
Theoretical Computer Science 1
Exercise Sheet 6René Maseli TU Braunschweig

Thomas Haas Winter Semester 2023/24

Release: 2024-01-19 Due: 2024-02-01 23:59

Hand in your solutions to the Vips directory of the StudIP course until Thursday, February 1st
2024 23:59. You should provide your solutions either directly as .pdf file or as a readable

scan/photo of your handwritten notes. Submit your results as a group of four and state all
members of your group with student id, name and course.

Homework Exercise 1: The syntax of programming languages as grammar [9 points]
The syntax of a programming language is usually formulated with a context-free grammar (of-
tentimes expressed in EBNF or a syntax diagram). In this exercise you will construct a grammar
which describes the syntax of a simple programming language.

a) [3 points] Give a context-free grammar G such that its language L(G) consists of the set of
syntactically correct programs as described below.

• Use the terminals Σ ∶= {id, num, ;, op, =, (, ), if, else, while, end, break}.
Hereby, id, num and op are placeholders for possible variable names, natural numbers
and binary operators (including ==). The other symbols represent single keywords and
symbols.

• An expression consists of variables, numbers and parenthesized binary operations,
e.g. (x+2), (z<500), (x*(y/3)), (x==(y+1)).

• A program is either

– empty

– a variable definition (e.g. x=(y+1))

– a conditional branching (e.g. if x y=(z/x) else y=z end)

– a loop (e.g. while (x<100) x=(x*12) end)

– a break break but only inside a loop

– a ;-delimited sequence of programs (e.g. x=12 ; y=500)

b) [1 point] Derive the following program from your grammar in part a) starting from the initial
symbol. Additionally to the start symbol and the resulting word, give at least three interme-
diate words of your derivation sequence.
while (x<y) x=(x<<1) ; if (y==z) break else y=(y+1) end end
(First you have to replace each variable with id, each number with num and the operations by
op.)



c) [2 points] Use the pumping lemma to prove that L(G) is not regular.
d) [3 points] Modify G into another grammar G′, such that the programming language prohibits

obvious dead code: break jumps out of the current program sequence, so it should not pre-
ceed any other program instruction. This also applies to conditional branches, if both sub-
programs end with break. This can even nest indefinetly.

Homework Exercise 2: CFG, CNF, CYK [10 points]
TheCocke-Younger-Kasami-algorithm (CYK algorithm) assumes as input a context-free grammar
(CFG) in Chomsky normal form (CNF). Thismeans that all production rules are of the form X → YZ
(for non-terminals Y and Z) or of the form X → a (for a terminal a).

a) [6 points] Use the procedure introduced in the lecture to construct a grammar Ga in CNF,
which satisfies L(Ga) = L(G) \ {ε}. The grammar G = ⟨{S, X, Y}, {a, b, c}, P, S⟩ is defined by
the following productions:

S → XcX X → a ∣ YX ∣ YbYb Y → bc ∣ X ∣ XX
With the use of your grammar and the CYK algorithm, decide whether the word abcbca is
produced by G.

b) [4 points] Use the CYK algorithm to decide, whether the words babaa and baba are produced
by the grammar with the following productions.

S → AB ∣ BC A → a ∣ CC B → b ∣ BA C → a ∣ AB
Homework Exercise 3: Greibach normal form [10 points]
Transform the following context-free grammar G into GNF.

S → WS ∣ UU U → b ∣ c ∣ UW V → c W → a ∣ VW ∣ VU
a) [4 points] For each pair of non-terminal X ∈ N and terminal s ∈ Σ, give a regular expression

for the language LX,s ⊆ N∗ of the suffixes of terms α ∈ N∗ which are produced by the strong
left derivation: X ⇒

∗
SL sα.

b) [2 points] Find for all non-empty languages LX,s a right-linear grammarGX,s over terminal sym-
bols N and with initial symbol TX,s. Create new non-terminals, if required.

c) [2 points] Transform the union of G and all your grammars into pseudo-GNF, by letting this
new grammarG′ guess each next terminal symbol, like has been shown in the lecture. Ensure,
that L(G′) = L(G) holds. A proof is not necessary. Try to avoid useless non-terminals.

d) [2 points] Eliminate all ε-productions from G′, to form a grammar G′′ in GNF, which satisfies
L(G′′) = L(G′) \ {ε} .



Homework Exercise 4: Pushdown automata [11 points]
Construct pushdown automata for the following languages and state which acceptance condi-
tion (empty stack or final states) you assume.
Remark Note that whenever multiple symbols are pushed, the last gets to be the new top.

a) [2 points] L1 = {w ∈ {a, b, (, )}∗ ∣w is correctly parenthesized }.
b) [2 points] L2 = {w ∈ {a, b, (, )}∗ ∣ ∣w∣a = 2∣w∣b }.
c) [2 points] Can you construct a PDA, which accepts L1 ∩ L2?

If not, what is the intuitive problem here?

L1 ∩ L2 = { w ∈ {a, b, (, )}∗ ∣ ∣w∣a = 2∣w∣b andw is correctly parenthesized }
d) [5 points] Consider the Pushdown AutomatonM = ⟨{i, u, d}, {a, b}, {0, 1}, i, 0, δ⟩, with empty-

stack acceptance and whose transition relation δ is given by the following diagram.
Find a contextfree grammar G with L(M) = L(G), by using the triple construction from the
lecture.

iM

u

d

a

0/01 a
1/ε

b
1/101

a
1/ε

b
0/ε

Exercise 5:
JavaScript Object Notation (JSON) is a description language for structured collections of serializ-
able data, which is applied in numerous web technologies. Alongside some primitive datatypes,
they can also express lists (arrays) and associative containers (objects).

a) Construct pushdown automata M for the following language L and state which acceptance
condition (empty stack or final states) you assume. Do not just give context-free grammars.
You do not need to prove the correctness of your construction.
Consider a simplified variant of JSON over {a, b, {, }}: ,Objects’ start and end with fitting curly
braces ,{’ and ,}’. Inside, there is an arbitrary number of key-value pairs. Keys are words of
a.b∗ and may not be unique inside the same object. Values are either words of a.b∗, or again
objects. The automatonM shall accept exactly the well-formed objects.
For example, {abbababb{}} ∈ L and {abb{ab{aba}a{abbab}}} ∈ L have to be accepted, but
neither {ababab} /∈ L, abb{aa} /∈ L nor {ab{} /∈ L.



b) Describe the behavior of the following pushdown automaton N, with empty-stack accep-
tance, by explaining the role of all states and stack symbols with one sentence, each.

q0N q1

q2

q3
s
S/ε {

S/O [
S/A

}
O/ε,

C/ε
]

A/εs

A/AC
{

A/ACO[
A/ACA

εC/ε
s

O/O
]
A/ε

}O/ε
s

O/OC[
O/OCA{

O/OCO

Exercise 6:
Consider thePushdownAutomatonM = ⟨{q0, q1, q2, q3}, {a, b}, {0, 1}, q0, 0, δ⟩, withempty-stack
acceptance and whose transition relation δ is given by the following diagram.

q0M

q1

q2

q3

a
0/0

b
0/00

a
1/11

b

1/10 a
0/01
b
0/εb

0/ε
a

1/ε
b

0/ε
a) Consider just the states on their own, to answer those two questions. Which two states are

befitting destinations q ∈ Q in triples like ⟨p, s, q⟩? Which five pairs of p ∈ Q and s ∈ Γ are
enabled?



b) Find a contextfree grammar G with L(M) = L(G), by using the triple construction from the
lecture.

Exercise 7:
Given the two CFG G = ⟨{S,W, X}, {a, b}, PG, S⟩ and H = ⟨{S,U, V}, {a, b, c}, PH, S⟩.

PG ∶ S → ε ∣ bW
W → a ∣ XXb
X → SS ∣ ab

a) Use the procedure introduced in the lecture to construct a grammarGa without ε productions,
which satisfies L(Ga) = L(G) \ {ε}.

b) Use Ga and the procedure from the lecture to construct a grammar Gb in CNF with
L(Gb) = L(G) \ {ε}.

c) Use Gb and the CYK algorithm to decide whether the word bbaab is produced by G.

d) Use Gb and the CYK algorithm to decide whether bbababb ∈ L(G) is true.
PH ∶ S → UVab ∣ bU

U → aV ∣ aUSc
V → ε ∣ bSc ∣ U

e) Use the procedure from the lecture to construct a grammar He in CNF, that satisfies
L(He) = L(H) \ {ε}.

f ) Use He and the CYK algorithm to decide whether the word aaabca is produced by H.


