the barrier, release is set to 1
process P1 goes ahead and iterates the loop body, while the
other processes do not proceed their execution
in the worst case, P1 reaches the barrier again, before the last
process of the previous iteration has passed the barrier

! a fast process can trap a slow process in the barrier by
resetting release

88 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Sense-Reversing Barrier Synchronization

evenodd := ¬ evenodd;
lock(counterlock);
counter := counter+1;
if counter=N then
counter := 0;
release := evenodd

end;
unlock(counterlock);
await(release=evenodd)

sense-reversing barrier synchronization solves
the problem

alternatingly, the processes wait either until
release = 0 or release = 1 holds

previous and new barrier synchronization due
to a loop are no longer mixed up

still possible that one process reaches barrier
again before another has even left it

however, this time the slow one can still
leave the barrier

89 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Bus Arbitration

several processors may wish to access the bus

! arbitration required to manage access to the shared bus

arbiters are implemented as hardware circuits (bus controller)

simplest form: arbitration with static priorities
processors P1,. . . ,Pn have priorities 1,. . . ,n
processor with highest priority yields the bus
problem: unfair arbitration Pn may always use the bus

90 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Bus Arbitration

fairness can be obtained by dynamic priorities

simplest form: token ring
a token is sent from Pi to P(i mod n)+1

processor Pi with token yields the bus, if Pi wants to do so
problem: if only one Pi wants access to the bus, it may have
to wait n cycles to receive the access, although the bus is
available

! combination of static and dynamic priorities recommended

91 / 163



Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Cache Coherence Problem
Snooping Based Protocols
Directory-Based Cache Coherence Protocols
Hardware Support for Synchronization

Bus Arbitration

combination of static and dynamic priorities
again, send a token from Pi to P(i mod n)+1

assume Pi currently has the token
Pj is granted access to the bus iff

either i ≤ j and no Pk with i ≤ k < j requests the bus
or neither a Pk with i ≤ k ≤ n nor a Pk with 1 ≤ k < j
requests the bus

! in principle, priorities are changed by token moves

! fair and efficient arbitration

in the worst case, still n − 1 cycles have to be awaited for
access

92 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Memory Consistency Models
Formal Definitions
Steinke-Nutt Hierarchy

Memory Consistency Models

initially, x1 = x2 = 0 are both in the caches of P1 and P2

processor P1 processor P2

y1 := 0;
do
y1 := y1 + 1;
x1 := 1

while (x2 ̸= 0)

y2 := 0;
do
y2 := y2 + 1;
x2 := 1;

while (x1 ̸= 0)

the messages of the writes xi := 1 are sent by the directories

assume each Pi proceeds execution (with outdated value xi )

! (y1, y2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)} possible!

93 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Memory Consistency Models
Formal Definitions
Steinke-Nutt Hierarchy

Memory Consistency Models

memory consistency models determine the semantics of
parallel execution

several consistency models are used by multiprocessors
sequential consistency
weak consistency
release consistency

depending on the consistency model, updates from one
processor may not be immediately visible to all processors

instead, other processors may notice the update only after
some time or after some explicit synchronization operations

94 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Memory Consistency Models
Formal Definitions
Steinke-Nutt Hierarchy

Sequential Consistency

sequential consistency
load/stores of different processes may be arbitrarily interleaved
however, execution of a load/store can only be started if other
load/store executions terminated and all updates are
acknowledged

this holds trivially for snooping based protocols

however, directory based protocols require acknowledge
messages to implement sequential consistency in order to
know that a previous load/store is done

using sequential consistency, the previous program can not
end with y1 = y2 = 2

95 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Memory Consistency Models
Formal Definitions
Steinke-Nutt Hierarchy

Weak Consistency

sequential consistency is often too inefficient
since it requires to send a lot of acknowledge messages

! weaker consistency model have been considered
several load/stores may be pending in messages of the network
explicit synchronization mechanisms guarantee that all
load/stores are done
memory consistency is only given after such synchronization
steps

further references [2, 49, 63]

96 / 163

Introduction
Connection Networks

Multiprocessor Cache Coherence
Shared Memory Consistency

References

Memory Consistency Models
Formal Definitions
Steinke-Nutt Hierarchy

Steinke-Nutt Hierarchy of Memory Models

Steinke and Nutt [96] present a categorization of weak
memory models

to this end, a fixed number of processes P = {p1, . . . , pm}
working on shared variables V = {x1, . . . , xn} are considered

each process p ∈ P performed a set of read/write actions:
α1 ≼p . . . ≼p αnp

note: each ≼p is transitive, but we only draw a few lines

different memory consistency models are defined on this basis

also, [96] defined a lattice of memory consistency models by
orthogonal consistency properties in a systematic way

97 / 163


