
Visibly pushdown automata

Sebastian Muskalla

June 27, 2017

This document is based on the paper:

Visibly pushdown languages
R. Alur and P. Madhusudan
In: Proceedings of STOC 2004

It is available here:

• Conference version:
madhu.cs.illinois.edu/stoc04.pdf

• Full version:
dept-info.labri.fr/ fleury/Formation_Doctorale_2006/papers/AM04.pdf

TU Braunschweig

Summer term 2017

http://madhu.cs.illinois.edu/stoc04.pdf
http://dept-info.labri.fr/~fleury/Formation_Doctorale_2006/papers/AM04.pdf

1 Motivation

1. Motivation

So far, we have mostly restricted ourselves to finite automata (for finite and infinite words
and for finite trees) in this lecture. These automata have no storage besides their finitely
many control states.

This is of course a heavy restriction on the computational power of these devices. They are
not even able to do unbounded counting (e.g. to recognize

{
anbn

∣∣ n ∈ N
}
).

Therefore,weare interested in amorepowerfulmodel of computation. Pushdownautomata
(PDA)use a stack as storage. The stack is unbounded, but it canonly beused in a FIFOmanner.
This allows PDAs to recognize the language anbn mentioned above. Furthermore, PDAs are
also able to deal with nesting. For example, the language of all well-bracketed expressions
over (,), [and] is recognizable by a PDA.

In verification, automata are used to describe the behavior of programs: each possible exe-
cution should correspond to one word in the language of the automaton. PDAs can be used
to model the behavior of recursive programs. The problem with recursive programs is that
after the call of a function is processed, the program has to return to the point from which
the call was mode. PDAs can implement this using their stack as call stack: When a function
call is made, the address of the callee is pushed onto the stack. After the call, this address can
be popped and used to return to the correct part of the code.

It is well-known that PDAs accept exactly the context-free languages (CFL), the languages
definable by context-free grammars. The context-free languages share some nice algebraic
properties with the regular languages: They are a so-called full trio, meaning they are closed
under regular intersection, homomorphisms and inverse homomorphisms. They are also
closed under union, concatenation, and Kleene star.

Unfortunately, they are not closed under complement and intersection. Furthermore, they
don’t enjoy good algorithmic properties: While emptiness and membership are decidable,
intersection-emptiness, universality, inclusion and equivalence are undecidable.

In contrast to finite automata, where determinism and non-determinism are equally power-
ful,deterministicpushdownautomata (DPDA)are strictly lesspowerful thannon-deterministic
PDAs. They define the so-called deterministic context-free languages (DCFL). The set of all
even-length palindromes {

wwreverse ∣∣w ∈
{
a, b

}∗}
is context-free, but not deterministic context-free: A PDA needs to guess the middle of the
input to be able to guess the correct point for switching from pushing symbols onto the set
to popping them.

2

1 Motivation

Deterministic context-free languages are closed under complement (by swapping the final
states of a DPDA), but neither under union nor intersection. In 2001, Sénizergues showed
that language equivalence (and thus universality) for DPDAs is decidable, for which he was
awarded the Gödel Prize in 2002. Nowadays, there are several papers (by him and other
researchers) that contain algorithms for language equivalence. So far, all algorithms have
primitive-recursive, but non-elementary complexity. (This means that the running time of
the algorithm is given by a tower of exponentials, where the height of the tower depends on
the input size.) Inclusion and intersection-emptiness remain undecidable even for DPDAs.

It may seem surprising that even for two deterministic automata, it is not possible to decide
whether their intersection is empty. One might think that the usual cross product construc-
tion does the job. Since the automata under consideration have stacks, we would also need
to apply the cross product construction to the stack. Taking the product of the stack alpha-
bets as the new stack alphabet is easy, but there is a big problem: For a fixed word, the two
(unique) runs of the automata might produce vastly different looking stacks. If one automa-
tonpusheswhile theotherpops, the secondautomatonwill haveamuch smaller stack. There
is noway to simulate this using only one stack (e.g. if we use filler symbols, wewill not be able
to access the topmost symbol of the smaller stack).

One could say that the problem with (deterministic) pushdown automata is that even for a
fixed word, it is not clear how the stack of the automaton will look like after processing the
word without actually simulating the run. Visibly pushdown automata fix this problem by
making the shape of the stack uniquely determined by the input word.

This makes themmore expressive than finite automata, but less expressive than DPDAs. One
the one hand, they are still powerful enough to model executions of recursive programs,
since the call (push) and the return (pop) of functions can be marked with special letters.
On the other hand, they enjoy good algorithmic properties that are similar to those of finite
automata.

3

2 Visibly pushdown automata

2. Visibly pushdown automata

2.1 Definition
A visibly alphabet Σv is an alphabet together with a decomposition

Σ = Σc ·∪Σr ·∪Σi

into

• call-symbols a ∈ Σc (symbols for which the automaton should push),

• return-symbols a ∈ Σr (symbols for which the automaton should pop), and

• internal symbols a ∈ Σi (symbols for which the automaton should not modify the
stack). They are also called local symbols in the literature.

A visibly pushdown automaton is essentially a PDA over a visibly alphabet whose transition
relation respects the decomposition of the alphabet. Still, we give a precise definition to fix
the syntax that we be used in the rest of the lecture.

2.2 Definition
A (non-deterministic) visibly pushdown automaton (VPA) A is a tuple

A = (Σv,Q,Q0,QF, Γ , δ) ,

where

• Σv with Σ = Σc ·∪Σr ·∪Σi is a visibly alphabet,

• Q is a finite set of control states,

• Q0 ⊆ Q is the set of initial states,

• QF ⊆ QF is the set of final states,

• Γ is the stack alphabet containing the special symbol⊥ ∈ Γ indicating the bottom of
stack, and

• δ = (δc, δr, δi) is a tuple, where

δc ⊆ Q× Σc × (Γ \
{
⊥
}
)× Q

δr ⊆ Q× Σr × Γ × Q

δi ⊆ Q× Σi × Q .

4

2 Visibly pushdown automata

We write transitions (q, a,γ, q′) ∈ δc as q
pushγ
−−−−→a q′. Their meaning is that upon seeing

call-symbol a in state q, automaton A can go to state q′ while pushing γ onto the stack.

We write transitions (q, a,γ, q′) ∈ δr as q
popγ
−−−−→a q′. Their meaning is that upon seeing

return-symbol a in state q, automaton A can go to state q′ while γ from the stack.

We write transitions (q, a, q′) ∈ δi as q −→a q′. Their meaning is that upon seeing internal
symbol a in state q, automaton A can go to state q′ (without modifying the stack).

We will now formalize this intuition by providing the semantics of VPAs.

2.3 Definition
A configuration of VPA A is a tuple c = (q,σ) where

• q ∈ Q is a control state, and

• Σ ∈ ⊥.(Γ \
{
⊥
}
)∗ is a stack content ending in the bottom symbol. (We display the

top-of-stack on the right-hand side end of the word.)

The transition relation δ of A induces a non-deterministic transition relation among configu-
rations.

1. For a ∈ Σc, we have
(q,σ) → (q′,σ.γ)

if q
pushγ
−−−−→a q′.

2. For a ∈ Σr, we have
(q,σ.γ) → (q′,σ)

if q
popγ
−−−−→a q′.

3. For a ∈ Σr, we have
(q,⊥) → (q′,⊥)

if q
pop⊥
−−−−→a q′.

4. For a ∈ Σi, we have
(q,σ) → (q′,σ)

if q −→ q′ ∈ δi.

Sometimes we make explicit the letter that was red and write (q,σ) →a (q′,σ′).

Letw = a1 . . . an ∈ Σ∗ be a word. A run of A onw is a sequence of configurations

(q0,⊥) →a1 (q1,σ1) →a2 . . . →an (qn,σn)

5

2 Visibly pushdown automata

where q0 ∈ Q0 is an initial state.

It is accepting if qn ∈ QF is a final state.

The language of A is the set of all words over Σ that have an accepting run,

L
(
A
)
=
{
w ∈ Σ∗ ∣∣ (q0,⊥) →w (qf,σ), q0 ∈ Q0, qf ∈ QF

}
.

2.4 Remark

• Note that VPAs accept using final states. This in particular means that the stack maybe
non-empty after awordhas beenprocessed. Thismeans there canbeunmatched calls
in a word, calls for which a symbol was pushed that was not popped later during the
run.

Making VPAs accept only on the empty stack would be a restriction on their computa-
tional power.

• Transitions q
popγ
−−−−→a q′ do not actually pop ⊥ from the stack. These are transitions

that can just be fired if the stack is currently empty.

This in particular means that in a word, there can be unmatched returns, returns for
which no corresponding call exists.

• One could allow internal ε transitions (but no ε-labeled push or pop transitions). The
proof that such transitions can be eliminated in finite automata carries over to VPAs.

• According our definition, VPAs are not allowed topeek (readwithoutmodifying) at the
the top-of-stack on internal transitions. This is not a restriction, as the top-of-stack can
be encoded into the control state.

We define the class of languages recognizable by VPAs.

2.5 Definition
A languageL ⊆ Σ∗ is a called a visiblypushdown language (VPL) if there is a decomposition
of Σ into a visibly alphabet Σv and a VPA A over Σv with L

(
A
)
= L.

We call a language L ⊆ Σ∗ is a a visibly pushdown language (VPL) with respect to the the
visibly alphabet Σv (that is a decomposition of Σ) if there is a VPA A over Σv with L

(
A
)
= L.

Note that in the first part of the definition, we allow an arbitrary decomposition, while we fix
it in the second part. We will see in the next section why this is needed in some situations.

6

3 Some closure properties

2.6 Remark
Since every VPA can be seen as PDA, is is clear that VPL is a subclass of CFL.

The relationship to DCFL is not yet clear.

3. Some closure properties

We now start to study the closure properties of VPA-languages.

3.1 Lemma
Let Σv be a visibly alphabet. VPLs with respect to Σv are effectively closed under union, in-
tersection, concatenation and Klenee-star. Given two VPAs A1,A2 over Σv, one can construct
VPAs for

L
(
A1

)
∩ L

(
A2

)
L
(
A1

)
∪ L

(
A2

)
L
(
A1

)
.L
(
A2

)
L
(
A1

)∗ .
Proving the lemma can be done using essentially the same techniques that were used for
finite automata.

3.2 Remark

• For union, intersection and concatenation, it is important that the VPAs agree on the
decomposition of the alphabet.

• VPLs are also closed under homomorphisms that respect the decompositions of the
alphabet.

• Effectively closed means that we cannot just prove that e.g. the union is a VPL, but we
can actually construct the corresponding automaton.

This is not clear in general. For example, consider the so-called lossy channel systems.
One the one hand, one can prove that the downward closure of their languages are
regular languages. One the other hand, one can prove that there can be no algorithm
that actually computes an NFA representing the downward closure.

7

4 Determinization and complementation

4. Determinization and
complementation

It remains to proof that VPLs are effectively closed under complement. To this end, we pro-
ceed as for finite automata: We prove that VPAs are determinizable, closure under comple-
mentation is then an easy corollary.

4.1 Definition
A VPA A = (Σv,Q,Q0,QF, Γ , δ) is deterministic (DVPA) if

• it has exactly one initial state,
∣∣Q0

∣∣ = 1, and

• for each a ∈ Σi, there is at most one transition of the form q −→a q′ ∈ δi,

• for each a ∈ Σc, there is at most one transition of the form q
pushγ
−−−−→a q′ ∈ δc, and

• for each a ∈ Σr and each γ ∈ Γ , there is at most one transition of the form
q

popγ
−−−−→ q′ ∈ δr.

4.2 Remark
Note the difference between push- and pop-transitions:

For push transitions, the automaton decide the symbol to push, thus, it has to be unique in
a DVPA.

For pop transitions, there is only at most one enabled pop transition, namely the transition
that pops the current top-of-stack (or⊥ if the stack is empty). Thus, we allow one transition
per stack symbol.

4.3 Theorem
Let A be a VPA over Σv. One can construct a DVPA Adet over Σv with L

(
A
)
= L

(
Adet

)
.

Before we show how to construct Adet, we discuss the approach.

A naive idea would be the powerset construction, as for NFAs. The problem is that there is
the stack. The shape (size) of the stack in each configuration is determined by the inputword,
but not its content.

Assume that at some point of the computation, A could either be in (q1,⊥ba) or in (q2,⊥ab).
Using a powerset construction also for the stack alphabet and representing both configu-
rations together as (

{
q1, q2

}
,⊥

{
a, b

}{
a, b

}
) is not valid: From this representation, it is not

clear that (q1,⊥aa) is not a possible configuration of A at this point.

8

4 Determinization and complementation

This means the determinized automaton would need to keep track of which possible stack
content belongs towhich computational. Unfortunately, the number of computations grows
togetherwith the inputwords. Thismeans that the bounded storage providedby the control
states is insufficient. Even with the stack, it is hard to realize this in a naive way.

We now explain how the construction solves this problem.

The crucial idea is to not really execute push moves made by Awhen a call symbol a′ occurs:
As highlighted in the above example, it would be impossible tomatch the correct popmove
later. Instead, the automaton Adet waits until the corresponding return symbol a occurs. It

then checks which transitions q
pushγ
−−−−→a′ q1 the original automaton A could have made

when reading a′, andmatches themwith the transitions q2
popγ
−−−−→a q′ for the current symbol

a that pop the same stack symbol γ.

There are two difficulties in implementing this:

Firstly, when reading a, the automaton needs to be able to access a′ and its old state inwhich
it was when a′ was read. To this end, the automaton stores a′ and the current state on the
stack when a′ is read. Since a is the return corresponding to the call a′, this means that this
stored information will be the top-of-stack when a is read and can be accessed.

Secondly, the combination of push-transition q
pushγ
−−−−→a′ q1 and pop-transition q2

popγ
−−−−→a

q′ is only valid if there is a computation leading from q1 to q2 for the word that was read
between a and a′. To be able to check this, the automaton stores a summary relation in its
state, meaning it stores for each pair of states (q, q′) whether there is a computation going
from q to q′.

We are now able to formally introduce the first part of the construction.

Construction of Adet (States):
Let A = (Σv,Q,Q0,QF, Γ , δ) be the given PDA. We define

Adet = (Σv,Q′,Q′
0,Q

′
F, Γ

′, δ′)

where

• Q′ = P
(
Q× Q

)
× P

(
Q
)

This means a state (S, R) ∈ Q′ consists of a set of states R ⊆ Q and a relation between
states S ⊆ Q × Q. The set R implements the usual powerset construction, it contains
all states of A in which A could be after reading the prefix of the word so far. The set S is
the summarymentioned above. A pair (q, q′) is contained in S if there is a computation
from q to q′ for a certain part of the word. We will make this precise later.

9

4 Determinization and complementation

• Q′
0 =

{
(Id,Q0)

}
where Id denotes the relation Id =

{
(q, q)

∣∣ q ∈ Q
}
.

Initially, the initial states Q0 of A are possible. Furthermore, we start with the trivial
relation inwhich each state is only related to itself, sinceno computationhas happened
yet.

• Q′
F =

{
(S, R)

∣∣ R ∩ QF ̸= �}
We require that at least one possible state is final. The summary is ignored.

• Γ ′ = P
(
Q× Q

)
× P

(
Q
)
× Σc

A stack symbol is of the shape (S, R, ac), where (S, R) ∈ Q′ is a state, and ac ∈ Σc is a call
symbol. As already explained, when a call symbol ac occurs, Adet will store its current
state as well as the letter ac on the stack.

Before formally defining the transition relation, let us consider an example to get a better
understanding.

4.4 Example
Letw = w1a1w2a2w3 be a word where

• Inw1, all calls have a matching return. (There may be unmatched returns.)

• a1, a2 are call with no matching return.

• The wordsw2,w3 are well-matched, i.e. all calls have amatching return, and all returns
have amatching call. (A return withoutmatching call inw2 wouldmatch a1, similar for
w3 and a2).

After readingw, assume that the state of Adet is (S, R) and its stack content is

⊥ (S1, R1, a1) (S2, R2, a2) .

Stack symbol (S1, R1, a1) was pushed when reading a1, (S2, R2, a2) was pushed when reading
(S2, R2, a2). All other calls in w have a matching return, thus, the stack has size 2.

As already explained, the component R of the state implements the usual powerset construc-
tion. It is the set of states in which A could be after reading the prefix of the input word that
has already been processed.

Since R1 and R2 were (a part of) the states when a2 resp. a2 were, read, we have that

• R is the set of states in which A could be after readingw,

• R1 is the set of states in which A could be afterw1, and

• R2 is the set of states in which A could be afterw1a1w2.

10

4 Determinization and complementation

R =
{
q′

∣∣ (q0,⊥) →w (q′,σ) for some q0 ∈ Q0
}
,

R1 =
{
q′

∣∣ (q0,⊥) →w1 (q
′,σ) for some q0 ∈ Q0

}
,

R1 =
{
q′

∣∣ (q0,⊥) →w1a1w2 (q
′,σ) for some q0 ∈ Q0

}
.

It is now time to explain the purpose of the summaries S. Whenever the automaton reads a
call-letter that has no matching return yet, it starts to track all possible computations from
this point on. For example, a2 is the latest call without matching return inw. This means the
summary S in the current state of Adet is the summary of all possible computations onw3.

S =
{
(q, q′)

∣∣ (q,⊥) →w3 (q
′,⊥)

}
Actually, the stack is not empty after reading the call letter a1. But sincew3 does not contain
a return corresponding to a1, the computation will not access the lower parts of the stack.
Therefore, we may fix the stack content of configuration (q,⊥) to be empty.

We will need the summary as soon as the return corresponding to ac occurs. This means
that all symbols that have been pushed onto the stack during w3 have also been popped.
Therefore, we are interested in configurations (q′,⊥) where the stack is also empty.

Whenever we see a newer unmatched call, we store the old summary onto the stack. This
will allow us to resume them as soon as we see the corresponding return to the newer call.

In the example, S1 is the summary for the beginning of the word until the first unmatched
call a1,

S1 =
{
(q, q′)

∣∣ (q,⊥) →w1 (q
′,⊥)

}
.

When reading a2, a2 is now the newest unmatched call, so S1 gets stored onto the stack. The
automaton starts a new summary for the computation onw2,

S2 =
{
(q, q′)

∣∣ (q,⊥) →w2 (q
′,⊥)

}
.

When reading a3, S2 gets stored, and a new summary (that later will become S) is started.

Assume the automaton would now read a new call-symbol a3. This is now the newest call
with unmatched return, so the automaton would store the old state and summary onto the
stack, togetherwith the symbola3. Thismeans itwouldpush (S, R, a3). Thenew state consists
of R′ updated using all possible transitions of A for a3, and of the trivial summary Id. Sincewe
have not read any letter after a3 yet, the new summary should be the summary for the empty
word ε, and indeed we can think of having transitions (q,σ) →ε (q,σ) among configurations.

11

4 Determinization and complementation

Assume we process some internal letters afterwards. The possible transitions of A for these
letters would be used to update summary and possible states stored in the control state. As-
sume that (S̃, R̃) is the resulting control state of Adet.

Whenwe read the return symbol b, the pop corresponding to the push for a3 should happen.
The topmost stack symbol is (S, R, a3), i.e. the old control state together with the letter a3 We

use a3 to determine all transitions q
pushγ
−−−−→a3 q1. Here q should be a possible state of A

before reading a3, we can ensure this by requiring q ∈ R. We look the the transitions for b
that pop the same symbol, i.e. q2

popγ
−−−−→b q′. To ensure that there is a possible computation

in between leading from q1 to q2, we require (q1, q2) ∈ S̃, as S is the summary for the word
that has been processed since the occurrence of a3.

The new control state will be (S′, R′), where R′ is the set of all states q′ as above. Summary S′ is
obtained by updating S (whichwas stored on the stack). Since a3 now has amatching return,
we can throw away S̃, and continue S, as a2 is again the newest call without matching return.

Construction of Adet (Transition relation):

We consider each type of symbol separately.

Internal symbols:
For a ∈ Σi, we have

(S, R) a→ (S′, R′) ∈ δ′i

where

S′ =
{
(q, q′′)

∣∣∣ ∃q′ : (q, q′) ∈ S∃q′ a→ q′′ ∈ δi

}
, R′ =

{
q′′

∣∣∣ ∃q′ ∈ R : q′ a→ q′′ ∈ δi

}
.

Here, we update summary and possible states as usual for the powerset construction.

Call symbols:
For a ∈ Σc, we have

(S, R)
push(S,R,a)
−−−−−−−→a (Id, R′) ∈ δ′c

where

R′ =
{
q′′

∣∣∣∣ ∃q′ ∈ R∃ : q′ pushγ
−−−−→a q′′ ∈ δc

}
.

We store the old state and the letter that was just read on the stack. The set of possible states
is updated using all possible transitions as usual in the power set construction. We start a
new summary, since a is now the newest call without matching return.

12

4 Determinization and complementation

Return symbols:
For a ∈ Σr, we have

(S, R)
pop(S′,R′,a′)
−−−−−−−−→a (S′′, R′′) ∈ δ′r .

Before defining (S′′, R′′), we define the relation

Update =
{
(q, q′)

∣∣∣∣ ∃q1, q2 ∈ Q,γ ∈ Γ : q
pushγ
−−−−→a′ q1 ∈ δc, (q1, q2) ∈ S, q2

popγ
−−−−→a q′ ∈ δr

}
.

It contains all computations that consist of a push for the letter a′ stored on the stack, a pop
for the letter a that we read now that pops the same symbol, and a computation in between.

Computation of A:

q
pushγ
−−−−→a′ q1 q2

popγ
−−−−→a q′

∈ S

Computation of Adet:

(S′, R′)
push(S′,R′,a′)
−−−−−−−−→a′ (Id, R̃) (S, R)

pop(S′,R′,a′)
−−−−−−−−→a (S′′, R′′)

We use the old set of possible states R′ (stored on the stack) and Update to compute the set
new possible states q′ contained in R′′:.

R′′ =
{
q′′

∣∣ ∃q′ ∈ R′ : (q′, q′′) ∈ Update
}
.

Furthermore, we continue the old summary S′ stored on the stack. We update it using the
relation Update.

S′′ =
{
(q, q′′)

∣∣ ∃q′ : (q, q′) ∈ S′, (q′, q′′) ∈ Update
}
.

Finally, we also need a transition for unmatched returns when we pop⊥.

(S, R)
pop⊥
−−−−→a (S′′, R′′) ∈ δ′r

where

S′ =
{
(q, q′′)

∣∣∣∣ ∃q′ : (q, q′) ∈ S∃q′ pop⊥
−−−−→a q′′ ∈ δi

}
,

R′ =
{
q′′

∣∣∣∣ ∃q′ ∈ R : q′
pop⊥
−−−−→a q′′ ∈ δi

}
.

13

4 Determinization and complementation

Since there is no matching needed in this case, this is again as usual for the powerset con-
struction.

4.5 Remark
We do not prove the soundness of the our construction.

To formally do this, one would need to show that if Adet goes to state (S, R) while processing
wordw, then A can go to any q′ ∈ R.

This cannot be directly proving by induction. One would need to strengthen the induction
hypothesis by requiring that all states (S, R) that occur as state resp. on the stack have certain
properties. These properties are as explained in the example above:

• Each stored R′ is the set of possible states after reading the prefix up to the point when
Rwas stored.

• Each stored S′ is the summary for the word that is read between two unmatched calls.

One can then prove that this invariant is maintained by every transition of Adet.

4.6 Remark
As for NFAs, the determinization might lead to an exponential blowup. Since we store sum-
maries, the exponent is even quadratic in the old number of states.

Assume A has n states. Then Adet has 2O
(
n2
)
-many states and used 2O

(
n2
)∣∣Σc

∣∣-many stack
symbols.

4.7 Corollary
LetΣv be a visibly alphabet. VPLswith respect toΣv are effectively closedunder complement:
Given a VPA A over Σv, one can construct a VPA A over with

L
(
A
)
= Σ∗ \ L

(
A
)
.

Proof:
For the given VPA A = (Σv,Q,Q0,QF, Γ , δ), we can construct its determinization

Adet = (Σv,Q′,Q′
0,Q

′
F, Γ

′, δ′) .

We define A to be
A = (Σv,Q′,Q′

0,Q
′ \ Q′

F, Γ
′, δ′) ,

i.e. Adet, where the final and the non-final states have been swapped. We have

L
(
A
)
= Σ∗ \ L

(
Adet

)
= Σ∗ \ L

(
A
)
.

14

5 Concluding remarks

4.8 Corollary
VPL is a strict subclass of DCFL.

Proof:
Every VPA has a language-equivalent DVPA, which in turn can be seen as DPDA. Thus, it is
clear that VPL is a subclass of DCFL.

The language {
w#wreverse ∣∣w ∈

{
a, b

}∗}
of even-length palindromes, where the middle is marked using a special symbol, is a DCFL,
but not a VPL.

Similarly, the language {
an#an

∣∣ n ∈ N
}

is a DCFL, but not a VPL: for the letters a occurring before #, the automaton would need to
push, but for the letters a occurring after # it would need to pop.

5. Concluding remarks

The context-free languages can be embedded as VPA-languages over an extended alphabet.

5.1 Proposition
Let Σ be an alphabet. We define

Σc =
{
ac

∣∣ a ∈ Σ
}

Σr =
{
ar

∣∣ a ∈ Σ
}

Σi =
{
ai
∣∣∣ a ∈ Σ

}
Σv = Σc ·∪Σr ·∪Σi ,

i.e. we define three variants for each letter.

Furthermore, we define the projection proj : Σv → Σ by proj(ax) = a for xin
{
c, r, i

}
.

For each CFL L ⊆ Σ, there is a VPL L′ ⊆ Σv such that proj(L′) = L′.

The decision problems for VPLs are slightly harder than for regular languages.

15

5 Concluding remarks

NFAs VPAs DPDAs PDAs

Emptiness NL-complete P-complete P-complete P-complete
Inclusion PSPACE-complete EXP-complete Undecidable Undecidable

Universality, Equivalence PSPACE-complete EXP-complete Decidable Undecidable

Note that there is no real difference in running timebetweenNFAsandVPAs: Unless PSPACE = P,
PSPACE-complete problems cannot be solved within polynomial time.

There is a difference in space consumption: Unless PSPACE = EXP, solving EXP-complete
problems needs more than polynomial space.

People have extended the research on VPLs in many directions:

• Logical characterization,

• Characterization via grammars and derivation trees,

• ω-VPL,

• and many more.

One of the authors of the original paper has a collection of papers concerning VPAs:
madhu.cs.illinois.edu/vpa/

16

http://madhu.cs.illinois.edu/vpa/

	1 Motivation
	2 Visibly pushdown automata
	3 Some closure properties
	4 Determinization and complementation
	5 Concluding remarks

