	Theoretical Computer Science 1	
René Maseli	Exercise Sheet 1	TU Braunschweig
Thomas Haas		Winter Semester 2023/24

Release: 2023-10-30 (Edited: 2023-11-02)
Due: 2023-11-09 23:59

Hand in your solutions to the Vips directory of the StudIP course until Thursday, November 9th 2023 23:59. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four and state all members of your group with student id, name and course.

Homework Exercise 1: Lattices [7 points]

Let (\mathbb{N}, \leq) be a lattice, where \leq is a binary relation over \mathbb{N} defined as follows: For $x, y \in \mathbb{N}$ the pair $x \leq y$ holds if and only if $x=0$ or $y=1$ or $x=y \in \mathbb{N} \backslash\{0,1\}$.
a) [1 point] Draw a Hasse-diagram of (\mathbb{N}, \leq) for the numbers up to 9 .
b) [1 point] State T und \perp of this lattice.
c) [3 points] State the values of the following joins and meets:

$$
\perp \sqcup T \quad \perp \sqcap T \quad \text { Tப5 } \quad 6 \sqcap 7 \quad \perp \sqcup 4 \quad \bigsqcup\{n \in \mathbb{N} \mid n \text { is odd }\}
$$

d) [1 point] Is the height of this lattice finite? Is it bounded?
e) [1 point] Give a Hasse-diagram for a lattice which has finite but non-bounded height.

Homework Exercise 2: Some Lattice [13 points]

Let $M \subseteq \mathbb{N}$ be a finite, non-empty set and $M^{\prime}:=\{\langle a, b\rangle \mid a, b \in M$ and $a<b\} \cup\{\square\}$ the set of ascending-sorted pairs from M, with an extra element \square.
Let \leq be a relation on M^{\prime}, defined as follows:

$$
x \leq y \quad \text { iff } \quad x=\square \quad \text { or } \quad(x=\langle a, b\rangle \text { and } y=\langle c, d\rangle \text { and } c \leq a \text { and } b \leq d)
$$

a) [1 point] Draw a Hasse-diagram of $\left\langle M^{\prime}, \leq\right\rangle$ with $M=\{0,1,2,3,4\}$.

In the following, let M again be a finite, non-empty set.
b) [5 points] Show that \leq is reflexive, transitive and antisymmetrical.

By definition, $\left\langle M^{\prime}, \leq\right\rangle$ is then a partial order.
c) [4 points] Show that the join $\bigsqcup X$ and the meet ΠX exist for each subset $X \subseteq M^{\prime}$. By definition, $\left\langle M^{\prime}, \leq\right\rangle$ is then a finite complete lattice.
d) [1 point] State T, \perp for $\left\langle M^{\prime}, \leq\right\rangle$, depending on M.
e) [2 points] Does $\left\langle M^{\prime}, \leq\right\rangle$ stay complete, if $M \subseteq \mathbb{N}$ is infinite?

Exercise 3:

Let $M_{1} \subseteq \mathbb{N}$ and $M_{2} \subseteq \mathbb{N}$ be two finite sets and $M=M_{1} \times M_{2}$ the set of all pairs (a, b) with $a \in M_{1}$ and $b \in M_{2}$. Let \leq be a relation on M, defined as follows:

$$
\left\langle a_{1}, b_{1}\right\rangle \leq\left\langle a_{2}, b_{2}\right\rangle \quad \text { gdw. } \quad a_{1} \geqslant a_{2} \text { und } b_{1} \geqslant b_{2}
$$

where \leqslant is the common "less or equals" relation on natural numbers.
Show that $\langle M, \leq\rangle$ is then a complete lattice.
Does $\langle M, \leq\rangle$ stay complete, if $M_{1} \subseteq \mathbb{N}$ is infinite?

Exercise 4:

Let $\left\langle D_{1}, \leq_{1}\right\rangle$ and $\left\langle D_{2}, \leq_{2}\right\rangle$ be complete lattices. The product lattice is defined as $\left\langle D_{1} \times D_{2}, \leq\right\rangle$, where \leq is the product ordering on tuples with $\left\langle d_{1}, d_{2}\right\rangle \leq\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle$ if and only if $d_{1} \leq_{1} d_{1}^{\prime}$ and $d_{2} \leq_{2} d_{2}^{\prime}$.

Show that the product lattice is indeed a complete lattice.
Prove the following; The product lattice $\left\langle D_{1} \times D_{2}, \leq\right\rangle$ satisfies ACC if and only if $\left\langle D_{1}, \leq_{1}\right\rangle$ and $\left\langle D_{2}, \leq_{2}\right\rangle$ both satisfy ACC.

Exercise 5:

Let $\langle D, \leqslant\rangle$ be a lattice and $x, y \in D$ be two arbitrary elements.
Show that if $f: D \rightarrow D$ is monotone, then $f(x \sqcup y) \geqslant f(x) \sqcup f(y)$ holds.
$f: D \rightarrow D$ is called distributive, if $f(x \sqcup y)=f(x) \sqcup f(y)$ for all $x, y \in D$.
Show that if f is distributive then f is also monotone.

Exercise 6:

Let $\langle D, ㄷ ㅡ$ be a lattice. Prove the first two statements from lemma 1.8 from the lecture: If $\rceil D$ is defined, then the identity $\Pi D=\bigsqcup \varnothing$ holds. Analoguously $\bigsqcup D=\Pi \varnothing$, if $\bigsqcup D$ is defined.

Exercise 7:

Show the last statement of lemma 1.8: All finite lattices are complete.

Exercise 8:

Let M be a set. Show that $\langle\mathcal{P}(M), \subseteq\rangle$ is a complete lattice.

