Theoretical Computer Science 2 Exercise Sheet 5

René Maseli Prof. Dr. Roland Meyer TU Braunschweig Summer semester 2024

Release: 06/10/2024

Due: 06/20/2024, 18:30

(Changes from 06/17/2024 are coloured red, including the addendum on page 3.) Hand in your answers to the Vips directory of the Stud.IP course until wednesday, 20.06.2024

11:59 pm. You should provide your answers either directly as PDF file or as a readable scan or

photo of your handwritten notes. Submit your results as a group of four. On the front page,

state the degree programme, name, surname and student id of each member of your group.

Homework Exercise 1: Some graph problems are NL-complete... [8 points]

In the lecture you were shown that PATH is NL-complete. The following problems related to PATH are also NL-complete.

Accessibility with intermediate node (INTERPATH)				
Given:	Directed, acyclic graph $G = \langle V, \rightarrow \rangle$, Vertices $s, t, u \in V$			
Question:	Is there a path in <i>G</i> starting in <i>s</i> , running through <i>t</i> and ending in <i>u</i> ?			

a) [4 points] Show that IREACH is NL-complete wrt. LogSpace reductions, by first proving INTERPATH \leq_{m}^{\log} PATH, and then PATH \leq_{m}^{\log} INTERPATH.

Acyclicity(ACYC)Given:Directed graph $G = \langle V, \rightarrow \rangle$ Question:Is there no cycle in G?

b) [4 points] For the problem ACYCPATH, we assumed without checking, that the input graph is acyclic. Now show, that that check for this property, ACYC, is already an NL-complete problem (wrt. LogSpace-reductions).

Homework Exercise 2: Integer Programming [6 points]

Consider the following arithmetic problem.

Integer Programming ₂ (IP ₂)				
Given:	$m, n \in \mathbb{N}$, Matrix $A \in \mathbb{Z}^{m \times n}$, Vector $b \in \mathbb{Z}^m$,			
	where all rows of A have at most two non-zero values.			
Question:	Gibt es kein $x \in \{0, 1\}^n$ mit $Ax \ge b$?			

a) [4 points] Show $IP_2 \leq_m^{log} 2SAT$, and consequentially, that $IP_2 \in NL$ holds.

Hint: $Ax \ge b$ means, that for all rows $i \le m$, the inequality $A_i \cdot x \ge b_i$ holds. Utilize, that + and \ge are LogSpace-computable.

b) [2 points] Show that 2SAT \leq_{m}^{\log} IP₂ holds, and with this, that IP₂ is NL-hard resp. LogSpacemany-one reductions.

Homework Exercise 3: Completeness in L [5 points]

Prove:

- a) [4 points] Let $B \in L$ be non-trivial and A be an arbitrary problem. We can show $A \in L$ if, and only if, $A \leq_{m}^{\log} B$.
- b) [1 point] Every non-trivial problem $A \in L$ is already L-complete with respect to LogSpacemany-one reductions.

Exercise 4:

Enrich your collection of NL-complete problems.

Non-Emptiness of regular languages (NONEMPTY-REG)				
Given:	A Turing machine <i>M</i> .			
Question:	Are <i>M</i> regular and $\mathcal{L}(M) \neq \emptyset$?			

 a) Show NONEMPTY-REG ∈ NL by describing the workings of a suitable nondeterministic decider with logarithmic-bounded space complexity.
Winty You may accurate that (M is nonvelocider deterministic decider)

Hint: You may assume, that '*M* is regular' is deterministicly logspace-computable.

b) Show that NONEMPTY-REG is NL-hard with respect to logspace many-one reductions by giving a reduction for PATH \leq_{m}^{\log} NONEMPTY-REG.

Infinitiy of	regular languages (INF-REG)
Given:	A Turing Machine M.
Question:	Are <i>M</i> regular and $\mathcal{L}(M)$ infinite?

c) Show that INF-REG is NL-complete wrt. logspace many-one reductions.

Exercise 5:

Prove the following lemmas:

- a) Let $f, g : \mathbb{N} \to \mathbb{N}$ be two functions and $m \ge m' \in \mathbb{N}$ be numbers of tapes. If $\forall x \in \mathbb{N} : g(x) \le f(x)$ and $\mathsf{NTIME}_m(f) \subseteq \mathsf{DTIME}_{m'}(g)$ hold, then we get $\mathsf{NTIME}_m(f) = \mathsf{coNTIME}_m(f)$.
- b) Let C be a complexity class, R be a set of functions and $A \in C$ a problem. If A is C-hard/complete w.r.t R-many-one-reductions, then \overline{A} is coC-hard/complete w.r.t R-many-one-reductions.

Exercise 6:

Im folgenden betrachten wir die Klassen der NL und NL-vollständigen Probleme.

- a) Zeigen Sie, dass die Klasse NL unter Vereinigung, Durchschnitt, Komplement und Kleene-Stern abgeschlossen ist.
- b) Nun untersuchen Sie die Klasse der NL-harten Probleme auf Abgeschlossenheit unter diesen Operationen.

Because it did not make it into the tutorium:

Lemma: PATH \leq_{m}^{\log} ACYCPATH.

Beweis:

We need f: Instances(PATH) \rightarrow Instances(ACYCPATH) satisfying $\langle G, s, t \rangle \in$ PATH $\iff f(G, s, t) \in$ ACYCPATH. Idea: The vertices shall know their own distance from s. To accomplish this, create |V| copies of each vertex (maximal path length): $V' = V \times \{0, \dots, |V|\}$. Every edge increases the distance: $\forall u \rightarrow v \land 0 \le i < |V| : \langle u, i \rangle \rightarrow' \langle v, i + 1 \rangle$. The actual length of a path to t is irrelevant: $\forall 0 \le i < |V| : \langle t, i \rangle \rightarrow' \langle t, i + 1 \rangle$. f shall compute $\langle G', \langle s, 0 \rangle, \langle t, |V| \rangle \rangle$ with $G' = \langle V', \rightarrow' \rangle$.

LogSpace-computable: Iterate over all *i* and print the slightly-modified edges into the output tape. In the worst case, the number of vertices and edges gets squared.

Sound: The modified graph is always acyclic, since every potential cycle had to contain at least one edge with equal or descending *i*-component $\langle x, i + j \rangle \rightarrow' \langle y, i \rangle$, which cannot exist by construction.

Hence $\langle G, s, t \rangle \in PATH$	\Leftrightarrow	\exists path of length $k \leq V $ in G from s to t	Def. PATH
	\Leftrightarrow	\exists path in G' from $\langle s, 0 \rangle$ to $\langle t, k \rangle$	Construction
	\Leftrightarrow	$\exists \text{ path in } G' \text{ from } \langle s, 0 \rangle \text{ to } \langle t, V \rangle$	Construction
	\Leftrightarrow	$\left\langle G', \langle s, 0 \rangle, \langle t, V \rangle \right\rangle \in ACYCPATH$	Def. ACYCPATH