	Theoretical Computer Science 1	
René Maseli	Exercise Sheet 4	TU Braunschweig
Thomas Haas		Winter Semester 2023/24

Release: 2023-12-08
Due: 2023-12-21 23:59

Hand in your solutions to the Vips directory of the StudIP course until Thursday, December 21th 2023 23:59. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four and state all members of your group with student id, name and course.

Definition: Finite-state Transducer

A finite-state transducer over a finite input alphabet Σ and a finite output alphabet Γ is formally a quadruple $T=\left\langle Q, q_{0}, \rightarrow, Q_{F}\right\rangle$ consisting of

1. a finite set of states Q,
2. an initial state $q_{0} \in Q$,
3. a transition relation $\rightarrow \subseteq Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \times Q$,
4. and a set of accepting states $Q_{F} \subseteq Q$.

In the following we fix notation and important definitions:

1. $\langle p, a, x, q\rangle \in \rightarrow$ is denoted by $p \xrightarrow{a / x} q$. When reading an a in state p, the transducer transitions to state q and outputs x. Intuitively, $a=\varepsilon$ denotes a spontaneous transition, while $x=\varepsilon$ denotes a transition without output.
2. A computation $q_{0} \xrightarrow{w_{1} / o_{1}} q_{1} \xrightarrow{w_{2} / o_{2}} \cdots \xrightarrow{w_{n-1} / o_{n-1}} q_{n-1} \xrightarrow{w_{n} / o_{n}} q_{n}$ can also be denoted by $q_{0} \xrightarrow{w / o} q_{n}$, where $w \in \Sigma^{*}$ and $o \in \Gamma^{*}$ are the respective concatenations without ε.
3. We define for any language $L \subseteq \Sigma^{*}$ the translation under T as

$$
T(L)=\left\{o \in \Gamma^{*} \mid \exists w \in L, q_{f} \in Q_{F}: q_{0} \xrightarrow{w / o} q_{f}\right\} .
$$

Homework Exercise 1: Finite-state transducers [5 points]

A transducer can be thought of as an NFA with spontaneous transitions, which not only accepts input words but also outputs new words. It translates input words from Σ^{*} to output words in Γ^{*}. Transducers are used in linguistics and the processing of natural languages.
a) [3 points] Construct a transducer T that for any given word $w \in\{a, b, c\}^{*}$ works a follows: it prepends a b to every occurence of a and removes every second occurrence of c. Give a regular expression for $T\left((a c)^{*}\right)$. A proof of correctness is not needed.
b) [2 points] We call a transducer deterministic if in any state and for any input, the transducer has exactly one possible, and hence unique, transition; this transition may be spontaneous. For example, a state with an a-labeled transition may not have another a-labeled transition nor another spontaneous transition, because in either case there would be two possible transitions on a.
Show that it is not possible to determinize transducers in general. That means, there are transducers T which do not have any equivalent deterministic transducer $T^{\text {det }}$ such that $T(L)=T^{\text {det }}(L)$ for all languages $L \subseteq \Sigma^{*}$.
Homework Exercise 2: Closedness under transducers [12 points]
Prove that any class of languages is closed under translations of transducers, if and only if it is closed under intersection with regular languages, images and co-images of homomorphisms.
a) [3 points] Let $h: \Sigma^{*} \rightarrow \Gamma^{*}$ be an arbitrary homomorphism between words. Construct a transducer T_{h} such that $T_{h}(L)=h(L)$ holds for all languages $L \subseteq \Sigma^{*}$. Prove the correctness of your construction.
b) [3 points] Now prove that there is also a transducer $T_{h^{-1}}$ such that $T_{h^{-1}}(L)=h^{-1}(L)$ holds for all $L \subseteq \Gamma^{*}$. Prove the correctness of your construction.
c) $[2$ points $]$ Show that for any regular language M, there is a transducer T_{M} with $T_{M}(L)=L \cap M$.
d) [4 points] Now show that the translation under any transducer T can be expressed as a combination of the three operations mentioned above.
Homework Exercise 3: Equivalence classes [9 points]
Let $\Sigma=\{a, b\}$ be an alphabet.
a) [5 points] Consider $L=\left\{a^{n} b a^{m} \mid n, m \in \mathbb{N}, n \geq m\right\}$. Prove that

$$
\begin{aligned}
{\left[a^{n}\right]_{\Xi_{L}} } & =\left\{a^{n}\right\} \text { for all } n \in \mathbb{N} \\
{\left[a^{n} \cdot a \cdot b\right]_{\Xi_{L}} } & =\left\{a^{\ell+1} \cdot b^{\ell+1-n} \mid \ell \in \mathbb{N}, \ell \geqslant n\right\} \text { for all } n \in \mathbb{N}
\end{aligned}
$$

holds. With infinite congruence classes, L is not regular by the Theorem of Myhill \& Nerode. Find all remaining equivalence classes with respect to $\equiv_{\llcorner }$.
b) [2 points] Consider the language $M=\{a, b\}^{*} .\{a a b, a b b\} .\{a, b\}^{*}$. Find all equivalence classes of \equiv_{M}. Construct the equivalence class automaton A_{M}.
c) [2 points] Consider the language $N=\{a, b\}^{*} .\{a\} .\{a, b\}^{*} \cup(\{a, b\} .\{a, b\})^{*}$. Find all equivalence classes of \equiv_{N}. Construct the equivalence class automaton A_{N}.

Homework Exercise 4: Theorem of Myhill \& Nerode [10 points]

Let $L \subseteq \Sigma^{*}$ be a regular language with $\operatorname{Index}\left(\equiv_{L}\right)=k \in \mathbb{N}$ and let $A\left\langle Q, q_{0}, \rightarrow, Q_{F}\right\rangle$ be a DFA with $L=\mathcal{L}(A)$ and $|Q|=k$. Let further $A_{L}=\left\langle Q_{L}, q_{0 L}, \rightarrow_{L}, Q_{F L}\right\rangle$ be the equivalence automaton for L with $\mathcal{L}\left(A_{L}\right)=L$ and u_{1}, \ldots, u_{k} be the representants of the equivalence classes of \equiv_{L}.

Show Theorem 6.11 from the script: A and A_{L} are isomorphic. The isomorphism $\beta: Q_{L} \rightarrow Q$ is defined as: $\beta\left(\left[u_{i}\right]_{E_{L}}\right)=q$ with $q_{0} \xrightarrow{u_{i}} q$ in A.
a) [2 points] Consider the equivalence relation \equiv_{A}. Show that Index $\left(\equiv_{A}\right)=\operatorname{Index}\left(\equiv_{L}\right)$ holds. With the result $\equiv_{A} \subseteq \equiv_{L}$ from the lecture, this implies $\equiv_{A}=\equiv_{L}$.
b) $[3$ points $]$ Show that β is well-defined.

Hint: The function β was defined on equivalence classes. You have to show, that β is independent of the choice of the representant u_{1}, \ldots, u_{k}. Let us assume $\hat{u}_{i} \equiv_{L} u_{i}$ and show that $\beta\left(\left[\hat{u}_{i}\right]_{=_{L}}\right)=\beta\left(\left[u_{i}\right]_{=_{L}}\right)$ holds.
c) [2 points] Show that β is a bijection between Q_{L} and Q.
d) [3 points] Show that β is isomorphic. It remains to show, that $\beta\left(q_{0 L}\right)=q_{0,}, \beta\left(Q_{F L}\right)=Q_{F}$ and for all $p, p^{\prime} \in Q_{L}$ and $a \in \Sigma$ the property $p \xrightarrow{a} p^{\prime}$ iff $\beta(p) \xrightarrow{a} \beta\left(p^{\prime}\right)$ holds.

Exercise 5:

In this exercise we want to show that some languages that admit a description by small NFAs do not admit a description by small DFAs; every DFA for that language is necessarily large.

For a number $k \in \mathbb{N}, k>0$ let $L_{a @ k}=\Sigma^{*} \cdot a \cdot \Sigma^{k-1}$ be the language of words over $\Sigma=\{a, b\}$ that have an a at the k-th last position.
a) Show how to construct for any $k \in \mathbb{N}, k>0$ an NFA $A_{k}=\left\langle Q_{k}, q_{0}, \rightarrow_{k}, F_{k}\right\rangle$ with $\mathcal{L}\left(A_{k}\right)=L_{a @ k}$ and $\left|Q_{k}\right|=k+1$. Give the automaton formally as a tuple.
You do not have to show correctness of your construction.
b) Now draw A_{3} and its determinization $A_{3}^{\text {det }}$ via Rabin-Scott-power set construction.

Compare the number of states of A_{3} and $A_{3}^{\text {det }}$.
c) Let $k \in \mathbb{N}, k>0$ be arbitrary. Prove that for $L_{a @ k}$ there is no DFA B with less than 2^{k} many states such that $\mathcal{L}(B)=L_{a @ k}$ holds.
Proceed as follows:

1. Assume there is a finite automaton $B=\left\langle Q^{\prime}, q_{0}^{\prime}, \rightarrow^{\prime}, Q_{F}^{\prime}\right\rangle$ with $\mathcal{L}(B)=L_{a @ k}$ and $\left|Q^{\prime}\right|<2^{k}$.
2. Consider the set Σ^{k} of words of length k. How many such words are there?
3. Now consider to each word $w \in \Sigma^{k}$ the (unique) state q_{w} in the DFA B after it read the word w.
4. Now derive a contradiction.

Exercise 6:

Examine the following NFA A over the alphabet $\Sigma=\{a, b, c\}$:

Consider the homomorphism $f: \Sigma \rightarrow\{0,1\} . g(a)=\varepsilon \quad g(b)=10 \quad g(c)=01$
a) Construct the image-automaton $g(A)$ with $\mathcal{L}(g(A))=g(\mathcal{L}(A))$. Show $1001011010100110 \in \mathcal{L}(g(A))$ by giving a corresponding run through A.
Consider the homomorphism $g:\{d, e\} \rightarrow \Sigma$ with $g(d)=b c c \quad g(e)=a b$.
b) Construct the co-image-automaton $g^{-1}(A)$ with $\mathcal{L}\left(g^{-1}(A)\right)=g^{-1}(\mathcal{L}(A))$.
c) Show deeded $\in \mathcal{L}\left(g^{-1}(A)\right)$ by giving a corresponding run through A.
d) Consider the following homomorphism $g:\{c, d, e\} \rightarrow \Sigma$.

$$
\begin{aligned}
& g(c)=\varepsilon \\
& g(d)=b b b \\
& g(e)=b a
\end{aligned}
$$

Konstruieren Sie den Urbild-Automaten $g^{-1}(A)$ mit $\mathcal{L}\left(g^{-1}(A)\right)=g^{-1}(\mathcal{L}(A))$.
Show ceddc $\in \mathcal{L}\left(g^{-1}(A)\right)$ by giving a corresponding run through A.

Exercise 7:

Let $\equiv \subseteq \Sigma^{*} \times \Sigma^{*}$ be an equivalence relation on words. As usual, we write $u \equiv v$ (instead of $\langle u, v\rangle \in \equiv$) to express that u and v are equivalent with respect to \equiv.
a) Prove formally the following basic properties about equivalence relations:

- Every word is contained in its own equivalence class: $u \in[u]_{=}$.
- The equivalence classes of equivalent words are equal: $u \equiv v \Longrightarrow[u]_{\equiv}=[v]_{\equiv}$.
- The equivalence classes of non-equivalent words are disjoint: $u \neq v \Longrightarrow[u]_{\equiv} \cap[v]_{\equiv}=\varnothing$.
b) Let $L \subseteq \Sigma^{*}$ and $\equiv_{\llcorner }$be the Nerode right-congruence, known from the lecture, with

$$
u \equiv_{L} v \quad \text { gdw. } \quad \forall w \in \Sigma^{*}: u . w \in L \text { iff } v . w \in L .
$$

Prove that \equiv_{L} is indeed an equivalence relation and a right-congruence. The latter means, that for all u, v with $u \equiv_{L} v$ and all $x \in \Sigma^{*}$ it holds that: $u . x \equiv_{L} v . x$.
c) Let $A=\left(Q, q_{0} \rightarrow, Q_{F}\right)$ be a DFA. The relation $\equiv_{A} \subseteq \Sigma^{*} \times \Sigma^{*}$ is defined by:

$$
u \equiv_{A} v \quad \text { gdw. } \quad \exists q \in Q: q_{0} \xrightarrow{u} q \text { und } q_{0} \xrightarrow{v} q .
$$

Show that \equiv_{A} is an equivalence relation.
d) Is \equiv_{A} from c) still an equivalence relation if A is a an NFA instead? Explain your answer!

Exercise 8:

Minimalise the following automaton A.

a) Construct the powerset automaton $\mathcal{P}(A)$.
b) Perform the Table-Filling Algorithm on $\mathcal{P}(A)$. Annote each marked cell of the table with the step, when that pair of states was marked. (starting with 0 for final/nonfinal states.)
c) Draw the minimal DFA for $\mathcal{L}(A)$.

