Theoretical Computer Science 1 Exercise 1

Prof. Dr. Roland Meyer

Thomas Haas

TU Braunschweig Winter semester2020/21

Release date: 03.11.2020 Due date: 13.11.2020, 17:00

Hand in your solutions per E-Mail to your tutor until Friday, 13.11.2020 17:00 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes.

Aufgabe 1: Lattices [10 points]

a) [4 points] Let (D_1, \leq_1) and (D_2, \leq_2) be complete lattices. The **product lattice** is defined as $(D_1 \times D_2, \leq)$, where \leq is the **product ordering** on tuples with $(d_1, d_2) \leq (d'_1, d'_2)$ if and only if $d_1 \leq_1 d'_1$ and $d_2 \leq_2 d'_2$.

Show that the product lattice is indeed a complete lattice.

- b) [4 points] Prove the following; The product lattice $(D_1 \times D_2, \preceq)$ satisfies ACC (ascending chain condition) if and only if (D_1, \preceq_1) and (D_2, \preceq_2) both satisfy ACC.
- c) [2 points] Give Hasse-Diagrams for lattices which:
 - are infinite but have bounded height.
 - have finite but non-bounded height.

Aufgabe 2: Distributivity [4 points]

Let (D, \leq) be a lattice and $x, y \in D$ be two arbitrary elements..

- a) [2 points] Show that if $f: D \to D$ is monotone, then $f(x \sqcup y) \ge f(x) \sqcup f(y)$ holds.
- b) [2 points] $f: D \to D$ is called **distributive**, if $f(x \sqcup y) = f(x) \sqcup f(y)$ for all $x, y \in D$. Show that if f is distributive then f is also monotone.

Aufgabe 3: Reaching-Definitions-Analysis [10 points]

Note: The Reaching-Definitions-Analysis is content of next week's lecture.

Perform a Reaching-Definitions-Analysis on the following program.

```
[x := 5]^1

while [x < 7]^2 do

[y := y - 1]^3

if [y = 7]^4 then

[y := y + 3]^5

else

[x := x - 1]^6

end if

end while

[skip]^7
```

- a) [2 points] Draw the control flow graph G.
- b) [3 points] Consider the lattice $\mathcal{D} = (\mathcal{P}(\{x,y\} \times (\{1,\ldots,6\} \cup \{?\})), \subseteq)$. For each of the blocks 1 6 give a suitable, monotone transfer function over this lattice.
- c) [5 points] Consider the data flow system $(G, (D, \leq), \{(x,?), (y,?)\}, TF)$, where TF is the set of transfer functions from part b). Write down the induced equation system and determine its least solution using Kleene's fixed-point theorem.

Aufgabe 4: Data flow analyses[10 points]

Note: These data flow analyses are NOT content of next week's lecture. However, next week's lecture will show how to apply Kleene's theorem to solve equation systems.

Consider the following program.

```
[x := 3]^1

[x := x + 7]^2

while [x < 25]^3 do

[x := x + 4]^4

end while

[skip]^5
```

- a) [2 points] Draw the control flow graph G.
- b) [4 points] Consider the lattice $\mathcal{D} = (\mathbb{N} \cup \{\bot, \top\}, \preceq)$ with $\bot \preceq n \preceq \top (\forall n \in \mathbb{N})$ from task 4a) of the first exercise sheet.

We interpret the lattice elements as data flow values with the following meanings:

 \perp : Variable x is not initialized at the beginning of the block.

 $n \in \mathbb{N}$: Variable x has constant value n at the beginning of the block (hence it is guaranteed to have value n).

T: Variable *x* is not constant at the beginning of the block.

Using this lattice, perform a forward data flow analysis:

- Establish the data flow system $(G, \mathcal{D}, \bot, \mathsf{TF})$. For this, give monotone transfer functions for the blocks 1-5.
- · Give the induced equation system.
- Find its least solution.
- c) [4 points] Now consider the same program but a different lattice $\mathcal{D}' = (\mathcal{P}(\{e,o\}), \subseteq)$.

We interpret the lattice elements as data flow values with the following meanings:

- Ø: Variable x is not initialized at the beginning of the block.
- {e}: Variable x is guaranteed to be even at the beginning of the block.
- {o}: Variable x is guaranteed to be *odd* at the beginning of the block.
- $\{e,o\}$: It is not clear if variable x is even or odd at the beginning of the block.

Using this lattice, perform a forward data flow analysis:

- Establish the data flow system (G, \mathcal{D}' , \varnothing , TF). For this, give monotone transfer functions for the blocks 1 5.
- Give the induced equation system.
- Find its least solution.

Note: Unlike most analyses from the lecture, these two analysis are not expressible via the kill-gen-framework.