
Theoretical Computer Science 1
Exercise Sheet 5René Maseli TU Braunschweig

Thomas Haas Winter Semester 2023/24

Release: 2024-01-08 Due: 2024-01-18 23:59

Hand in your solutions to the Vips directory of the StudIP course until Thursday, January 18th
2024 23:59. You should provide your solutions either directly as .pdf file or as a readable

scan/photo of your handwritten notes. Submit your results as a group of four and state all
members of your group with student id, name and course.

Homework Exercise 1: Table-filling algorithm [12 points]
Consider the following DFA A.

sA w t x

u y v z

a

b

a

b

a

b

a
b

a

b

a

b a, b

a, b

a) [5 points] Show that A is minimal, by using the table-filling algorithm. Fill cells with 0, if the
respective state pair is initially separated, and with the number of the iteration, where that
pair is separated for the first time.
Hint: While filling your table, note down in which order you separated a state class, e.g. ini-
tially, we separate accepting states from the rest: {s, t, u, v} /∼A {w, x, y, z}, which allows us to
separate {s, u} /∼A {t, v} in iteration 1, etc.

Now consider the DFA B, which differs from A only by one transition.

sB w t x

u y v z

a

b

a

b

a

b

a
b

a

b

a

b a, b

a

b

b) [5 points] Use the table-filling algorithm to find the minimal DFA Bmin with L(Bmin) = L(B) .
Draw the state chart of Bmin.

c) [2 points] List all equivalence classes of theNerode-right-congruence ofL(B)with at least one
representant, each.

Homework Exercise 2: Pumping lemma for regular languages [9 points]
Consider Σ = {a, b}. For any wordw let ∣w∣a be the number of occurrences of symbol a inw. ∣w∣b
is defined analogously.
By using the Pumping Lemma, prove that the following languages are not regular.

a) [2 points] L1 = {w ∈ {a, b}∗ ∣ ∣w∣b + 7 > ∣w∣a }
b) [3 points] L2 = { xbmy ∈ {a, b}∗ ∣ ∃n ∈ N ∶ ∣y∣ = n and x ∈ (a∗b)n andm ≥ 2 }
c) [2 points] L3 = { anbm ∣ n < 42 orm < n }
d) [2 points] L4 = {w ∈ {a, b}∗ ∣ ∣w∣a ≠ ∣w∣b }
Hint for d): Consider the following: For any given number n ∈ N, which number is divisible by
all numbers ≤ n?

Homework Exercise 3: Replacement systems [9 points]
Consider Σ = {a, b}. Give context free grammars G1, G2, G3 and G4, which produce the following
languages:

a) [1 point] L1 = { anbmw ∣w ∈ Σ∗ andm > 2 and ∣w∣a = n }.
b) [1 point] L2 = {w ∈ Σ∗ ∣ ∣w∣a < ∣w∣b }.
c) [1 point] L3 = {w ∈ Σ∗ ∣ ∀u, v∶ w = u.v ⇒ ∣v∣a ≤ ∣v∣b }.
d) [2 points] L4 = {bmMm ∣m ∈ N }, whereM = {anbn ∣n ∈ N } is already known tobe context-free

(see Example 8.18 from the lecture notes). E.g. bbabaabb ∈ L4.

A control path of a while-program can be seen as a walk in the controlflow graph, i.e. a block
sequence, such that all consecutive pairs are connected with a flow edge. In program analysis,
those walks are usually called paths (acyclic walks), because e.g. their index in the sequence are
also considered.

Consider the following programs P5 and P6 with blocks B = {0,1,2,3,4,5,6,7}.

P5:

[x ∶= 0]0
while [x2 < y]1 do[z ∶= x + 1]2[x ∶= z2 + z]3
end while
if [x2 = y]4 then[z ∶= 1]5
else[z ∶= y]6
end if[x ∶= z]7

P6:

[x ∶= 0]0
while [x < 24]1 do[y ∶= 3x + 2]2

while [y < 5x]3 do[y ∶= y + 2]4
if [3x < y]5 then[x ∶= x + 1]6
end if

end while
end while[x ∶= x − 14]7

e) [2 points] Construct a right-linear grammar G5 over the alphabet Σ = B , that produces ex-
actly all control paths of P5 starting in block 0 and ending in block 7. E.g. 01457 ∈ L(Ga) and
01231467 ∈ L(G5), are valid, but e.g. 01234567 /∈ L(G5)must not be producable.

f) [2 points] Construct a right-linear grammar G6 over the alphabet Σ = B, that produces ex-
actly all control paths of P6 starting in block 0 and ending in block 7. E.g. 017 ∈ L(G6)
is the shortest word of the language. Another element is e.g. 0123456317 ∈ L(G6), but
e.g. 01234567 /∈ L(G6)must not be produceable.

Homework Exercise 4: Linear grammars [8 points]
Prove that the regular languages exactly coincidewith the languages that are producedby some
right linear grammar G.

a) [4 points] Explain how to construct a right linear grammar G from a given NFA A such that
L(G) = L(A) holds.

b) [4 points] Explain how to construct an NFA A from a given right linear grammar G such that
L(G) = L(A) holds.

Remark: An analogous result holds for left linear grammars as well. That is why we speak of
regular grammars in both cases.

Exercise 5:
Consider programs on boolean variables only. Expressions e ∈ Exp are non-deterministicly eval-
uated on variable states σ ∈ {0, 1}V: For v ∈ {0, 1}, Sv(e)marks the set of variable states, onwhich
emay return v.

For a variable x ∈ V is Sv(x) = { σ ∈ {0, 1}V ∣ σ(x) = v }. I.e. σ ∈ Sv(y or not z) holds, if and only if
v = max(σ(y), 1 − σ(z)) ∈ {0, 1}. There is also the havoc-expression ∗, which non-deterministicly
evaluates to both 0 and 1: S0(∗) = S1(∗) = {0, 1}V.
Let V be the set of variables in the boolean program. Somewords of {s}∪ (V× {0, 1}) correspond
to executions of the program. There is an NFA ⟨(B × {0, 1}V), ⟨b0, 0

V⟩,→, {f} × {0, 1}V⟩, whose
language is exactly the set of words that correspond to halting executions. It starts on the initial
block i ∈ Bwith all variables set to 0 and accepts on the (sole) final block f ∈ B, regardless of the
variables.

The transition ⟨b, σ⟩ ⟨x,v⟩
−−−→ ⟨c, τ⟩ exists in the NFA, if and only if all y ∈ V \ {x} satisfy σ(y) = τ(y), the

value is τ(x) = v, b = [x ∶= e]l is an assignment, c is the successor of b and if σ ∈ Sv(e).
The transition ⟨b, σ⟩ s

−→ ⟨c, τ⟩ exists, if and only if σ = τ, b = [e]l is the condition of a conditional
or a loop, and either

• c is the first else-Block or if no such exists, the successor of b, and σ ∈ S0(e).
• c is the first then-Block or the first inner loop block and σ ∈ S1(e).

a) Consider the following program P with blocks B = {b0, b1, b2, b3, b4, b5, b6, b7} and purely-
boolean variables V = {x, y, z}.[x ∶= ∗]0

while [not x or not z]1 do[y ∶= not x and not z]2[x ∶= ∗]3
if [y]4 then[x ∶= not x]5
end if[z ∶= x]6

end while[skip]7
Construct the finite automaton AP that accepts words of {s} ∪ V × {0, 1}:
Σ = {s, x0, x1, y0, y1, z0, z1}.
ε /∈ L(AP), since every execution must pass through Block b0.
x1.s /∈ L(AP), since executions always start with z = 0 and therfore have to iterate at least
once.
x1.s.y0.x1.s.z1.s ∈ L(AP), because there is an execution that first reads 1 and then 0, breaking
the loop.

b) Is your automaton AP partially deterministic (missing transitions just have to lead into a new
state ∅)?

Exercise 6:
Consider the following NFA A over {a, b}.

q0A q1

q2

a

a, b

a, b
a, b

b

a

b

a) From A, construct a language equivalent DFAP(A) using the Rabin-Scott power set construc-
tion. Make sure that P(A) has no unreachable states.

b) Determine the ∼-equivalence classes on the states of P(A) by using the Table-Filling-
Algorithm from the lecture. Make clear in which order the cells of the table were marked.

c) Give the minimal DFA B for L(A). Make use of the ∼-equivalence classes.

d) Find all equivalence classes of the Nerode right-congruence ≡L(A).

Exercise 7:
Consider the following NFA A over {a, b}.

q0A q1 q2 q3 q4

q5 q6 q7 q8 q9

a

b

a

b

a

b a

b

a

b

a

b

a

b

ab

a

b a b

a) Determine the ∼-equivalence classes on the states of A by using the Table-Filling-Algorithm
from the lecture. Make clear in which order the cells of the table were marked.

b) Give the minimal DFA B for L(A). Make use of the ∼-equivalence classes.

c) Find all equivalence classes of the Nerode right-congruence ≡L(A). Find an expression forL(A)
as a union of a certain subset of those classes.

