Robustness against Power is PSpace -complete

Egor Derevenetc^{1,2} Roland Meyer¹

¹University of Kaiserslautern

²Fraunhofer ITWM

WEACON Kaiserslautern 13.06.2014

Introduction

Power Architecture Robustness

Deciding Robustness

Characterization of Violating Computations Normal-Form Computations Generating Normal-Form Computations Checking Cyclicity of Happens-Before Relation Complexity

Conclusion

- Related Work
- Summary

Example (Message Passing Program)

Consider the multithreaded program (initially, x = y = 0):

Thread 1:Thread 2: $a: mem[x] \leftarrow 1$ $c: r_1 \leftarrow mem[y]$ $b: mem[y] \leftarrow 1$ $d: r_2 \leftarrow mem[x]$ Assumption: $r_1 = 1$ implies $r_2 = 1$.

Example (Message Passing Program)

Consider the multithreaded program (initially, x = y = 0):

Thread 1:Thread 2: $a: mem[x] \leftarrow 1$ $c: r_1 \leftarrow mem[y]$ $b: mem[y] \leftarrow 1$ $d: r_2 \leftarrow mem[x]$ Assumption: $r_1 = 1$ implies $r_2 = 1$.

Sequential Consistency (SC) [Lamport, 1979]

- Instructions are executed in order.
- Writes to memory are immediately visible to all threads.
- \Rightarrow The assumption holds.

Example (Message Passing Program)

Consider the multithreaded program (initially, x = y = 0):

Thread 1:Thread 2: $a: mem[x] \leftarrow 1$ $c: r_1 \leftarrow mem[y]$ $b: mem[y] \leftarrow 1$ $d: r_2 \leftarrow mem[x]$ Assumption: $r_1 = 1$ implies $r_2 = 1$.

Sequential Consistency (SC) [Lamport, 1979]

- Instructions are executed in order.
- Writes to memory are immediately visible to all threads.
- \Rightarrow The assumption holds.

Power Architecture by IBM et al. [Sarkar et al., 2011]

- Independent instructions can be executed out of order.
- Writes can be seen by different threads in different order.
- \Rightarrow The assumption does not hold.

How a thread executes an instruction on Power:

How a thread executes an instruction on Power:

First, it fetches it. Instructions must be fetched in the program order, one after another.

How a thread executes an instruction on Power:

- First, it fetches it. Instructions must be fetched in the program order, one after another.
- Next, it performs the computation prescribed by the instruction's semantics. Results of instructions, on which the current one depends, must be already computed.

How a thread executes an instruction on Power:

- First, it fetches it. Instructions must be fetched in the program order, one after another.
- Next, it performs the computation prescribed by the instruction's semantics. Results of instructions, on which the current one depends, must be already computed.
- ► Finally, it commits the instruction. Similarly, all instruction's dependencies must be committed earlier.

How a thread executes an instruction on Power:

- First, it fetches it. Instructions must be fetched in the program order, one after another.
- Next, it performs the computation prescribed by the instruction's semantics. Results of instructions, on which the current one depends, must be already computed.
- ► Finally, it commits the instruction. Similarly, all instruction's dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

How a thread executes an instruction on Power:

- First, it fetches it. Instructions must be fetched in the program order, one after another.
- Next, it performs the computation prescribed by the instruction's semantics. Results of instructions, on which the current one depends, must be already computed.
- Finally, it commits the instruction. Similarly, all instruction's dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

 $c: r_1 \leftarrow \operatorname{mem}[y]; d: r_2 \leftarrow \operatorname{mem}[x].$

How a thread executes an instruction on Power:

- First, it fetches it. Instructions must be fetched in the program order, one after another.
- Next, it performs the computation prescribed by the instruction's semantics. Results of instructions, on which the current one depends, must be already computed.
- Finally, it commits the instruction. Similarly, all instruction's dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

$$c: r_1 \leftarrow \operatorname{mem}[y]; d: r_2 \leftarrow \operatorname{mem}[x].$$

Example (Computation of Thread 2) $\beta := \text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{load}(c) \cdot \text{load}(d) \cdot \text{commit}(d) \cdot \text{commit}(c).$

How memory works on Power:

How memory works on Power:

A thread loads the value written by the last store to the same address propagated to this thread.

How memory works on Power:

- A thread loads the value written by the last store to the same address propagated to this thread.
- A committed store is immediately propagated to its own thread and can be later propagated to some other threads.

How memory works on Power:

- A thread loads the value written by the last store to the same address propagated to this thread.
- A committed store is immediately propagated to its own thread and can be later propagated to some other threads.
- Stores to the same address are globally ordered (coherence order) and can be propagated only in this order.

How memory works on Power:

- A thread loads the value written by the last store to the same address propagated to this thread.
- A committed store is immediately propagated to its own thread and can be later propagated to some other threads.
- Stores to the same address are globally ordered (coherence order) and can be propagated only in this order.

Example (Thread 1 of Message Passing Program)

a: mem[x] \leftarrow 1; b: mem[y] \leftarrow 1.

How memory works on Power:

- A thread loads the value written by the last store to the same address propagated to this thread.
- A committed store is immediately propagated to its own thread and can be later propagated to some other threads.
- Stores to the same address are globally ordered (coherence order) and can be propagated only in this order.

```
Example (Thread 1 of Message Passing Program)
```

```
a: mem[x] \leftarrow 1; b: mem[y] \leftarrow 1.
```

Example (Computation of Thread 1)

 $\alpha := fetch(a) \cdot commit(a) \cdot prop(a, 1) \cdot fetch(b) \cdot commit(b) \cdot prop(b, 1) \cdot prop(b, 2).$

Power Architecture 4/4 Example (Message Passing Program)

Initially,
$$x = y = 0$$
.Thread 1:Thread 2: $a: mem[x] \leftarrow 1$ $c: r_1 \leftarrow mem[y]$ $b: mem[y] \leftarrow 1$ $d: r_2 \leftarrow mem[x]$ Assumption: $r_1 = 1$ implies $r_2 = 1$.

Example (Computation of the Program on Power) $\tau := \alpha \cdot \beta = \text{fetch}(a) \cdot \text{commit}(a) \cdot \text{prop}(a, 1) \cdot \text{fetch}(b) \cdot \text{commit}(b) \cdot \text{prop}(b, 1) \cdot \text{prop}(b, 2) \cdot \text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{load}(c) \cdot \text{load}(d) \cdot \text{commit}(d) \cdot \text{commit}(c).$

- Load *c* reads value 1 written by *b*.
- Load d reads the initial value 0, as store a was never propagated to Thread 2.
- \Rightarrow The assumption does not hold.

Robustness Problem

Check, whether a given program has the same behaviors under SC and under Power.

Robustness Problem

Check, whether a given program has the same behaviors under SC and under Power. Behavior is the control and data dependencies between instructions.

Robustness Problem

Check, whether a given program has the same behaviors under SC and under Power. Behavior is the control and data dependencies between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an intersection of languages:

$$\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset.$$

 Computations violating SC (if any) have a representative in a normal form.

Robustness Problem

Check, whether a given program has the same behaviors under SC and under Power. Behavior is the control and data dependencies between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an intersection of languages:

$$\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset.$$

- Computations violating SC (if any) have a representative in a normal form.
- ► Language *L* consists of all normal-form computations.

Robustness Problem

Check, whether a given program has the same behaviors under SC and under Power. Behavior is the control and data dependencies between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an intersection of languages:

$$\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset.$$

- Computations violating SC (if any) have a representative in a normal form.
- ► Language *L* consists of all normal-form computations.
- $\cap \mathcal{R}$ filters only violating computations.

Robustness Problem

Check, whether a given program has the same behaviors under SC and under Power. Behavior is the control and data dependencies between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an intersection of languages:

$\mathcal{L}\cap \mathcal{R}\stackrel{?}{=} \emptyset.$

- Computations violating SC (if any) have a representative in a normal form.
- Language \mathcal{L} consists of all normal-form computations.
- $\cap \mathcal{R}$ filters only violating computations.
- Decide $\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset$.

Introduction

Power Architecture Robustness

Deciding Robustness

Characterization of Violating Computations Normal-Form Computations Generating Normal-Form Computations Checking Cyclicity of Happens-Before Relation Complexity

Conclusion

- Related Work
- Summary

Introduction

Power Architecture Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations Generating Normal-Form Computations Checking Cyclicity of Happens-Before Relation Complexity

Conclusion

- Related Work
- Summary

A computation violates SC iff it has cyclic happens-before relation.

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation τ)

	Thread 1	Thread 2
init _x	$a: \text{ mem}[x] \leftarrow 1$	$d: r_2 \leftarrow \texttt{mem}[x]$
$init_y$	$b: \texttt{mem}[y] \leftarrow 1$	$c\colon r_1 \gets \texttt{mem}[y]$

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation τ)

	Thread 1	Thread 2
init _x	a: mem[x] $\leftarrow 1$	$d: r_2 \leftarrow \texttt{mem}[x]$
init _y	$po \ b: mem[y] \leftarrow 1$	$\begin{array}{c} po \\ c: r_1 \leftarrow \texttt{mem}[y] \end{array}$

Happens-before relation is a union of four relations:

Program order — textual ordering of instructions.

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation τ)

 $\begin{array}{c|c} & \text{Thread 1} & \text{Thread 2} \\ \text{init}_x & \overbrace{co} \\ & a: & \text{mem}[x] \leftarrow 1 \\ & po \\ & \text{init}_y & \overbrace{co} \\ & b: & \text{mem}[y] \leftarrow 1 \end{array} & \begin{array}{c} d: & r_2 \leftarrow \text{mem}[x] \\ & po \\ & po \\ & c: & r_1 \leftarrow \text{mem}[y] \end{array}$

- Program order textual ordering of instructions.
- Coherence order ordering of stores to the same address.

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation τ)

- Program order textual ordering of instructions.
- Coherence order ordering of stores to the same address.
- Source order which store is read by which load.

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation τ)

- Program order textual ordering of instructions.
- Coherence order ordering of stores to the same address.
- Source order which store is read by which load.
- Conflict order which stores overwrite the value read by a load.

Introduction

Power Architecture Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations Checking Cyclicity of Happens-Before Relation Complexity

Conclusion

- Related Work
- Summary

Normal-Form Computations 1/4

Definition

A computation $\tau := \tau_1 \cdots \tau_n$ is in normal form of degree *n*, if

Normal-Form Computations 1/4

Definition

A computation $\tau := \tau_1 \cdots \tau_n$ is in normal form of degree *n*, if

• there are no fetch events in $\tau_2 \cdots \tau_n$,

Definition

A computation $\tau := \tau_1 \cdots \tau_n$ is in normal form of degree *n*, if

- there are no fetch events in $\tau_2 \cdots \tau_n$,
- events in each part τ₁...τ_n occur in the order in which corresponding fetch events occur in τ₁.

Definition

A computation $\tau := \tau_1 \cdots \tau_n$ is in normal form of degree *n*, if

- there are no fetch events in $\tau_2 \cdots \tau_n$,
- events in each part τ₁...τ_n occur in the order in which corresponding fetch events occur in τ₁.

Theorem

If a program has computations with cyclic happens-before relation, it has one in the normal form of degree (number of threads + 3).

Definition

A computation $\tau := \tau_1 \cdots \tau_n$ is in normal form of degree *n*, if

- there are no fetch events in $\tau_2 \cdots \tau_n$,
- events in each part τ₁...τ_n occur in the order in which corresponding fetch events occur in τ₁.

Theorem

If a program has computations with cyclic happens-before relation, it has one in the normal form of degree (number of threads + 3).

Proof Idea.

Take a shortest computation with cyclic happens-before relation and transform it to the normal form.

Lemma

Given a non-empty valid computation, there is a thread, such that deletion of all events belonging to its last fetched instruction produces a valid computation.

Lemma

Given a non-empty valid computation, there is a thread, such that deletion of all events belonging to its last fetched instruction produces a valid computation.

Example

 $\tau = \text{fetch}(a) \cdot \text{commit}(a) \cdot \text{prop}(a, 1) \cdot \underline{\text{fetch}(b)} \cdot \underline{\text{commit}(b)} \cdot \underline{\text{prop}(b, 1)} \cdot \underline{\text{prop}(b, 2)} \cdot \underline{\text{fetch}(c)} \cdot \underline{\text{fetch}(d)} \cdot \underline{\text{load}(c)} \cdot \underline{\text{load}(d)} \cdot \underline{\text{commit}(d)} \cdot \underline{\text{commit}(c)}.$

Lemma

Given a non-empty valid computation, there is a thread, such that deletion of all events belonging to its last fetched instruction produces a valid computation.

Example

 $\operatorname{commit}(d) \cdot \operatorname{commit}(c).$

1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.
- 3. Assume all fetch events are in $\tau_1 \cdot e_1$ (one can always move them to the front).

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.
- 3. Assume all fetch events are in $\tau_1 \cdot e_1$ (one can always move them to the front).
- 4. Computation $\tau' := \tau_1 \cdot \tau_2 \cdots \tau_n$ is shorter than τ

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.
- 3. Assume all fetch events are in $\tau_1 \cdot e_1$ (one can always move them to the front).
- 4. Computation $\tau' := \tau_1 \cdot \tau_2 \cdots \tau_n$ is shorter than τ , \Rightarrow not violating.

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.
- 3. Assume all fetch events are in $\tau_1 \cdot e_1$ (one can always move them to the front).
- 4. Computation $\tau' := \tau_1 \cdot \tau_2 \cdots \tau_n$ is shorter than τ , \Rightarrow not violating.
- 5. Let σ be a sequentially consistent version of τ' .

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.
- 3. Assume all fetch events are in $\tau_1 \cdot e_1$ (one can always move them to the front).
- 4. Computation $\tau' := \tau_1 \cdot \tau_2 \cdots \tau_n$ is shorter than τ , \Rightarrow not violating.
- 5. Let σ be a sequentially consistent version of τ' .
- 6. Reorder events in the way they follow in σ :

$$\tau'' := \sigma \downarrow \tau_1 \cdot e_1 \cdots \sigma \downarrow \tau_n.$$

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.
- 3. Assume all fetch events are in $\tau_1 \cdot e_1$ (one can always move them to the front).
- 4. Computation $\tau' := \tau_1 \cdot \tau_2 \cdots \tau_n$ is shorter than τ , \Rightarrow not violating.
- 5. Let σ be a sequentially consistent version of τ' .
- 6. Reorder events in the way they follow in σ :

$$\tau'' := \sigma \downarrow \tau_1 \cdot e_1 \cdots \sigma \downarrow \tau_n.$$

Lemma

Computation au''

is in normal form,

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.
- 3. Assume all fetch events are in $\tau_1 \cdot e_1$ (one can always move them to the front).
- 4. Computation $\tau' := \tau_1 \cdot \tau_2 \cdots \tau_n$ is shorter than τ , \Rightarrow not violating.
- 5. Let σ be a sequentially consistent version of τ' .
- 6. Reorder events in the way they follow in σ :

$$\tau'' := \sigma \downarrow \tau_1 \cdot e_1 \cdots \sigma \downarrow \tau_n.$$

Lemma

Computation au''

- is in normal form,
- has the same happens-before relation as au

- 1. Let $\tau := \tau_1 \cdot e_1 \cdot \tau_2 \cdot e_2 \cdots \tau_n$ be a shortest computation with cyclic happens-before relation.
- 2. Let $e_1 \cdots e_{n-1}$ be the deleted events.
- 3. Assume all fetch events are in $\tau_1 \cdot e_1$ (one can always move them to the front).
- 4. Computation $\tau' := \tau_1 \cdot \tau_2 \cdots \tau_n$ is shorter than τ , \Rightarrow not violating.
- 5. Let σ be a sequentially consistent version of τ' .
- 6. Reorder events in the way they follow in σ :

$$\tau'' := \sigma \downarrow \tau_1 \cdot e_1 \cdots \sigma \downarrow \tau_n.$$

Lemma

Computation au''

- is in normal form,
- has the same happens-before relation as τ , \Rightarrow violating.

Example

A shortest computation with cyclic happens-before relation:

- $\tau = (\text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a)) \cdot \text{fetch}(b)$
 - $\cdot \quad (\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \underline{\operatorname{commit}(b)} \cdot \underline{\operatorname{prop}(b, 1)} \cdot \underline{\operatorname{prop}(b, 2)}$
 - $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Example

The shortened computation:

- $\tau' = (fetch(c) \cdot fetch(d) \cdot fetch(a))$
 - $(\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1))$
 - $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Example

The shortened computation:

- $\tau' = (fetch(c) \cdot fetch(d) \cdot fetch(a))$
 - $(\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1))$
 - · $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Matching sequentially consistent computation:

- $\sigma = \operatorname{fetch}(c) \cdot \operatorname{load}(c) \cdot \operatorname{commit}(c)$
 - fetch(d) load(d) commit(d)
 - $fetch(a) \cdot commit(a) \cdot prop(a, 1) \cdot prop(a, 2)$

Example

A shortest computation with cyclic happens-before relation:

- $\tau = (\operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)) \cdot \operatorname{fetch}(b)$
 - $\cdot \quad (\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \underline{\operatorname{commit}(b)} \cdot \underline{\operatorname{prop}(b, 1)} \cdot \underline{\operatorname{prop}(b, 2)}$
 - · $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Matching sequentially consistent computation:

- $\sigma = \operatorname{fetch}(c) \cdot \operatorname{load}(c) \cdot \operatorname{commit}(c)$
 - $fetch(d) \cdot load(d) \cdot commit(d)$
 - $fetch(a) \cdot commit(a) \cdot prop(a, 1) \cdot prop(a, 2)$

- $\tau'' = (\text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a)) \cdot \text{fetch}(b)$
 - · $(\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \operatorname{commit}(b) \cdot \operatorname{prop}(b, 1) \cdot \operatorname{prop}(b, 2)$
 - $(load(c) \cdot commit(c) \cdot load(d) \cdot commit(d))$

Example

A shortest computation with cyclic happens-before relation:

- $\tau = (\text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a)) \cdot \text{fetch}(b)$
 - $(\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \operatorname{commit}(b) \cdot \operatorname{prop}(b, 1) \cdot \operatorname{prop}(b, 2)$
 - $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Matching sequentially consistent computation:

- $\sigma = \operatorname{fetch}(c) \cdot \operatorname{load}(c) \cdot \operatorname{commit}(c)$
 - fetch(d) · load(d) · commit(d)
 - $fetch(a) \cdot commit(a) \cdot prop(a, 1) \cdot prop(a, 2)$

- $\tau'' = (\text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a)) \cdot \text{fetch}(b)$
 - (commit(a) prop(a, 1)) commit(b) prop(b, 1) prop(b, 2)
 - (load(c) commit(c) load(d) commit(d))

Example

A shortest computation with cyclic happens-before relation:

 $\tau = (\operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)) \cdot \operatorname{fetch}(b)$

- $(\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \operatorname{commit}(b) \cdot \operatorname{prop}(b, 1) \cdot \operatorname{prop}(b, 2)$
- $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Matching sequentially consistent computation:

$$\sigma = \operatorname{fetch}(c) \cdot \operatorname{load}(c) \cdot \operatorname{commit}(c)$$

- fetch(d) load(d) commit(d)
- fetch(a) commit(a) prop(a, 1) prop(a, 2)

$$\tau'' = (\text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a)) \cdot \text{fetch}(b)$$

- (commit(a) prop(a, 1)) commit(b) prop(b, 1) prop(b, 2)
- (load(c) commit(c) load(d) commit(d))

Example

A shortest computation with cyclic happens-before relation:

- $\tau = (\operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)) \cdot \operatorname{fetch}(b)$
 - $\cdot \quad (\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \operatorname{commit}(b) \cdot \operatorname{prop}(b, 1) \cdot \operatorname{prop}(b, 2)$
 - $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Matching sequentially consistent computation:

- $\sigma = \operatorname{fetch}(c) \cdot \operatorname{load}(c) \cdot \operatorname{commit}(c)$
 - fetch(d) load(d) commit(d)
 - $fetch(a) \cdot commit(a) \cdot prop(a, 1) \cdot prop(a, 2)$

- $\tau'' = (\operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)) \cdot \operatorname{fetch}(b)$
 - $(\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \operatorname{commit}(b) \cdot \operatorname{prop}(b, 1) \cdot \operatorname{prop}(b, 2)$
 - (load(c) commit(c) load(d) commit(d))

Example

A shortest computation with cyclic happens-before relation:

 $\tau = (\operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)) \cdot \operatorname{fetch}(b)$

- $\cdot \quad (\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \underline{\operatorname{commit}(b)} \cdot \underline{\operatorname{prop}(b, 1)} \cdot \underline{\operatorname{prop}(b, 2)}$
- $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Matching sequentially consistent computation:

$$\sigma = \operatorname{fetch}(c) \cdot \operatorname{load}(c) \cdot \operatorname{commit}(c)$$

- fetch(d) load(d) commit(d)
- fetch(a) commit(a) prop(a, 1) prop(a, 2)

$$\tau'' = (\text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a)) \cdot \text{fetch}(b)$$

- $(\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \operatorname{commit}(b) \cdot \operatorname{prop}(b, 1) \cdot \operatorname{prop}(b, 2)$
- (load(c) commit(c) load(d) commit(d))

Example

A shortest computation with cyclic happens-before relation:

- $\tau = (\operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)) \cdot \operatorname{fetch}(b)$
 - $(\operatorname{commit}(a) \cdot \operatorname{prop}(a, 1)) \cdot \operatorname{commit}(b) \cdot \operatorname{prop}(b, 1) \cdot \operatorname{prop}(b, 2)$
 - · $(load(c) \cdot load(d) \cdot commit(d) \cdot commit(c))$

Matching sequentially consistent computation:

- $\sigma = fetch(c) \cdot load(c) \cdot commit(c)$
 - fetch(d) load(d) commit(d)
 - $fetch(a) \cdot commit(a) \cdot prop(a, 1) \cdot prop(a, 2)$

$$\tau'' = (\operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)) \cdot \operatorname{fetch}(b)$$

- (commit(a) prop(a, 1)) commit(b) prop(b, 1) prop(b, 2)
- $(load(c) \cdot commit(c) \cdot load(d) \cdot commit(d))$

Introduction

Power Architecture Robustness

Deciding Robustness

Characterization of Violating Computations Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation Complexity

Conclusion

- Related Work
- Summary

Describe the language ${\mathcal L}$ of all normal-form computations of a given degree.

Describe the language ${\mathcal L}$ of all normal-form computations of a given degree.

We need a language class that

- ▶ includes *L*,
- ▶ is closed under intersection with regular languages ($\mathcal{L} \cap \mathcal{R}$),
- has decidable emptiness problem $(\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset)$.

Describe the language ${\boldsymbol{\mathcal L}}$ of all normal-form computations of a given degree.

We need a language class that

- ▶ includes *L*,
- ▶ is closed under intersection with regular languages ($\mathcal{L} \cap \mathcal{R}$),
- has decidable emptiness problem $(\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset)$.

Properties of \mathcal{L}

 Number of concurrently executed instructions is unbounded not regular.

Describe the language ${\mathcal L}$ of all normal-form computations of a given degree.

We need a language class that

- ▶ includes *L*,
- ▶ is closed under intersection with regular languages $(\mathcal{L} \cap \mathcal{R})$,
- has decidable emptiness problem $(\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset)$.

Properties of \mathcal{L}

- Number of concurrently executed instructions is unbounded
 not regular.
- Can include computations like (fetch)ⁿ · (load)ⁿ · (commit)ⁿ ⇒ not even context-free.

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

Example (Generating τ'' with a 3-headed Automaton)

 $\tau'' =$

.

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

Example (Generating au'' with a 3-headed Automaton)

 $\tau'' = \text{fetch}(c)$

.

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

Example (Generating au'' with a 3-headed Automaton)

 $\tau'' = \text{fetch}(c)$

· load(c)

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

Example (Generating au'' with a 3-headed Automaton)

 $\tau'' = \text{fetch}(c)$

· $load(c) \cdot commit(c)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \operatorname{fetch}(c) \cdot \operatorname{fetch}(d)$
 - · $load(c) \cdot commit(c)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \operatorname{fetch}(c) \cdot \operatorname{fetch}(d)$
 - $\cdot \quad \mathsf{load}(c) \cdot \mathsf{commit}(c) \cdot \mathsf{load}(d)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \operatorname{fetch}(c) \cdot \operatorname{fetch}(d)$
 - · $load(c) \cdot commit(c) \cdot load(d) \cdot commit(d)$

Solution

٠

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

Example (Generating au'' with a 3-headed Automaton)

$$\tau'' = \operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)$$

· $load(c) \cdot commit(c) \cdot load(d) \cdot commit(d)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)$
 - commit(a)
 - · $load(c) \cdot commit(c) \cdot load(d) \cdot commit(d)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a)$
 - \cdot commit(a) \cdot prop(a, 1)
 - $\cdot \quad \mathsf{load}(c) \cdot \mathsf{commit}(c) \cdot \mathsf{load}(d) \cdot \mathsf{commit}(d)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a) \cdot \text{fetch}(b)$
 - \cdot commit(a) \cdot prop(a, 1)
 - · $load(c) \cdot commit(c) \cdot load(d) \cdot commit(d)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a) \cdot \text{fetch}(b)$
 - \cdot commit(a) \cdot prop(a, 1) \cdot commit(b)
 - · $load(c) \cdot commit(c) \cdot load(d) \cdot commit(d)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \operatorname{fetch}(c) \cdot \operatorname{fetch}(d) \cdot \operatorname{fetch}(a) \cdot \operatorname{fetch}(b)$
 - \cdot commit(a) \cdot prop(a, 1) \cdot commit(b) \cdot prop(b, 1)
 - · $load(c) \cdot commit(c) \cdot load(d) \cdot commit(d)$

Solution

Define \mathcal{L} as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An *n*-headed automaton is an extension of NFA generating n parts of a computation simultaneously, one by each head.

- $\tau'' = \text{fetch}(c) \cdot \text{fetch}(d) \cdot \text{fetch}(a) \cdot \text{fetch}(b)$
 - $\cdot \quad \operatorname{commit}(a) \cdot \operatorname{prop}(a, 1) \cdot \operatorname{commit}(b) \cdot \operatorname{prop}(b, 1) \cdot \operatorname{prop}(b, 2)$
 - · $load(c) \cdot commit(c) \cdot load(d) \cdot commit(d)$

Introduction

Power Architecture Robustness

Deciding Robustness

Characterization of Violating Computations Normal-Form Computations Generating Normal-Form Computations Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

- Related Work
- Summary

Checking Cyclicity of Happens-Before Relation

Example (Happens-Before Relation of τ'')

Solution

Checking Cyclicity of Happens-Before Relation

Example (Happens-Before Relation of τ'')

Solution

The multiheaded automaton in each thread picks two instructions in program order.

Checking Cyclicity of Happens-Before Relation

Example (Happens-Before Relation of τ'')

Solution

- The multiheaded automaton in each thread picks two instructions in program order.
- Finite automata check edges between picked instructions from different threads.

Introduction

Power Architecture Robustness

Deciding Robustness

Characterization of Violating Computations Normal-Form Computations Generating Normal-Form Computations Checking Cyclicity of Happens-Before Relation Complexity

Conclusion

- Related Work
- Summary

Complexity

Theorem

Assuming finite memory, robustness is PSPACE-complete.

Proof.

Complexity

Theorem

Assuming finite memory, robustness is PSPACE-complete.

Proof.

• Upper bound: $\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset$.

Complexity

Theorem

Assuming finite memory, robustness is PSPACE-complete.

Proof.

- Upper bound: $\mathcal{L} \cap \mathcal{R} \stackrel{?}{=} \emptyset$.
- Lower bound: SC state reachability [Kozen, 1977].

Introduction

Power Architecture

Deciding Robustness

Characterization of Violating Computations Normal-Form Computations Generating Normal-Form Computations Checking Cyclicity of Happens-Before Relation Complexity

Conclusion

Related Work Summary

- Robustness
 - Characterization: [Shasha and Snir, 1988].
 - Monitoring algorithms:
 - [Burckhardt and Musuvathi, 2008] (TSO-only, broken),
 - [Burnim et al., 2011] (TSO, PSO).
 - Static overapproximation and fence insertion: [Alglave and Maranget, 2011] (TSO, Power).
 - Decidability
 - ▶ [Bouajjani et al., 2011] (TSO, PSPACE-completeness),
 - [Bouajjani et al., 2013] (TSO, reduction to SC reachability, fence insertion).

- Robustness
 - Characterization: [Shasha and Snir, 1988].
 - Monitoring algorithms:
 - [Burckhardt and Musuvathi, 2008] (TSO-only, broken),
 - [Burnim et al., 2011] (TSO, PSO).
 - Static overapproximation and fence insertion: [Alglave and Maranget, 2011] (TSO, Power).
 - Decidability
 - ▶ [Bouajjani et al., 2011] (TSO, PSPACE-completeness),
 - [Bouajjani et al., 2013] (TSO, reduction to SC reachability, fence insertion).
- State reachability
 - ▶ PSPACE for SC [Kozen, 1977],
 - ▶ Non-primitive recursive for TSO [Atig et al., 2010].

- Robustness
 - Characterization: [Shasha and Snir, 1988].
 - Monitoring algorithms:
 - [Burckhardt and Musuvathi, 2008] (TSO-only, broken),
 - [Burnim et al., 2011] (TSO, PSO).
 - Static overapproximation and fence insertion: [Alglave and Maranget, 2011] (TSO, Power).
 - Decidability
 - ▶ [Bouajjani et al., 2011] (TSO, PSPACE-completeness),
 - [Bouajjani et al., 2013] (TSO, reduction to SC reachability, fence insertion).
- State reachability
 - PSPACE for SC [Kozen, 1977],
 - ▶ Non-primitive recursive for TSO [Atig et al., 2010].
- Power models:
 - [Sarkar et al., 2011] (operational),
 - [Mador-Haim et al., 2012] (axiomatic),
 - [Alglave et al., 2013] (overview, newer axiomatic),
 - [Maranget et al.,] (tutorial, with ARM).

Reduction of Robustness to Language Emptiness

- Look only for normal-form violating computations.
- Use multiheaded automata to generate normal-form computations.
- Check cyclicity of happens-before by regular intersection.

Reduction of Robustness to Language Emptiness

- Look only for normal-form violating computations.
- Use multiheaded automata to generate normal-form computations.
- Check cyclicity of happens-before by regular intersection.

Robustness against Power is $\ensuremath{\operatorname{PSPACE}}$ -complete

- Upper bound: reduction to language emptiness.
- Lower bound: sequentially consistent state reachability.

Reduction of Robustness to Language Emptiness

- Look only for normal-form violating computations.
- Use multiheaded automata to generate normal-form computations.
- Check cyclicity of happens-before by regular intersection.

Robustness against Power is $\ensuremath{\operatorname{PSPACE}}$ -complete

- Upper bound: reduction to language emptiness.
- Lower bound: sequentially consistent state reachability.

First decidability result for Power!

Reduction of Robustness to Language Emptiness

- Look only for normal-form violating computations.
- Use multiheaded automata to generate normal-form computations.
- Check cyclicity of happens-before by regular intersection.

Robustness against Power is PSPACE-complete

- Upper bound: reduction to language emptiness.
- Lower bound: sequentially consistent state reachability.

First decidability result for Power!

Thank you for your attention. Questions? derevenetc@cs.uni-kl.de

References I

- Alglave, J. and Maranget, L. (2011).
 Stability in weak memory models.
 In CAV, volume 6806 of LNCS, pages 50–66. Springer.
- Alglave, J., Maranget, L., and Tautschnig, M. (2013). Herding cats. CoRR, abs/1308.6810.
- Atig, M. F., Bouajjani, A., Burckhardt, S., and Musuvathi, M. (2010).
 On the verification problem for weak memory models.

In POPL, pages 7-18. ACM.

 Bouajjani, A., Derevenetc, E., and Meyer, R. (2013). Checking and enforcing robustness against TSO. In ESOP, LNCS, pages 533–553. Springer.

References II

- Bouajjani, A., Meyer, R., and Möhlmann, E. (2011).
 Deciding robustness against Total Store Ordering.
 In *ICALP*, volume 6756 of *LNCS*, pages 428–440. Springer.
- Burckhardt, S. and Musuvathi, M. (2008).
 Effective program verification for relaxed memory models.
 In CAV, volume 5123 of LNCS, pages 107–120. Springer.
- Burnim, J., Stergiou, C., and Sen, K. (2011). Sound and complete monitoring of sequential consistency for relaxed memory models.

In TACAS, volume 6605 of LNCS, pages 11-25. Springer.

Kozen, D. (1977).

Lower bounds for natural proof systems. In *FOCS*, pages 254–266. IEEE.

References III

Lamport, L. (1979).

How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Transactions on Computers, 28(9):690–691.

 Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens, S., Alur, R., Martin, M. M. K., Sewell, P., and Williams, D. (2012).
 An axiomatic memory model for power multiprocessors. In CAV, pages 495–512. Springer.

Maranget, L., Sarkar, S., and Sewell, P. A tutorial introduction to the ARM and POWER relaxed memory models. https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/ test7.pdf. Draft.

References IV

```
    Sarkar, S., Sewell, P., Alglave, J., Maranget, L., and Williams,
D. (2011).
    Understanding POWER multiprocessors.
    In PLDI, pages 175–186. ACM.
```

```
    Shasha, D. and Snir, M. (1988).
    Efficient and correct execution of parallel programs that share memory.
    ACM TOPLAS, 10(2):282–312.
```