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Overview

● Strong vs. eventual consistency

● Conflict-free replication

● Realizing future information systems
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Centralized 
information systems
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Problems:

● Scalability

● Fault-tolerance

● Latency
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Strongly consistent, distributed
information systems

. . .Problems:

● Consistency

● Scalability
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Discussion

Objectives:

➢  fault tolerance       →  redundancy

➢  low latencies          →  distribution

➢  simple to program  →  strong-consistency

CAP (Brewer `00; Gilbert & Lynch `06)

Strongly-Consistent ∩ Available ∩ Partition-Tolerant = ∅

Way out: Give up strong consistency



Eventual consistency

Basic ideas:

●   Clients can live with weaker forms of consistency

●   Update each replica independently
       -  transport changes to other replicas
       -  replay or merge 

●   Guaranteed delivery: 
       -   eventually, all replicas receive all updates
       -   hopefully they converge...  (otherwise: conflicts)
       -   but order of updates differs!  



Using eventual consistency

Different approaches:

●   Application-specific vs. general approaches

●   Conflict resolution:
       -  manual
       -  automatic
       -  no conflicts 

●    Convergence: 
       -   ad hoc / programmed
       -   guaranteed  



Conflict-free 
replication



Strong eventual Consistency

Update local + propagate:

    -  Update is durable

    -  Broadcast  

    -  No synchronization

No conflict:

    -  Unique outcome of  

       updates (& propagations)



Assumptions for strong eventual 
consistency

Eventual delivery: 

   Every update eventually executes at           
all replicas.

Termination: 

   Every update terminates.

Strong convergence: 

   Correct replicas that have executed the 
same updates have equivalent state.
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Deterministic, 
context-independent 

outcome to 
concurrent updates



Asynchronous propagation

. . .

Conflict-free replicated data 
types (CRDTs)
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Operation-based updates

●  Small messages, no information duplication

●  Uses causal broadcast

      - Vector clock counts messages received / node

      - Size of vector clock  ∼ number of replicas

●  Consensus not required
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Operation-based CRDTs
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•  Example: Counter with incr and decr

•  All replicas have equivalent state in the end

•  Sufficient condition:
      - Reliable causal delivery of vector clocks
      - Concurrent operations commute



Operation-based 
specification
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State-based / data shipping
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merge()
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●   Epidemic propagation

●   Eventual delivery   

●   Consensus not required

●   Inefficient for large payload

●   Convergence
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State-based CRDTs
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●   All replicas have equivalent state in the end

●   Sufficient condition: monotonic semi-lattice   
     -  partial order
     -  monotonic
     -  merge computes LUB
     -  merge eventually delivered
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State-based specification
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Last-writer-wins register
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Payload S ≝ (value v, timestamp ts)

Update S ● [x  v] ≔     ≝ (v, now())

Merge S ● merge(S')  ≝ S.ts < S'.ts ? S' : S

Compare      S ≤ S'             ≝ S.ts ≤ S'.ts

x 1≔

S1=(2,1)

 S0 = (0,0)

S0 = (0,0)

S0 = (0,0) S1=(3,2)

S1=(1,3) S2=(1,3)

S2=(3,2) S3=(1,3)

x 2≔

x 3≔

S0



Observed-remove Set
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Payload S  ≝ ( A = {(e, uid), …},  R = {(e', uid'), …})

Update S ● add(e)     ≝ ( A  {(e,uid)}, R )∪

S ● rmv(e)     ≝ (A \ T, R  T)  with  T = { (e, _ )  A }∪ ∈

Lookup S ● lookup(e) ≝ e ∈ A

Merge S ● merge(S')  ≝ (A \ R'  A' \ R, R  R')∪ ∪

Compare S ≤ S'              ≝ A  R  A'  R'  R  R'∪ ⊆ ∪ ∧ ⊆



Further examples of CRDTs
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Register

• Last-Writer Wins

• Multi-Value

Set

• Grow-Only

• 2P

• Observed-Remove

Map

Counter

• Unlimited

• Non-negative

Graph

• Directed

• Monotonic DAG

• Edit graph

Sequence



Summary: CRDT

●   Concurrent updates have deterministic outcome

●   Sufficient conditions:

       -  State-based: epidemic, monotonic semi-lattice

       -  Op-based: causal, concurrent  commute⇒

● CRDTs

       -   don‘t lose updates

       -   converge eventually

       -   have durable updates, no rollbacks

       -   support unlimited (crash-recovery) failures
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Realizing future 
information 

systems



. . .

Programming model
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Central questions:
●   What is the application-independent API of data store?
●   How can CRDTs be combined to realize client API?
●   What is needed in addition to CRDTs?

Client API

DC API



Further challenges
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●   More complex architectures:
      -  client state
      -  DC hopping

●   Global state guarantees:
      -  support of reservations
      -  stable preconditions

●   Transactions

●   Verification techniques

●   Using CRDTs for concurrent programming


