]
I m TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Weakening consistency
for scalable information systems

Arnd Poetzsch-Heffter

Based on work of Annette Bieniusa
together with

Marc Shapiro, Marek Zawirski (INRIA & LIPG)
Nuno Preguica, Sérgio Duarte (UNL)

Carlos Baquero (U. Minho)

Overview

* Strong vs. eventual consistency
* Conflict-free replication
* Realizing future information systems

Strong
VS.
eventual
consistency

Centralized
Information systems

Client

Problems: Application

» Scalability
* Fault-tolerance ‘

* Latency Data storage

Strongly consistent, distributed
Information systems

Problems:
» Consistency

» Scalability

Discussion

Objectives:
> fault tolerance — redundancy
- low latencies - distribution

> simple to program - strong-consistency

CAP (Brewer 00; Gilbert & Lynch 06)
Strongly-Consistent n Available n Partition-Tolerant = @

Way out: Give up strong consistency

Eventual consistency

Basic ideas:

* Clients can live with weaker forms of consistency

 Update each replica independently

 Guaranteed delivery:

conflicts

Using eventual consistency

Different approaches:

» Application-specific vs. general approaches

 Conflict resolution:

- nho conflicts

« Convergence:

- guaranteed

Conflict-free
replication

eventual Consistency

Update local + propagate:
- Update is durable
- Broadcast
- No synchronization

No conflict:
- Unique outcome of
updates (& propagations)

for strong eventual
consistency

Deterministic,

Eventual delivery: context-independent
outcome to
Every update eventually executes at ~ concurrent updates
all replicas.
Termination:

Every update terminates.

Correct replicas that have executed the
same updates have equivalent state.

Conflict-free replicated data
types (CRDTs)

Asynchronous propagation

Operation-based updates

R1

R2

R3

update(x) update(y)
D

update(y) update(x)

* Small messages, no information duplication

e Uses

Operation-based CRDTs

update(x) update(y)

R1 D

R2 D >

update(y) update(x)

R3

« Example: Counter with incr and decr
 All replicas have equivalent state in the end

 Sufficient condition:
- Reliable causal delivery of vector clocks
- Concurrent operations commute

Operation-based
specification

payload Payload type; instantiated at all replicas
initial Initial value
query Source-local operation (arguments) : returns
pre Precondition
let Ezecute at source, synchronously, no side effects

update Global update (arguments) : returns
prepare (arguments) : returns
pre Precondition at source
let 1st phase: synchronous, at source, no side effects

effect (arguments passed downstream)
pre Precondition against downstream state
2nd phase, asynchronous, side-effects to downstream state

State-based / data shipping

update(x) merge()
\ /gg
RZ2 S0, 'S D ® >
update(y) merge() o

R3

* Epidemic propagation
 Eventual delivery
 Consensus not required

* [|nefficient for large payload

 Convergence

State-based CRDTs

update(x) merge()
R1 D - —P—
\ /gQ
R2 S0, 'S D .\. >
update(y) merge() o

* All replicas have equivalent state in the end

e Sufficient condition:

partial order

monotonic

merge computes LUB
merge eventually delivered

State-based specification

payload Payload type; instantiated at all replicas
initial Initial value

query Query (arguments) : returns
pre Precondition
let Fvaluate synchronously, no side effects

update Source-local operation (arguments) : returns
pre Precondition
let Fvaluate at source, synchronously
Side-effects at source to execute synchronously

compare (valuel, value2) : boolean b
Is valuel < wvalue2 in semilattice?

merge (valuel, value2) : payload mergedValue
LUB merge of valuel and value2, at any replica

Last-writer-wins register

S0 =(0,0) =1 S1=(1,3) $2=(1,3)
o ®
- o S1=(2,1)
Payload S = (value v, timestamp ts)
Update Se[x=yV] = (v, now())
Merge Semerge(S) = Sts<S'ts?S':S

Compare S<S £ Sts<S'ts

Observed-remove Set

add a) rmv (a) {a -a)
add(a) /
{8 }

Payload S = (A={(le uid), ...}, R={(e' uid), ...}
Update Seaddle) Z(AU{(euid)} R)

Sermvie)] =((A\TRUT) with T={(e,)EA}
Lookup S e lookup(e) £e € A
Merge Semerge(S) £ (A\R'UA'\R, RUR))

Compare S<S ZAURCA'UR'ANRCER

Further examples of CRDTs

Register Counter

* Last-Writer Wins * Unlimited

* Multi-Value * Non-negative
Set Graph

* Grow-Only * Directed

e 2P * Monotonic DAG

* Observed-Remove * Edit graph
Map Sequence

Summary: CRDT

* Concurrent updates have deterministic outcome
* Sufficient conditions:
- State-based: epidemic, monotonic semi-lattice

- Op-based: causal, concurrent = commute

* CRDTs
- don't lose updates
- converge eventually
- have durable updates, no rollbacks
- support unlimited (crash-recovery) failures

Realizing future
Information
systems

Programming model

Client API

DCAPI —

Central questions:

 What is the application-independent API of data store?
e How can CRDTs be combined to realize client API?

« What is needed in addition to CRDTs?

Further challenges

 More complex architectures:
- client state
- DC hopping

» Global state guarantees:
- support of reservations
- stable preconditions

e Transactions

e Verification techniques

* Using CRDTs for concurrent programming

