Theoretical Computer Science 1		
René Maseli	Exercise Sheet 4	TU Braunschweig
Thomas Haas		Winter Semester 2023/24
Release: 2023-12-08		Due: 2023-12-21 23:59

Hand in your solutions to the Vips directory of the StudIP course until Thursday, December 21th 2023 23:59. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four and state **all** members of your group with **student id, name and course**.

Definition: Finite-state Transducer

A finite-state transducer over a finite input alphabet Σ and a finite output alphabet Γ is formally a quadruple $T = \langle Q, q_0, \rightarrow, Q_F \rangle$ consisting of

- 1. a finite set of states Q,
- 2. an initial state $q_0 \in Q$,
- 3. a transition relation $\rightarrow \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \times Q$,
- 4. and a set of accepting states $Q_F \subseteq Q$.

In the following we fix notation and important definitions:

- 1. $\langle p, a, x, q \rangle \in \rightarrow$ is denoted by $p \xrightarrow{a/x} q$. When reading an *a* in state *p*, the transducer transitions to state *q* and outputs *x*. Intuitively, $a = \varepsilon$ denotes a spontaneous transition, while $x = \varepsilon$ denotes a transition without output.
- 2. A computation $q_0 \xrightarrow{w_1/o_1} q_1 \xrightarrow{w_2/o_2} \cdots \xrightarrow{w_{n-1}/o_{n-1}} q_{n-1} \xrightarrow{w_n/o_n} q_n$ can also be denoted by $q_0 \xrightarrow{w/o} q_n$, where $w \in \Sigma^*$ and $o \in \Gamma^*$ are the respective concatenations without ε .
- 3. We define for any language $L \subseteq \Sigma^*$ the translation under *T* as $T(L) = \{ o \in \Gamma^* \mid \exists w \in L, q_f \in Q_F : q_0 \xrightarrow{w/o} q_f \}.$

Homework Exercise 1: Finite-state transducers [5 points]

A transducer can be thought of as an NFA with spontaneous transitions, which not only accepts input words but also outputs new words. It translates input words from Σ^* to output words in Γ^* . Transducers are used in linguistics and the processing of natural languages.

a) [3 points] Construct a transducer T that for any given word $w \in \{a, b, c\}^*$ works a follows: it prepends a b to every occurence of a and removes every second occurrence of c. Give a regular expression for $T((ac)^*)$. A proof of correctness is not needed. b) [2 points] We call a transducer deterministic if in any state and for any input, the transducer has exactly one possible, and hence unique, transition; this transition may be spontaneous. For example, a state with an *a*-labeled transition may not have another *a*-labeled transition nor another spontaneous transition, because in either case there would be two possible transitions on *a*.

Show that it is **not** possible to determinize transducers in general. That means, there are transducers T which do not have any equivalent deterministic transducer T^{det} such that $T(L) = T^{det}(L)$ for all languages $L \subseteq \Sigma^*$.

Homework Exercise 2: Closedness under transducers [12 points]

Prove that any class of languages is closed under translations of transducers, if and only if it is closed under intersection with regular languages, images and co-images of homomorphisms.

- a) [3 points] Let $h : \Sigma^* \to \Gamma^*$ be an arbitrary homomorphism between words. Construct a transducer T_h such that $T_h(L) = h(L)$ holds for all languages $L \subseteq \Sigma^*$. Prove the correctness of your construction.
- b) [3 points] Now prove that there is also a transducer $T_{h^{-1}}$ such that $T_{h^{-1}}(L) = h^{-1}(L)$ holds for all $L \subseteq \Gamma^*$. Prove the correctness of your construction.
- c) [2 points] Show that for any regular language *M*, there is a transducer T_M with $T_M(L) = L \cap M$.
- d) [4 points] Now show that the translation under any transducer *T* can be expressed as a combination of the three operations mentioned above.

Homework Exercise 3: Equivalence classes [9 points]

Let $\Sigma = \{a, b\}$ be an alphabet.

a) [5 points] Consider $L = \{ a^n b a^m \mid n, m \in \mathbb{N}, n \ge m \}$. Prove that

$$\begin{bmatrix} a^n \end{bmatrix}_{\equiv_L} = \{a^n\} \text{ for all } n \in \mathbb{N}$$
$$\begin{bmatrix} a^n . a . b \end{bmatrix}_{\equiv_L} = \{a^{\ell+1} . b^{\ell+1-n} \mid \ell \in \mathbb{N}, \ell \ge n\} \text{ for all } n \in \mathbb{N}$$

holds. With infinite congruence classes, *L* is not regular by the Theorem of Myhill & Nerode. Find all remaining equivalence classes with respect to \equiv_L .

- b) [2 points] Consider the language $M = \{a, b\}^* \cdot \{aab, abb\} \cdot \{a, b\}^*$. Find all equivalence classes of \equiv_M . Construct the equivalence class automaton A_M .
- c) [2 points] Consider the language $N = \{a, b\}^* \cdot \{a\} \cdot \{a, b\}^* \cup (\{a, b\}, \{a, b\})^*$. Find all equivalence classes of \equiv_N . Construct the equivalence class automaton A_N .

Homework Exercise 4: Theorem of Myhill & Nerode [10 points]

Let $L \subseteq \Sigma^*$ be a regular language with $\operatorname{Index}(\equiv_L) = k \in \mathbb{N}$ and let $A(Q, q_0, \rightarrow, Q_F)$ be a DFA with $L = \mathcal{L}(A)$ and |Q| = k. Let further $A_L = \langle Q_L, q_{0L}, \rightarrow_L, Q_{FL} \rangle$ be the equivalence automaton for L with $\mathcal{L}(A_L) = L$ and u_1, \ldots, u_k be the representants of the equivalence classes of \equiv_L .

Show Theorem 6.11 from the script: A and A_L are isomorphic. The isomorphism $\beta : Q_L \to Q$ is defined as: $\beta([u_i]_{\equiv_l}) = q$ with $q_0 \xrightarrow{u_i} q$ in A.

- a) [2 points] Consider the equivalence relation \equiv_A . Show that $Index(\equiv_A) = Index(\equiv_L)$ holds. With the result $\equiv_A \subseteq \equiv_L$ from the lecture, this implies $\equiv_A = \equiv_L$.
- b) [3 points] Show that β is well-defined. *Hint:* The function β was defined on equivalence classes. You have to show, that β is independent of the choice of the representant u_1, \ldots, u_k . Let us assume $\hat{u}_i \equiv_L u_i$ and show that $\beta([\hat{u}_i]_{\equiv_L}) = \beta([u_i]_{\equiv_L})$ holds.
- c) [2 points] Show that β is a bijection between Q_L and Q.
- d) [3 points] Show that β is isomorphic. It remains to show, that $\beta(q_{0L}) = q_0$, $\beta(Q_{FL}) = Q_F$ and for all $p, p' \in Q_L$ and $a \in \Sigma$ the property $p \xrightarrow{a}_L p'$ iff $\beta(p) \xrightarrow{a} \beta(p')$ holds.

Exercise 5:

In this exercise we want to show that some languages that admit a description by small NFAs do not admit a description by small DFAs; every DFA for that language is necessarily large.

For a number $k \in \mathbb{N}$, k > 0 let $L_{a@k} = \Sigma^* . a . \Sigma^{k-1}$ be the language of words over $\Sigma = \{a, b\}$ that have an a at the k-th last position.

- a) Show how to construct for any $k \in \mathbb{N}$, k > 0 an NFA $A_k = \langle Q_k, q_0, \rightarrow_k, F_k \rangle$ with $\mathcal{L}(A_k) = L_{a@k}$ and $|Q_k| = k + 1$. Give the automaton formally as a tuple. You do not have to show correctness of your construction.
- b) Now draw A_3 and its determinization A_3^{det} via Rabin-Scott-power set construction. Compare the number of states of A_3 and A_3^{det} .
- c) Let $k \in \mathbb{N}$, k > 0 be arbitrary. Prove that for $L_{a@k}$ there is no DFA *B* with less than 2^k many states such that $\mathcal{L}(B) = L_{a@k}$ holds. Proceed as follows:
 - 1. Assume there is a finite automaton $B = \langle Q', q'_0, \rightarrow', Q'_F \rangle$ with $\mathcal{L}(B) = L_{a@k}$ and $|Q'| < 2^k$.
 - 2. Consider the set Σ^k of words of length k. How many such words are there?
 - 3. Now consider to each word $w \in \Sigma^k$ the (unique) state q_w in the DFA *B* after it read the word *w*.
 - 4. Now derive a contradiction.

Exercise 6:

Examine the following NFA A over the alphabet $\Sigma = \{a, b, c\}$:

Consider the homomorphism $f: \Sigma \to \{0, 1\}$. $g(a) = \varepsilon$ g(b) = 10 g(c) = 01

a) Construct the image-automaton g(A) with $\mathcal{L}(g(A)) = g(\mathcal{L}(A))$. Show 10010110100110 $\in \mathcal{L}(g(A))$ by giving a corresponding run through A.

Consider the homomorphism $g: \{d, e\} \to \Sigma$ with g(d) = bcc g(e) = ab.

- b) Construct the co-image-automaton $g^{-1}(A)$ with $\mathcal{L}(g^{-1}(A)) = g^{-1}(\mathcal{L}(A))$.
- c) Show deeded $\in \mathcal{L}(g^{-1}(A))$ by giving a corresponding run through A.
- d) Consider the following homomorphism $g: \{c, d, e\} \rightarrow \Sigma$.

$$g(c) = \varepsilon$$

 $g(d) = bbb$
 $g(e) = ba$

Konstruieren Sie den Urbild-Automaten $g^{-1}(A)$ mit $\mathcal{L}(g^{-1}(A)) = g^{-1}(\mathcal{L}(A))$. Show *ceddc* $\in \mathcal{L}(g^{-1}(A))$ by giving a corresponding run through A.

Exercise 7:

Let $\equiv \subseteq \Sigma^* \times \Sigma^*$ be an equivalence relation on words. As usual, we write $u \equiv v$ (instead of $\langle u, v \rangle \in \equiv$) to express that u and v are equivalent with respect to \equiv .

- a) Prove formally the following basic properties about equivalence relations:
 - Every word is contained in its own equivalence class: $u \in [u]_{=}$.
 - The equivalence classes of equivalent words are equal: $u \equiv v \implies [u]_{\equiv} = [v]_{\equiv}$.
 - The equivalence classes of non-equivalent words are disjoint: $u \neq v \implies [u]_{\equiv} \cap [v]_{\equiv} = \emptyset.$

b) Let $L \subseteq \Sigma^*$ and \equiv_L be the Nerode right-congruence, known from the lecture, with

 $u \equiv_L v$ gdw. $\forall w \in \Sigma^* : u.w \in L$ iff $v.w \in L$.

Prove that \equiv_L is indeed an equivalence relation and a right-congruence. The latter means, that for all u, v with $u \equiv_L v$ and all $x \in \Sigma^*$ it holds that: $u.x \equiv_L v.x$.

c) Let $A = (Q, q_0, \rightarrow, Q_F)$ be a DFA. The relation $\equiv_A \subseteq \Sigma^* \times \Sigma^*$ is defined by:

$$u \equiv_A v$$
 gdw. $\exists q \in Q: q_0 \xrightarrow{u} q \text{ und } q_0 \xrightarrow{v} q.$

Show that \equiv_A is an equivalence relation.

d) Is \equiv_A from c) still an equivalence relation if A is a an NFA instead? Explain your answer!

Exercise 8:

Minimalise the following automaton A.

- a) Construct the powerset automaton $\mathcal{P}(A)$.
- b) Perform the *Table-Filling Algorithm* on $\mathcal{P}(A)$. Annote each marked cell of the table with the step, when that pair of states was marked. (starting with 0 for final/nonfinal states.)
- c) Draw the minimal DFA for $\mathcal{L}(A)$.