	Theoretical Computer Science 1	
René Maseli	Exercise Sheet 5	TU Braunschweig
Thomas Haas		Winter Semester 2023/24

Release: 2024-01-08
Due: 2024-01-18 23:59

Hand in your solutions to the Vips directory of the StudIP course until Thursday, January 18th 2024 23:59. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four and state all members of your group with student id, name and course.

Homework Exercise 1: Table-filling algorithm [12 points]

Consider the following DFA A.

a) [5 points] Show that A is minimal, by using the table-filling algorithm. Fill cells with 0 , if the respective state pair is initially separated, and with the number of the iteration, where that pair is separated for the first time.
Hint: While filling your table, note down in which order you separated a state class, e.g. initially, we separate accepting states from the rest: $\{s, t, u, v\} \not f_{A}\{w, x, y, z\}$, which allows us to separate $\{s, u\} \not{ }_{A}\{t, v\}$ in iteration 1, etc.
Now consider the DFA B, which differs from A only by one transition.

b) [5 points] Use the table-filling algorithm to find the minimal DFA $B_{\text {min }}$ with $\mathcal{L}\left(B_{\text {min }}\right)=\mathcal{L}(B)$. Draw the state chart of $B_{\text {min }}$.
c) [2 points] List all equivalence classes of the Nerode-right-congruence of $\mathcal{L}(B)$ with at least one representant, each.

Homework Exercise 2: Pumping lemma for regular languages [9 points]

Consider $\Sigma=\{a, b\}$. For any word w let $|w|_{a}$ be the number of occurrences of symbol a in $w .|w|_{b}$ is defined analogously.
By using the Pumping Lemma, prove that the following languages are not regular.
a) $\left[2\right.$ points] $L_{1}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{b}+7>|w|_{a}\right\}$
b) [3 points] $L_{2}=\left\{x b^{m} y \in\{a, b\}^{*}\left|\exists n \in \mathbb{N}:|y|=n\right.\right.$ and $x \in\left(a^{*} b\right)^{n}$ and $\left.m \geq 2\right\}$
c) [2 points] $L_{3}=\left\{a^{n} b^{m} \mid n<42\right.$ or $\left.m<n\right\}$
d) [2 points] $L_{4}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \neq|w|_{b}\right\}$

Hint for \mathbf{d}): Consider the following: For any given number $n \in \mathbb{N}$, which number is divisible by all numbers $\leq n$?

Homework Exercise 3: Replacement systems [9 points]

Consider $\Sigma=\{a, b\}$. Give context free grammars G_{1}, G_{2}, G_{3} and G_{4}, which produce the following languages:
a) [1 point] $L_{1}=\left\{a^{n} b^{m} w \mid w \in \Sigma^{*}\right.$ and $m>2$ and $\left.|w|_{a}=n\right\}$.
b) $[1$ point $] L_{2}=\left\{\left.w \in \Sigma^{*}| | w\right|_{a}<|w|_{b}\right\}$.
c) [1 point] $L_{3}=\left\{\left.w \in \Sigma^{*}|\forall u, v: w=u . v \Rightarrow| v\right|_{a} \leq|v|_{b}\right\}$.
d) [2 points] $L_{4}=\left\{b^{m} M^{m} \mid m \in \mathbb{N}\right\}$, where $M=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is already known to be context-free (see Example 8.18 from the lecture notes). E.g. bbabaabb $\in L_{4}$.

A control path of a while-program can be seen as a walk in the controlflow graph, i.e. a block sequence, such that all consecutive pairs are connected with a flow edge. In program analysis, those walks are usually called paths (acyclic walks), because e.g. their index in the sequence are also considered.

Consider the following programs P_{5} and P_{6} with blocks $B=\{0,1,2,3,4,5,6,7\}$.

$$
\begin{aligned}
& {[x:=0]^{0}} \\
& \text { while }\left[x^{2}<y\right]^{1} \text { do } \\
& \left\lvert\, \begin{array}{c}
{[z:=x+1]^{2}} \\
{\left[x:=z^{2}+z\right]^{3}}
\end{array}\right.
\end{aligned}
$$

end while
$P_{5}: \quad$ if $\left[x^{2}=y\right]^{4}$ then
$\mid[z:=1]^{5}$
else
$[z:=y]^{6}$
end if
$[x:=z]^{7}$

$$
\begin{aligned}
& \text { [} x:=0]^{0} \\
& \text { while }\left[x<2^{4}\right]^{1} \text { do } \\
& {[y:=3 x+2]^{2}} \\
& \text { while }[y<5 x]^{3} \text { do } \\
& {[y:=y+2]^{4}} \\
& \text { if }[3 x<y]^{5} \text { then } \\
& {[x:=x+1]^{6}} \\
& \text { end if } \\
& \text { end while } \\
& \text { end while } \\
& {[x:=x-14]^{7}}
\end{aligned}
$$

e) [2 points] Construct a right-linear grammar G_{5} over the alphabet $\Sigma=B$, that produces exactly all control paths of P_{5} starting in block 0 and ending in block 7. E.g. $01457 \in \mathcal{L}\left(G_{a}\right)$ and $01231467 \in \mathcal{L}\left(G_{5}\right)$, are valid, but e.g. $01234567 \notin \mathcal{L}\left(G_{5}\right)$ must not be producable.
f) [2 points] Construct a right-linear grammar G_{6} over the alphabet $\Sigma=B$, that produces exactly all control paths of P_{6} starting in block 0 and ending in block 7. E.g. $017 \in \mathcal{L}\left(G_{6}\right)$ is the shortest word of the language. Another element is e.g. $0123456317 \in \mathcal{L}\left(G_{6}\right)$, but e.g. $01234567 \notin \mathcal{L}\left(G_{6}\right)$ must not be produceable.

Homework Exercise 4: Linear grammars [8 points]

Prove that the regular languages exactly coincide with the languages that are produced by some right linear grammar G.
a) [4 points] Explain how to construct a right linear grammar G from a given NFA A such that $\mathcal{L}(G)=\mathcal{L}(A)$ holds.
b) [4 points] Explain how to construct an NFA A from a given right linear grammar G such that $\mathcal{L}(G)=\mathcal{L}(A)$ holds.

Remark: An analogous result holds for left linear grammars as well. That is why we speak of regular grammars in both cases.

Exercise 5:

Consider programs on boolean variables only. Expressions e Exp are non-deterministicly evaluated on variable states $\sigma \in\{0,1\}^{V}:$ For $v \in\{0,1\}, S_{v}(e)$ marks the set of variable states, on which e may return v.

For a variable $x \in V$ is $S_{v}(x)=\left\{\sigma \in\{0,1\}^{V} \mid \sigma(x)=v\right\}$. I.e. $\sigma \in S_{v}(y$ or not z) holds, if and only if $v=\max (\sigma(y), 1-\sigma(z)) \in\{0,1\}$. There is also the havoc-expression $*$, which non-deterministicly evaluates to both 0 and $1: S_{0}(*)=S_{1}(*)=\{0,1\}^{v}$.

Let V be the set of variables in the boolean program. Some words of $\{s\} \cup(V \times\{0,1\})$ correspond to executions of the program. There is an NFA $\left\langle\left(B \times\{0,1\}^{V}\right),\left\langle b_{0}, 0^{V}\right\rangle, \rightarrow,\{f\} \times\{0,1\}^{V}\right\rangle$, whose language is exactly the set of words that correspond to halting executions. It starts on the initial block $i \in B$ with all variables set to 0 and accepts on the (sole) final block $f \in B$, regardless of the variables.

The transition $\langle b, \sigma\rangle \xrightarrow{\langle x, v\rangle}\langle c, \tau\rangle$ exists in the NFA, if and only if all $y \in V \backslash\{x\}$ satisfy $\sigma(y)=\tau(y)$, the value is $\tau(x)=v, b=[x:=e]^{\ell}$ is an assignment, c is the successor of b and if $\sigma \in S_{v}(e)$.

The transition $\langle b, \sigma\rangle \xrightarrow{s}\langle c, \tau\rangle$ exists, if and only if $\sigma=\tau, b=[e]^{\ell}$ is the condition of a conditional or a loop, and either

- c is the first else-Block or if no such exists, the successor of b, and $\sigma \in S_{0}(e)$.
- c is the first then-Block or the first inner loop block and $\sigma \in S_{1}(e)$.
a) Consider the following program P with blocks $B=\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}\right\}$ and purelyboolean variables $V=\{x, y, z\}$.

$$
\begin{aligned}
& {[x:=*]^{0}} \\
& \text { while }[\text { not } x \text { or not } z]^{1} \text { do } \\
& \begin{array}{l}
{[y:=\operatorname{not} x \text { and not } z]^{2}} \\
{[x:=*]^{3}} \\
\text { if }[y]^{4} \text { then } \\
{[x:=\text { not } x]^{5}} \\
\text { end if } \\
{[z:=x]^{6}}
\end{array} \\
& \text { end while } \\
& {[\text { skip }]^{7}}
\end{aligned}
$$

Construct the finite automaton A_{p} that accepts words of $\{s\} \cup V \times\{0,1\}$: $\Sigma=\{s, x 0, x 1, y 0, y 1, z 0, z 1\}$.
$\varepsilon \notin \mathcal{L}\left(A_{P}\right)$, since every execution must pass through Block b_{0}.
$x 1$.s $\notin \mathcal{L}\left(A_{P}\right)$, since executions always start with $z=0$ and therfore have to iterate at least once.
$x 1 . s . y 0 . x 1 . s . z 1 . s \in \mathcal{L}\left(A_{P}\right)$, because there is an execution that first reads 1 and then 0 , breaking the loop.
b) Is your automaton A_{p} partially deterministic (missing transitions just have to lead into a new state \varnothing)?

Exercise 6:

Consider the following NFA A over $\{a, b\}$.

a) From A, construct a language equivalent DFA $\mathcal{P}(A)$ using the Rabin-Scott power set construction. Make sure that $\mathcal{P}(A)$ has no unreachable states.
b) Determine the \sim-equivalence classes on the states of $\mathcal{P}(A)$ by using the Table-FillingAlgorithm from the lecture. Make clear in which order the cells of the table were marked.
c) Give the minimal DFA B for $\mathcal{L}(A)$. Make use of the \sim-equivalence classes.
d) Find all equivalence classes of the Nerode right-congruence $\equiv_{\mathcal{L}(A)}$.

Exercise 7:

Consider the following NFA A over $\{a, b\}$.

a) Determine the ~-equivalence classes on the states of A by using the Table-Filling-Algorithm from the lecture. Make clear in which order the cells of the table were marked.
b) Give the minimal DFA B for $\mathcal{L}(A)$. Make use of the $\sim-$ equivalence classes.
c) Find all equivalence classes of the Nerode right-congruence $\equiv_{\mathcal{L}(A)}$. Find an expression for $\mathcal{L}(A)$ as a union of a certain subset of those classes.

