
Causal consistency in
Geo-replicated Systems

Deepthi Akkoorath

AG SoftTech

11/07/2014 2

Geo-Replicated Distributed Application

DC1

DC3

DC2

11/07/2014 3

Geo-Replicated Distributed Application

DC1

1. Create meeting

DC3

DC2

11/07/2014 4

Geo-Replicated Distributed Application

DC1

1. Create meeting

DC3

DC2

2. Create meeting

11/07/2014 5

Geo-Replicated Distributed Application

DC1

1. Create meeting

DC3

DC2

2. Create meeting

3. See meeting
 Delete meeting

11/07/2014 6

Geo-Replicated Distributed Application

DC1

1. Create meeting

DC3

DC2

2. Create meeting

3. See meeting
 Delete meeting

4
.
D

e
le

te
 m

e
e
tin

g

11/07/2014 7

Geo-Replicated Distributed Application

DC1

1. Create meeting

DC3

DC2

2. Create meeting

3. See meeting
 Delete meeting

4
.
D

e
le

te
 m

e
e
tin

g

5. C
reate

m
eeting

11/07/2014 8

Geo-Replicated Distributed Application

DC1

1. Create meeting

DC3

DC2

2. Create meeting

3. See meeting
 Delete meeting

4
.
D

e
le

te
 m

e
e
tin

g

5. C
reate

m
eeting

6. Delete meeting

11/07/2014 9

Lamport's Timestamps

● Total order of events satisfying Happened-before relation

● Each process has a Logical clock

● A process increments its clock for each event

● Sends clock with each message it sends

● On receiving a message

– Sets clock = max(own clock, received clock)

11/07/2014 10

Lamport's Timestamps

● Total order of events satisfying Happened-before relation

● Each process has a Logical clock

● A process increments its clock for each event

● Sends clock with each message it sends

● On receiving a message

– Sets clock = max(own clock, received clock)

Total order

11/07/2014 11

Vectorclocks

● Similar to Lamport's timestamp

● Partial order and detect causality violations

● A system on N process

– Vectorclock = array of N logical clocks

– Each process has a vectorclock

– Increment its own logical clock for each event

– On receiving a message

● Set each entry in vc to be max(local entry, corresponding
entry in received vc)

11/07/2014 12

Detect Causality violation using Vectorclocks

DC1 DC2 DC3

[0,0,0] [0,0,0] [0,0,0]

11/07/2014 13

Detect Causality violation using Vectorclocks

Create meeting

DC1 DC2 DC3

[0,0,0] [0,0,0] [0,0,0]

11/07/2014 14

Detect Causality violation using Vectorclocks

Create meeting

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

11/07/2014 15

Detect Causality violation using Vectorclocks

Create meeting

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

11/07/2014 16

Detect Causality violation using Vectorclocks

Create meeting

[2,1,0]

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

11/07/2014 17

Detect Causality violation using Vectorclocks

Create meeting

[2,1,0]

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

Delete meeting

11/07/2014 18

Detect Causality violation using Vectorclocks

Create meeting

[2,1,0]

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

Delete meeting
[2,2,0]

11/07/2014 19

Detect Causality violation using Vectorclocks

Create meeting

[2,1,0]

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

Delete meeting
[2,2,0]

[2,2,0]

11/07/2014 20

Detect Causality violation using Vectorclocks

Create meeting

[2,1,0]

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

Delete meeting
[2,2,0]

[2,2,0]

[2,3,1]

11/07/2014 21

Detect Causality violation using Vectorclocks

Create meeting

[2,1,0]

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

Delete meeting
[2,2,0]

[2,2,0]

[1,0,0]
[2,3,1]

11/07/2014 22

Detect Causality violation using Vectorclocks

Create meeting

[2,1,0]

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

Delete meeting
[2,2,0]

[2,2,0]

[1,0,0]

[2,3,2]

[2,3,1]

11/07/2014 23

Detect Causality violation using Vectorclocks

Create meeting

[2,1,0]

DC1 DC2 DC3

[0,0,0]

[1,0,0]

[0,0,0] [0,0,0]

Delete meeting
[2,2,0]

[2,2,0]

[1,0,0]

[2,3,2]

[2,3,1]

11/07/2014 24

Version Vectors

● Similar to vector clocks

● Partial order among replicas of an object

● Several mechanisms to keep size of version vector small

– Bounded Version Vectors

– Dotted Version Vectors

● Causality across objects cannot be tracked

11/07/2014 25

Partitioned and Geo-Replicated Distributed
System

11/07/2014 26

Partitioned and Geo-Replicated Distributed
System

1. remove photos

11/07/2014 27

Partitioned and Geo-Replicated Distributed
System

1. remove photos
2. addFriend(Bob)

11/07/2014 28

Partitioned and Geo-Replicated Distributed
System

1. remove photos
2. addFriend(Bob)

3. addFriend(Bob)

11/07/2014 29

Partitioned and Geo-Replicated Distributed
System

1. remove photos
2. addFriend(Bob)

3. addFriend(Bob)

4. See photos of Alice

11/07/2014 30

Partitioned and Geo-Replicated Distributed
System

1. remove photos
2. addFriend(Bob)

3. addFriend(Bob)

5. removePhotos

4. See photos of Alice

11/07/2014 31

Orbe: Causal Consistency with Dependency
Matrix

Clock R1 R2 R3 R4

P1 0 2 0 0

P2 1 0 3 0

P3 0 0 0 1

11/07/2014 32

Orbe: Causal Consistency with Dependency
Matrix

● Dependency matrices to track causality

● Client updates its DM when ever it reads a new version

● Client has seen 3rst 2 updates at replica 2 of partition 1

Clock R1 R2 R3 R4

P1 0 2 0 0

P2 1 0 3 0

P3 0 0 0 1

Clock R1 R2 R3 R4

P1 0 2 0 0

P2 1 0 3 0

P3 0 0 0 1

11/07/2014 33

Orbe: Causal Consistency with Dependency
Matrix

● Each Partition has its own version vector - VV

● P1 at DC1 has

– 1 local update

– 2 updates from R2

– 1 update from R3

VV R1 R2 R3 R4

P1/R1 1 2 1 0

11/07/2014 34

Orbe: Causal Consistency with Dependency
Matrix

● Client send put(k,v,DM) to partition P1 at DC1

● P1 at DC1

– Increment its own VV[R1]

– Ts = VV[R1]

– New entry U<k, v, 2, DM, R1>

– Replicate U to P1 at DC2 and DC3

● On receiving U< k, v, ts, DM, replicaid> at Pn

– Check VV >= DM[n]

– Check if causality is satis3ed at other partitions

– Update VV[replicaid] = ts

11/07/2014 35

Total order in a partitioned system

● Snapshot isolation

– Reads a consistent snapshot

● Consistent Snapshot

– Includes all updates committed before snapshot time

● Transactions commit in total order

● Snapshot identi3ed by its commit time

● Update A is causally before B if A.commit-time <
B.commit-time

11/07/2014 36

Clock SI – Snapshot Isolation using physical
clocks

● Loosely synchronized clocks

● No centralized time-stamp generator

● Distributed protocol

● Snapshot-time

– Time when transaction begins

– Reads return values committed on or before this time

● Commit-time decided by transaction coordinator and
partitions involved in transaction

11/07/2014 37

ClockSI – Commit Protocol

Txn Coordinator

Partitions

11/07/2014 38

ClockSI – Commit Protocol

● T.snapshottime = Localclock
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

Txn Coordinator

Partitions

11/07/2014 39

ClockSI – Commit Protocol

● T.snapshottime = Localclock
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

Txn Coordinator

Partitions

11/07/2014 40

ClockSI – Commit Protocol

● T.snapshottime = Localclock
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions

11/07/2014 41

ClockSI – Commit Protocol

● T.snapshottime = Localclock
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions

11/07/2014 42

ClockSI – Commit Protocol

● T.snapshottime = Localclock
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions

11/07/2014 43

ClockSI – Commit Protocol

● T.snapshottime = Localclock
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions

11/07/2014 44

ClockSI – Commit Protocol

● T.snapshottime = Localclock
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions

11/07/2014 45

Clock SI – Read protocol

Read(Transaction T, dataitem Obj)

● Wait if T.snapshotime > localclock

● If any pending Transaction T' with possible commit-time <
T'.snapshottime

– wait until T' is committed

● Return latest snapshot before snapshot-time

11/07/2014 46

Extended ClockSI: Partitioned and Replicated
System

● Vectorclock per partition

– P1 at DC1 has seen all updates from DC2 before time 9

● Snapshot-time is Vectorclock of coordinator at the time
when transaction begins

● Updates in a transaction depends on Snapshot which it
reads from

● Snapshot-time encodes causal dependency

R1 R2 R3 R4

P1/R1 10 9 13 8

11/07/2014 47

Extended ClockSI: Replication

● P1 at DC1 sends updates to P1 at DC2 in Commit-time
order

● Send snapshot-time and commit-time with every update

● On receiving an update U<DC, Commit-time,
Snapshot-time> from a partition

– Apply U if local vectorclock > Snapshot-time

– Set vectorclock[DC] = Commit-time

11/07/2014 48

Extended ClockSI: Read

● Upon receiving a read request in a partition

– Wait until local vectorclock >= snapshot-time

– Return latest value before snapshot-time

● Causality metadata = O(N)

● No communication between partitions

11/07/2014 49

Social Network Application

11/07/2014 50

Social Network Application

1. remove photos
 S=[0,0],C[2,0]

11/07/2014 51

Social Network Application

1. remove photos
 S=[0,0],C[2,0]

2. addFriend(Bob)
S[3,0], C[4,0]

11/07/2014 52

Social Network Application

1. remove photos
 S=[0,0],C[2,0]

2. addFriend(Bob)
S[3,0], C[4,0]

3. addFriend(Bob)

VV=[4,0]

11/07/2014 53

Social Network Application

1. remove photos
 S=[0,0],C[2,0]

2. addFriend(Bob)
S[3,0], C[4,0]

3. addFriend(Bob)

4. Friends? Yes !!
 S = [4,0]

VV=[4,0]

11/07/2014 54

Social Network Application

1. remove photos
 S=[0,0],C[2,0]

2. addFriend(Bob)
S[3,0], C[4,0]

3. addFriend(Bob)

4. Friends? Yes !!
 S = [4,0]

SeePhotos?S = [4,0]

VV=[4,0]

11/07/2014 55

Social Network Application

1. remove photos
 S=[0,0],C[2,0]

2. addFriend(Bob)
S[3,0], C[4,0]

3. addFriend(Bob)

4. Friends? Yes !!
 S = [4,0]

SeePhotos?S = [4,0]

VV=[4,0]

VV=[0,0]

11/07/2014 56

Social Network Application

1. remove photos
 S=[0,0],C[2,0]

2. addFriend(Bob)
S[3,0], C[4,0]

3. addFriend(Bob)

5. removePhotos

4. Friends? Yes !!
 S = [4,0]

SeePhotos?S = [4,0]

VV=[4,0]

VV=[2,0]

11/07/2014 57

Social Network Application

1. remove photos
 S=[0,0],C[2,0]

2. addFriend(Bob)
S[3,0], C[4,0]

3. addFriend(Bob)

5. removePhotos

4. Friends? Yes !!
 S = [4,0]

SeePhotos?S = [4,0]

VV=[4,0]

VV=[2,0]

No photos

11/07/2014 58

Conclusion

● Total ordering using Lamport's timestamp

● Causality tracking using Vectorclocks

● Explicit causality tracking

– Orbe using dependency matrix

– ClockSI using physical clock and dependency vector

11/07/2014 59

Reference
1. Leslie Lamport, 1978, “Time,Clocks and the Ordering of Events in a
Distributed System”, Communications of the ACM, Vol. 21

2. Colin J. Fidge, 1988, "Timestamps in Message-Passing Systems That
Preserve the Partial Ordering". In K. Raymond (Ed.). Proc. of the 11th
Australian Computer Science Conference (ACSC'88). pp. 56–66.
Retrieved 2009-02-13.

3. D. Stott Parker et.al, “Detection of mutual inconsistency in distributed
systems” Transactions on Software Engineering, 9(3):240–246, 1983.

4. B. Charron-Bost, “Concerning the size of logical clocks in distributed
systems”, Information Processing Letter, Vol. 39, 1991

5. Jiaqing Du et.al, “Orbe: scalable causal consistency using
dependency matrices and physical clocks” SOCC'13 Proceedings of
4th annual Symposium on Cloud Computing, 2013

6. Jiaqing Du et.al, “ClockSI: Snapshot Isolation for Partitioned Data
Stored Using Loosely Synchronized Clocks”, SRDS'13 Proceedings of
the 2013 IEEE International Symposium of Reliable Distributed
Systems

	Slide 1
	page2 (1)
	page3 (1)
	page3 (2)
	Slide 11
	page5 (1)
	page5 (2)
	page5 (3)
	page5 (4)
	page5 (5)
	page5 (6)
	page5 (7)
	page5 (8)
	page5 (9)
	page5 (10)
	page5 (11)
	page5 (12)
	Slide 24
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	page8 (1)
	page8 (2)
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	page13 (1)
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	page18 (1)
	page18 (2)
	page18 (3)
	page18 (4)
	page18 (5)
	page18 (6)
	page18 (7)
	page18 (8)
	page18 (9)
	Slide 58
	Slide 59

