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Definition: Finite-state Transducer
A finite-state transducer over a finite input alphabet Σ and a finite output alphabet Γ is formally
a quadruple T = ⟨Q, q0,→,QF⟩ consisting of

1. a finite set of states Q,

2. an initial state q0 ∈ Q,

3. a transition relation→ ⊆ Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) × Q,

4. and a set of accepting states QF ⊆ Q.

In the following we fix notation and important definitions:

1. ⟨p, a, x, q⟩ ∈ → is denoted by p
a/x
−−→ q. When reading an a in state p, the transducer tran-

sitions to state q and outputs x. Intuitively, a = ε denotes a spontaneous transition, while
x = ε denotes a transition without output.

2. A computation q0
w1/o1
−−−−→ q1

w2/o2
−−−−→ ⋯

wn−1/on−1
−−−−−−−→ qn−1

wn/on
−−−−→ qn can also be denoted by

q0
w/o
−−−→ qn, wherew ∈ Σ∗ and o ∈ Γ∗ are the respective concatenations without ε.

3. We define for any language L ⊆ Σ∗ the translation under T as

T(L) = { o ∈ Γ∗ ∣ ∃w ∈ L, qf ∈ QF ∶ q0
w/o
−−−→ qf }.

Homework Exercise 1: Finite-state transducers [5 points]
A transducer can be thought of as an NFA with spontaneous transitions, which not only accepts
input words but also outputs newwords. It translates input words from Σ∗ to output words in Γ∗.
Transducers are used in linguistics and the processing of natural languages.

a) [3 points] Construct a transducer T that for any given word w ∈ {a, b, c}∗ works a follows:
it prepends a b to every occurence of a and removes every second occurrence of c. Give a
regular expression for T((ac)∗). A proof of correctness is not needed.



b) [2 points] We call a transducer deterministic if in any state and for any input, the transducer
has exactly one possible, and hence unique, transition; this transition may be spontaneous.
For example, a state with an a-labeled transition may not have another a-labeled transition
nor another spontaneous transition, because in either case there would be two possible tran-
sitions on a.
Show that it is not possible to determinize transducers in general. That means, there are
transducers T which do not have any equivalent deterministic transducer Tdet such that
T(L) = Tdet(L) for all languages L ⊆ Σ∗.

Homework Exercise 2: Closedness under transducers [12 points]
Prove that any class of languages is closed under translations of transducers, if and only if it is
closed under intersection with regular languages, images and co-images of homomorphisms.

a) [3 points] Let h ∶ Σ∗
→ Γ∗ be an arbitrary homomorphism between words. Construct a trans-

ducer Th such that Th(L) = h(L) holds for all languages L ⊆ Σ∗. Prove the correctness of your
construction.

b) [3 points] Now prove that there is also a transducer Th−1 such that Th−1(L) = h−1(L) holds for all
L ⊆ Γ∗. Prove the correctness of your construction.

c) [2 points] Show that for any regular languageM, there is a transducer TM with TM(L) = L ∩M.

d) [4 points] Now show that the translation under any transducer T can be expressed as a com-
bination of the three operations mentioned above.

Homework Exercise 3: Equivalence classes [9 points]
Let Σ = {a, b} be an alphabet.

a) [5 points] Consider L = { anbam ∣ n,m ∈ N, n ≥ m }. Prove that

[an]≡L = {an} for all n ∈ N[an.a.b]≡L = { al+1
.bl+1−n »»»»» l ∈ N, l ⩾ n } for all n ∈ N

holds. With infinite congruence classes, L is not regular by the Theorem of Myhill & Nerode.
Find all remaining equivalence classes with respect to ≡L.

b) [2 points] Consider the language M = {a, b}∗.{aab, abb}.{a, b}∗. Find all equivalence classes
of ≡M. Construct the equivalence class automaton AM.

c) [2 points] Consider the language N = {a, b}∗.{a}.{a, b}∗ ∪ ({a, b}.{a, b})∗. Find all equivalence
classes of ≡N. Construct the equivalence class automaton AN.

Homework Exercise 4: Theorem of Myhill & Nerode [10 points]
Let L ⊆ Σ∗ be a regular language with Index(≡L) = k ∈ N and let A⟨Q, q0,→,QF⟩ be a DFA with
L = L(A) and ∣Q∣ = k. Let further AL = ⟨QL, q0L,→L,QFL⟩ be the equivalence automaton for Lwith
L(AL) = L and u1, . . . , uk be the representants of the equivalence classes of ≡L.



Show Theorem 6.11 from the script: A and AL are isomorphic. The isomorphism β ∶ QL → Q is
defined as: β([ui]≡L) = qwith q0

ui
−→ q in A.

a) [2 points] Consider the equivalence relation ≡A. Show that Index(≡A) = Index(≡L) holds. With
the result ≡A ⊆ ≡L from the lecture, this implies ≡A = ≡L .

b) [3 points] Show that β is well-defined.
Hint: The function β was defined on equivalence classes. You have to show, that β is inde-
pendent of the choice of the representant u1, . . . , uk. Let us assume ûi ≡L ui and show that
β([ûi]≡L) = β([ui]≡L) holds.

c) [2 points] Show that β is a bijection between QL and Q.

d) [3 points] Show that β is isomorphic. It remains to show, that β(q0L) = q0, β(QFL) = QF and for
all p, p′ ∈ QL and a ∈ Σ the property p

a
−→L p

′ iff β(p) a
−→ β(p′) holds.

Exercise 5:
In this exercise wewant to show that some languages that admit a description by small NFAs do
not admit a description by small DFAs; every DFA for that language is necessarily large.

For a number k ∈ N, k > 0 let La@k = Σ∗
.a.Σk−1 be the language of words over Σ = {a, b} that have

an a at the k-th last position.

a) Show how to construct for any k ∈ N, k > 0 an NFA Ak = ⟨Qk, q0,→k, Fk⟩with L(Ak) = La@k and∣Qk∣ = k + 1. Give the automaton formally as a tuple.
You do not have to show correctness of your construction.

b) Now draw A3 and its determinization Adet
3 via Rabin-Scott-power set construction.

Compare the number of states of A3 and Adet
3 .

c) Let k ∈ N, k > 0 be arbitrary. Prove that for La@k there is no DFA Bwith less than 2k many states
such that L(B) = La@k holds.
Proceed as follows:

1. Assume there is a finite automaton B = ⟨Q′
, q′0,→

′
,Q′

F⟩withL(B) = La@k and∣Q′∣ < 2k.

2. Consider the set Σk of words of length k. How many such words are there?

3. Now consider to each wordw ∈ Σk the (unique) state qw in the DFA B after it read the word
w.

4. Now derive a contradiction.



Exercise 6:
Examine the following NFA A over the alphabet Σ = {a, b, c}:

wA x

y z

b

b

ba

c
c

a

Consider the homomorphism f∶ Σ → {0, 1}. g(a) = ε g(b) = 10 g(c) = 01

a) Construct the image-automaton g(A) with L(g(A)) = g(L(A)) . Show
1001011010100110 ∈ L(g(A)) by giving a corresponding run through A.

Consider the homomorphism g∶ {d, e} → Σ with g(d) = bcc g(e) = ab.

b) Construct the co-image-automaton g−1(A)with L(g−1(A)) = g−1(L(A)) .
c) Show deeded ∈ L(g−1(A)) by giving a corresponding run through A.

d) Consider the following homomorphism g∶ {c, d, e} → Σ.

g(c) = ε

g(d) = bbb

g(e) = ba

Konstruieren Sie den Urbild-Automaten g−1(A)mit L(g−1(A)) = g−1(L(A)).
Show ceddc ∈ L(g−1(A)) by giving a corresponding run through A.

Exercise 7:
Let≡⊆ Σ∗×Σ∗ be an equivalence relation onwords. As usual, wewrite u ≡ v (insteadof ⟨u, v⟩ ∈ ≡)
to express that u and v are equivalent with respect to ≡.

a) Prove formally the following basic properties about equivalence relations:

• Every word is contained in its own equivalence class: u ∈ [u]≡.
• The equivalence classes of equivalent words are equal: u ≡ v ⟹ [u]≡ = [v]≡.
• The equivalence classes of non-equivalent words are disjoint:
u /≡ v ⟹ [u]≡ ∩ [v]≡ = ∅.



b) Let L ⊆ Σ∗ and ≡L be the Nerode right-congruence, known from the lecture, with

u ≡L v gdw. ∀w ∈ Σ∗∶ u.w ∈ L iff v.w ∈ L .

Prove that≡L is indeed an equivalence relation and a right-congruence. The lattermeans, that
for all u, vwith u ≡L v and all x ∈ Σ∗ it holds that: u.x ≡L v.x.

c) Let A = (Q, q0,→,QF) be a DFA. The relation ≡A ⊆ Σ∗ × Σ∗ is defined by:

u ≡A v gdw. ∃q ∈ Q∶ q0
u
−→ q und q0

v
−→ q.

Show that ≡A is an equivalence relation.

d) Is ≡A from c) still an equivalence relation if A is a an NFA instead? Explain your answer!

Exercise 8:
Minimalise the following automaton A.

q0A

q1

q2

q3q4

q5

b

b a
b

a

b

a
b

a

b

b

b

a) Construct the powerset automaton P(A).
b) Perform the Table-Filling Algorithm on P(A). Annote each marked cell of the table with the

step, when that pair of states was marked. (starting with 0 for final/nonfinal states.)

c) Draw the minimal DFA for L(A).


