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Lamport's Timestamps

● Total order of events satisfying Happened-before relation

● Each process has a Logical clock

● A process increments its clock for each event

● Sends clock with each message it sends

● On receiving a message 

– Sets clock = max(own clock, received clock)
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Vectorclocks

● Similar to Lamport's timestamp

● Partial order and detect causality violations

● A system on N process

– Vectorclock = array of N logical clocks

– Each process has a vectorclock

– Increment its own logical clock for each event

– On receiving a message 

● Set each entry in vc to be max(local entry, corresponding 
entry in received vc)
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Version Vectors

● Similar to vector clocks

● Partial order among replicas of an object

● Several mechanisms to keep size of version vector small

– Bounded Version Vectors

– Dotted Version Vectors

● Causality across objects cannot be tracked
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System
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Orbe: Causal Consistency with Dependency 
Matrix
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Orbe: Causal Consistency with Dependency 
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● Dependency matrices to track causality

● Client updates its DM when ever it reads a new version

● Client has seen 3rst 2 updates at replica 2 of partition 1
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P2 1 0 3 0
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Orbe: Causal Consistency with Dependency 
Matrix

● Each Partition has its own version vector - VV

● P1 at DC1 has 

– 1 local update

– 2 updates from R2

– 1 update from R3

VV R1 R2 R3 R4

P1/R1 1 2 1 0
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Orbe: Causal Consistency with Dependency 
Matrix

● Client send put(k,v,DM) to partition P1 at DC1

● P1 at DC1

– Increment its own VV[R1]

– Ts = VV[R1]

– New entry U<k, v, 2, DM, R1>

– Replicate U to P1 at DC2 and DC3

● On receiving U< k, v, ts, DM, replicaid> at Pn

– Check VV >= DM[n]

– Check if causality is satis3ed at other partitions

– Update VV[replicaid] = ts
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Total order in a partitioned system 

● Snapshot isolation

– Reads a consistent snapshot

● Consistent Snapshot

– Includes all updates committed before snapshot time

● Transactions commit in total order

● Snapshot identi3ed by its commit time

● Update A is causally before B if A.commit-time < 
B.commit-time
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Clock SI – Snapshot Isolation using physical 
clocks

● Loosely synchronized clocks

● No centralized time-stamp generator

● Distributed protocol

● Snapshot-time

– Time when transaction begins

– Reads return values committed on or before this time

● Commit-time decided by transaction coordinator and 
partitions involved in transaction



11/07/2014 37

ClockSI – Commit Protocol

Txn Coordinator

Partitions



11/07/2014 38

ClockSI – Commit Protocol

● T.snapshottime = Localclock 
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

Txn Coordinator

Partitions



11/07/2014 39

ClockSI – Commit Protocol

● T.snapshottime = Localclock 
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

Txn Coordinator

Partitions



11/07/2014 40

ClockSI – Commit Protocol

● T.snapshottime = Localclock 
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions



11/07/2014 41

ClockSI – Commit Protocol

● T.snapshottime = Localclock 
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions



11/07/2014 42

ClockSI – Commit Protocol

● T.snapshottime = Localclock 
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions



11/07/2014 43

ClockSI – Commit Protocol

● T.snapshottime = Localclock 
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions



11/07/2014 44

ClockSI – Commit Protocol

● T.snapshottime = Localclock 
= 8

● Send prepare to partitions

● Commit-time = max(11,9,10)

● Commit to partitions

● Receive Prepare

● Localclock = 10

● Reply 10

● Commit-time = 11

● Receive Prepare

● Localclock = 9

● Reply 9

● Commit-time = 11

● Receive Prepare

● Localclock = 11

● Reply 11

● Commit-time = 11

Txn Coordinator

Partitions



11/07/2014 45

Clock SI – Read protocol

Read(Transaction T, dataitem Obj)

● Wait if T.snapshotime > localclock

● If any pending Transaction T' with possible commit-time < 
T'.snapshottime

– wait until T' is committed

● Return latest snapshot before snapshot-time
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Extended ClockSI: Partitioned and Replicated 
System

● Vectorclock per partition

– P1 at DC1 has seen all updates from DC2 before time 9

● Snapshot-time is Vectorclock  of coordinator at the time 
when transaction begins

● Updates in a transaction depends on Snapshot which it 
reads from

● Snapshot-time encodes causal dependency

R1 R2 R3 R4

P1/R1 10 9 13 8
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Extended ClockSI: Replication

● P1 at DC1 sends updates to P1 at DC2 in Commit-time 
order

● Send snapshot-time and commit-time with every update

● On receiving an update U<DC, Commit-time, 
Snapshot-time> from a partition

– Apply U if local vectorclock > Snapshot-time

– Set vectorclock[DC] = Commit-time
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Extended ClockSI: Read

● Upon receiving a read request in a partition

– Wait until local vectorclock >= snapshot-time

– Return latest value before snapshot-time

● Causality metadata = O(N)

● No communication between partitions
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Conclusion

● Total ordering using Lamport's timestamp

● Causality tracking using Vectorclocks

● Explicit causality tracking

– Orbe using dependency matrix

– ClockSI using physical clock and dependency vector
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