
www.uni-kl.de1 www.uni-kl.de

Arnd Poetzsch-Heffter

Based on work of Annette Bieniusa

together with

Marc Shapiro, Marek Zawirski (INRIA & LIP6)

Nuno Preguiça, Sérgio Duarte (UNL)

Carlos Baquero (U. Minho)

Weakening consistency
for scalable information systems

1

2

Overview

● Strong vs. eventual consistency

● Conflict-free replication

● Realizing future information systems

Strong
vs.

eventual
consistency

Centralized
information systems

4

. . .

Data storage

Application

Client

tx
1

Session

tx
1

tx
n...

Problems:

● Scalability

● Fault-tolerance

● Latency

tx
1

Session

tx
1

tx
n...

tx
1

Session

tx
1

tx
n...

tx
1

Session

tx
1

tx
n...

Strongly consistent, distributed
information systems

. . .Problems:

● Consistency

● Scalability

tx
1

Session

tx
1

tx
n...tx

1

Session

tx
1

tx
n...tx

1

Session

tx
1

tx
n...tx

1

Session

tx
1

tx
n...

Discussion

Objectives:

➢ fault tolerance → redundancy

➢ low latencies → distribution

➢ simple to program → strong-consistency

CAP (Brewer `00; Gilbert & Lynch `06)

Strongly-Consistent ∩ Available ∩ Partition-Tolerant = ∅

Way out: Give up strong consistency

Eventual consistency

Basic ideas:

● Clients can live with weaker forms of consistency

● Update each replica independently
 - transport changes to other replicas
 - replay or merge

● Guaranteed delivery:
 - eventually, all replicas receive all updates
 - hopefully they converge... (otherwise: conflicts)
 - but order of updates differs!

Using eventual consistency

Different approaches:

● Application-specific vs. general approaches

● Conflict resolution:
 - manual
 - automatic
 - no conflicts

● Convergence:
 - ad hoc / programmed
 - guaranteed

Conflict-free
replication

Strong eventual Consistency

Update local + propagate:

 - Update is durable

 - Broadcast

 - No synchronization

No conflict:

 - Unique outcome of

 updates (& propagations)

Assumptions for strong eventual
consistency

Eventual delivery:

 Every update eventually executes at
all replicas.

Termination:

 Every update terminates.

Strong convergence:

 Correct replicas that have executed the
same updates have equivalent state.

11

Deterministic,
context-independent

outcome to
concurrent updates

Asynchronous propagation

. . .

Conflict-free replicated data
types (CRDTs)

tx
1

Session

upd
1 ...

upd
n tx

1

Session

upd
1 ...

upd
n tx

1

Session

upd
1 ...

upd
n tx

1

Session

upd
1 ...

upd
n

Operation-based updates

● Small messages, no information duplication

● Uses causal broadcast

 - Vector clock counts messages received / node

 - Size of vector clock ∼ number of replicas

● Consensus not required
13

update(x)

update(x)

update(y)

update(x) update(y)

 R1

 R2

 R3
update(y)

S0 S1 S2

S0

S0 S1 S2

S0 S1 S2

S1 S2

Operation-based CRDTs

14

update(x)

update(x)

update(y)

update(x) update(y)

 R1

 R2

 R3
update(y)

S0 S1 S2

S0

S0 S1 S2

S0 S1 S2

S1 S2

• Example: Counter with incr and decr

• All replicas have equivalent state in the end

• Sufficient condition:
 - Reliable causal delivery of vector clocks
 - Concurrent operations commute

Operation-based
specification

15

prepare

effect

State-based / data shipping

16

merge()

update(y)

update(x) merge()

 R1

 R2

 R3

S0 S1 S2

S0

S0 S1 S2

S0 S1

S1 S2

● Epidemic propagation

● Eventual delivery

● Consensus not required

● Inefficient for large payload

● Convergence

merge()

S1S1

S2

S2

State-based CRDTs

17

merge()

update(y)

update(x) merge()

 R1

 R2

 R3

S0 S1 S2

S0

S0 S1 S2

S0 S1

S1 S2

● All replicas have equivalent state in the end

● Sufficient condition: monotonic semi-lattice
 - partial order
 - monotonic
 - merge computes LUB
 - merge eventually delivered

merge()

S1S1

S2

S2

State-based specification

18

Last-writer-wins register

19

Payload S ≝ (value v, timestamp ts)

Update S ● [x v] ≔ ≝ (v, now())

Merge S ● merge(S') ≝ S.ts < S'.ts ? S' : S

Compare S ≤ S' ≝ S.ts ≤ S'.ts

x 1≔

S1=(2,1)

 S0 = (0,0)

S0 = (0,0)

S0 = (0,0) S1=(3,2)

S1=(1,3) S2=(1,3)

S2=(3,2) S3=(1,3)

x 2≔

x 3≔

S0

Observed-remove Set

20

add(a)

add(a)

rmv (a)

{}
{a

α
} {a

α
}

{}

{a
β
}

{a
α
} {a

α
}

{a
β
}

{a
β
, a

α
}

{a
β
} {a

β
, a

α
} {a

β
, a

α
}

{}

{a
β
}

Payload S ≝ (A = {(e, uid), …}, R = {(e', uid'), …})

Update S ● add(e) ≝ (A {(e,uid)}, R)∪

S ● rmv(e) ≝ (A \ T, R T) with T = { (e, _) A }∪ ∈

Lookup S ● lookup(e) ≝ e ∈ A

Merge S ● merge(S') ≝ (A \ R' A' \ R, R R')∪ ∪

Compare S ≤ S' ≝ A R A' R' R R'∪ ⊆ ∪ ∧ ⊆

Further examples of CRDTs

21

Register

• Last-Writer Wins

• Multi-Value

Set

• Grow-Only

• 2P

• Observed-Remove

Map

Counter

• Unlimited

• Non-negative

Graph

• Directed

• Monotonic DAG

• Edit graph

Sequence

Summary: CRDT

● Concurrent updates have deterministic outcome

● Sufficient conditions:

 - State-based: epidemic, monotonic semi-lattice

 - Op-based: causal, concurrent commute⇒

● CRDTs

 - don‘t lose updates

 - converge eventually

 - have durable updates, no rollbacks

 - support unlimited (crash-recovery) failures

22

Realizing future
information

systems

. . .

Programming model

tx
1

Session

...
tx

n
tx

1 tx
1

Session

...
tx

n
tx

1 tx
1

Session

...
tx

n
tx

1 tx
1

Session

...
tx

n
tx

1

Central questions:
● What is the application-independent API of data store?
● How can CRDTs be combined to realize client API?
● What is needed in addition to CRDTs?

Client API

DC API

Further challenges

25

● More complex architectures:
 - client state
 - DC hopping

● Global state guarantees:
 - support of reservations
 - stable preconditions

● Transactions

● Verification techniques

● Using CRDTs for concurrent programming

