Theoretical Computer Science 2		
René Maseli	Exercise Sheet 5	TU Braunschweig
Prof. Dr. Roland Meyer		Summer semester 2024
Release: 06/10/2024		ue: 06/20/2024, 18:30
(Changes from 06/17/2024 are coloured red, including the addendum on page 3.)		
11:59 pm. You should photo of your hand state the degree prog	answers either directly Submit your results as , surname and stude	or as a readable scan or ur. On the front page, member of your group.

Homework Exercise 1: Some graph problems are NL-complete... [8 points]

In the lecture you were shown that PATH is NL-complete. The following problems related to PATH are also NL-complete.

Accessibility with intermediate node (INTERPATH)

Given: Directed, acyclic graph $G=\langle V, \rightarrow\rangle$, Vertices $s, t, u \in V$
Question: Is there a path in G starting in s, running through t and ending in u ?
a) [4 points] Show that IREACH is NL-complete wrt. LogSpace reductions, by first proving INTERPATH $\leq_{m}^{\log }$ PATH, and then PATH $\leq_{m}^{\log }$ INTERPATH.

Acyclicity (ACYC)
Given: Directed graph $G=\langle V, \rightarrow\rangle$
Question: Is there no cycle in G ?
b) [4 points] For the problem ACYCPATH, we assumed without checking, that the input graph is acyclic. Now show, that that check for this property, ACYC, is already an NL-complete problem (wrt. LogSpace-reductions).

Homework Exercise 2: Integer Programming [6 points]

Consider the following arithmetic problem.

Integer Programming ${ }_{2}\left(\mathrm{IP}_{2}\right)$

```
Given: }\quadm,n\in\mathbb{N}\mathrm{ , Matrix }A\in\mp@subsup{\mathbb{Z}}{}{m\timesn},V\mathrm{ Vector }b\in\mp@subsup{\mathbb{Z}}{}{m}\mathrm{ ,
    where all rows of }A\mathrm{ have at most two non-zero values.
Question: Gibt es kein }x\in{0,1\mp@subsup{}}{}{n}\mathrm{ mit }Ax\geqb\mathrm{ ?
```

a) [4 points] Show $\mathrm{IP}_{2} \leq_{m}^{\mathrm{log}} 2 \mathrm{SAT}$, and consequentially, that $\mathrm{IP}_{2} \in \mathrm{NL}$ holds.

Hint: $A x \geq b$ means, that for all rows $i \leq m$, the inequality $A_{i} \cdot x \geq b_{i}$ holds. Utilize, that + and \geq are LogSpace-computable.
b) [2 points] Show that 2SAT $\leq_{m}^{\log } \mathrm{IP}_{2}$ holds, and with this, that IP_{2} is NL-hard resp. LogSpace-many-one reductions.

Homework Exercise 3: Completeness in L [5 points]

Prove:
a) [4 points] Let $B \in \mathrm{~L}$ be non-trivial and A be an arbitrary problem. We can show $A \in \mathrm{~L}$ if, and only if, $A \leq_{m}^{\log } B$.
b) [1 point] Every non-trivial problem $A \in L$ is already L-complete with respect to LogSpace-many-one reductions.

Exercise 4:

Enrich your collection of NL-complete problems.

```
Non-Emptiness of regular languages (NONEMPTY-REG)
Given: A Turing machine M.
Question: Are M regular and }\mathcal{L}(M)\not=\varnothing\mathrm{ ?
```

a) Show NONEMPTY-REG \in NL by describing the workings of a suitable nondeterministic decider with logarithmic-bounded space complexity.
Hint: You may assume, that ' M is regular' is deterministicly logspace-computable.
b) Show that NONEMPTY-REG is NL-hard with respect to logspace many-one reductions by giving a reduction for PATH $\leq_{m}^{\log }$ NONEMPTY-REG.

Infinitiy of regular languages (INF-REG)
Given: A Turing Machine M.
Question: Are M regular and $\mathcal{L}(M)$ infinite?
c) Show that INF-REG is NL-complete wrt. logspace many-one reductions.

Exercise 5:

Prove the following lemmas:
a) Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be two functions and $m \geq m^{\prime} \in \mathbb{N}$ be numbers of tapes. If $\forall x \in \mathbb{N}: g(x) \leq f(x)$ and $\operatorname{NTIME}_{m}(f) \subseteq \operatorname{DTIME}_{m^{\prime}}(g)$ hold, then we get $\operatorname{NTIME}_{m}(f)=\operatorname{coNTIME}_{m}(f)$.
b) Let \mathcal{C} be a complexity class, R be a set of functions and $A \in \mathcal{C}$ a problem. If A is \mathcal{C}-hard/complete w.r.t R-many-one-reductions, then \bar{A} is co \mathcal{C}-hard/complete w.r.t R-many-one-reductions.

Exercise 6:

Im folgenden betrachten wir die Klassen der NL und NL-vollständigen Probleme.
a) Zeigen Sie, dass die Klasse NL unter Vereinigung, Durchschnitt, Komplement und KleeneStern abgeschlossen ist.
b) Nun untersuchen Sie die Klasse der NL-harten Probleme auf Abgeschlossenheit unter diesen Operationen.

Because it did not make it into the tutorium:

Lemma: PATH $\leq_{m}^{\log }$ ACYCPATH.

Beweis:

We need f : Instances(PATH) \rightarrow Instances(ACYCPATH)
satisfying $\langle G, s, t\rangle \in$ PATH $\Longleftrightarrow f(G, s, t) \in$ ACYCPATH.
Idea: The vertices shall know their own distance from s.
To accomplish this, create $|V|$ copies of each vertex (maximal path length): $V^{\prime}=V \times\{0, \ldots,|V|\}$.
Every edge increases the distance: $\forall u \rightarrow v \wedge 0 \leq i<|V|:\langle u, i\rangle \rightarrow\langle\langle v, i+1\rangle$.
The actual length of a path to t is irrelevant: $\forall 0 \leq i<|V|:\langle t, i\rangle \rightarrow{ }^{\prime}\langle t, i+1\rangle$.
f shall compute $\left.\left\langle G^{\prime},\langle s, 0\rangle,\langle t| V \mid,\right\rangle\right\rangle$ with $G^{\prime}=\left\langle V^{\prime}, \rightarrow{ }^{\prime}\right\rangle$.
LogSpace-computable: Iterate over all i and print the slightly-modified edges into the output tape. In the worst case, the number of vertices and edges gets squared.

Sound: The modified graph is always acyclic, since every potential cycle had to contain at least one edge with equal or descending i-component $\langle x, i+j\rangle \rightarrow^{\prime}\langle y, i\rangle$, which cannot exist by construction.

$$
\begin{aligned}
\text { Hence }\langle G, s, t\rangle \in \text { PATH } & \Longleftrightarrow \exists \text { path of length } k \leq|V| \text { in } G \text { from } s \text { to } t & & \text { Def. PATH } \\
& \Longleftrightarrow \exists \text { path in } G^{\prime} \text { from }\langle s, 0\rangle \text { to }\langle t, k\rangle & & \text { Construction } \\
& \Longleftrightarrow \exists \text { path in } G^{\prime} \text { from }\langle s, 0\rangle \text { to }\langle t,| V\rangle & & \text { Construction } \\
& \left.\Longleftrightarrow\left\langle G^{\prime},\langle s, 0\rangle,\langle t,| V \mid\right\rangle\right\rangle \in \text { ACYCPATH } & & \text { Def. ACYCPATH. } .
\end{aligned}
$$

