Hedge automata and XML schemes

Sebastian Muskalla

June 26, 2017

This document is based on Prof. Roland Meyer’s handwritten notes on the topic.
They are available here:

« tcs.cs.tu-bs.de/documents/AutomataTheory_WS_2013/lecturenotes/30_xml_part_1.pdf

« tcs.cs.tu-bs.de/documents/AutomataTheory_WS_2013/lecturenotes/31_xml_part_2.pdf

TU Braunschweig

Summer term 2017

http://tcs.cs.tu-bs.de/documents/AutomataTheory_WS_2013/lecturenotes/30_xml_part_1.pdf
http://tcs.cs.tu-bs.de/documents/AutomataTheory_WS_2013/lecturenotes/31_xml_part_2.pdf

1 Unranked trees

1. Unranked trees

So far, we have only considered ranked trees, trees, in which the number of successors of
each node is determined by its label. This means we only consider bounded branching: The
maximum out-degree of a node in the tree is bounded by the greatest rank of a symbol in
the alphabet.

In this lecture, we want to consider so-called unranked trees, in which each node can have
an arbitrary number of successors.

Consider for example an XML document with the following content.

1 <lecture>
2 <title>Algorithmic automata theory</title>
3 <block>

4 <title>Finite words</title>

5 <topic>

6 <title>WSMO</title>

7 <goal>Satisfiablity</goal>

8 <approach>Bilichi</approach>

9 </topic>

10 </block>

1 </lecture>

We can see its structure (i.e. the document without the data) as a tree.

lecture

/\

title block

/\

title topic

/1N

title goal approach

This is an unranked tree: A lecture could consist of an arbitrary number of blocks, a block
could consist of an arbitrary number of topics.

2. XML specifications

We want to pose requirements on the structure of XML documents.

2 XML specifications

In the example, we want to specify that each lecture consists of blocks, and each block con-

sists of topics.

Such requirements specify a language of unranked trees whose nodes are labeled by the
tags (lecture, title, block, ...) of the document. The description of the specification is called

scheme.

A document is valid with respect to a given scheme if it satisfies the specification given by

the scheme.
We are interested in the connections to automata theory:

- Validity: Is a given document valid wrt. a given scheme?
L Membership: Is the tree representing the structure of the document in the tree lan-

guage specified by the scheme?

« Is there a document valid for a given scheme? (Sanity check)
L Emptiness of the tree language specified by the scheme?

« Arealldocumentsthat are valid wrt. one schema also valid wrt. another scheme? (Needed
when merging archives/companies.)
L Inclusion of the tree languages.

There are several standards for XML schemes. Commonly used in practice are nowadays e.g.
RELAX NG and XSD. We will consider the older standard document type definition (DTD)

here.

A document type definition (DTD) is essentially a context-free grammar with regular expres-
sions on the right-hand side. Its tree language is the set of derivation trees of terminal words

produced by the DTD.

The document type definition corresponding to our example could look as follows.

<!DOCTYPE LECTURE [
<!ELEMENT lecture (title, (block+ | (topic,exercise?)+)) >
<!ELEMENT block (title, (topic,exercise?)+) >
<!ELEMENT topic (title, goal, problem?, approach) >
<IELEMENT title (#PCDATA)) >

N o U A~ W N =

1>

The right-hand side of a DTD is called content model. Here, we use | for choice, , for se-
guences (concatenation), + for one or more occurrences, and ? wfor zero or one occurrence.
#PCDATA represents an arbitrary character sequence, i.e. data in the document.

3 Hedge automata

We can represent a DTD as a context-free grammar. In the example, we obtain the following
CFG:

lecture — title.(block™ + (topic.(exercise + €))*)
block — title.(topic.(exercise + ¢))*
topic — title.goal.(problem + ¢).approach

title — ¢

To formally define the language of a DTD, we need hedge automata

3. Hedge automata

Let £ be an alphabet. We will call it unranked alphabet to emphasize that we drop the re-
strictions from the previous lectures.

We consider Z-labeled trees t: 7 — X. Each node v € T can have arbitrarily many, but
finitely many children. This means we allow unbounded branching.

AN

We call the subtrees ty, ..., th a hedge.

A hedge automaton will process such a tree bottom-up. Our goal is to obtain similar proper-
ties as for ranked trees. The problem is that since the number of children is not fixed, we can
not list all possible transitions explicitly. Instead, we will represent an infinite set of transitions
symbolically.

3.1 Example
Consider the language of all trees

of height 2

with the root labeled by g,

the children labeled by b, and

- an even number of children.

3 Hedge automata

A bottom-up automaton should have two states g, ¢/, a transition —,, g’ for the leaves, and
transitions —4 q,(q@,9) —a a.(d.9.,9.,9) —=aaq....

The infinite set of transitions can be represented by

qq) —aq.

More generally, we want to allow transitions of the shape
R —aq,

where R C Q* is a regular language over the states of the automaton.

3.2 Definition
A (non-deterministic) hedge automaton (NHA) A is a tuple

A= (ZI Q: — QF) ’

where
+ Y isaunranked alphabet,
« Qis a finite set of control states,
« Qf C Qisthe set of final states, and
+ — C P(Q*) x £ x Qis the transition relation.

The left hand sides R C Q* of transitions R —4 g € are required to be regular, and — should
be finite. The R are called horizontal languages.

A run of the NHA A over the tree t: 7 — X is a function
r:'T —Q
so that for all nodes v € T with t(v) = a, r(v) = g, there is a transition R —4 g such that
r(v.0)r(v.1)...r(v.in-1)) €R,

where n is the number of successors of v.
We are only allowed to apply a transition R —4 g to a leaf if ¢ € R.

A runis accepting if r(¢) € Qf.

3 Hedge automata

The language of A is the set of trees that have an accepting run,

L(A) = {t: T — | thereis an accepting runof Aon t} .

3.3 Example

Consider the alphabet £ = g, b, c and the language of X-labeled trees defined by the follow-
ing condition:

There are two nodes labeled by b whose greatest common ancestor is labeled by c.

This language is regular, it is the language of the NHA A = (X, Q, —, Qf) with

Q=1{4.9a,qc}
Qr = {4qc}
Q" —a/cq
Q" —p ap
Q"qpQ" —a/c b
Q"qpQ"9pQ" —¢ qc
Q"qcQ" —asp/c Ac

The automaton works as follows: It assigns g, to b-labeled nodes and and propagates this
states upwards. As soon as a ¢ occurs that has two gys as children, it goes to the final state,
and propagates it to the root.

e

AN

4 DTD revisited

4. DTD revisited

4.1 Definition
A document type definition (DTD) is a tuple D = (%, s, 8), where

« X is afinite set of tags,

« s € Xistheroottag, and

- b is a function assigning each symbol a € X a regular expression &(a) over L.
Given a DTD D, we define the corresponding hedge automaton Ap = (%, Q, —, Qf) where

- Q={gq|acz},

» Qr = {gs},and

- for each symbol a € L, there is a unique transition

L(8(a)) —a ga -

The language of D is defined to be the language of Ap, £(D) = L(Ap).

Note that in the expression L‘(é(a)), we implicitly assume that we convert tags a to their
corresponding state ggq.

4.2 Example
Consider the transition

lecture — title.(block™ + (topic.(exercise + €))*)

from our running example.

The corresponding NHA is

Ap =(Z, {CI/ecr Qtit: Ablock: Gtop: Gex: - - -}, {CIIec}f —)

with the transition

qt,-t.(qglock + (Gtop-(Gex + ") —lecture lec

Now we could check that our initial example document is indeed valid. There is a run that
assigns to each node labeled by tag a the state g4. In particular, it assigns to the root node
labeled by lecture the state g, € QF.

5 Membership checking for NHAs

How to do a validity check (membership check) algorithmically?

Validity checking against DTD
Given: DTD D, XML document doc
Decide: Is doc valid wrt. D?

By the previous discussion, this corresponds to membership checking for NHAs.

5. Membership checking for NHAs

The goal is to provide a fast decision procedure for the following problem.

Membership checking for NHAs
Given: NHAA, treet
Decide: te L(A)?

Here, we assume that the regular horizontal languages are given by non-deterministic finite
automat (NFAs).

5.1 Theorem
Membership for NHAs with horizontal languages given by NFAs can be decided in polynomial
time (in the total size of the input NHA and the NFAs for the regular languages and the tree).

Towards a proof, we construct an algorithms.

Assume A = (X, Q, —, Qf) is the given NHA, and t: 7 — L is the given tree. We construct a

mapping
p: T — P(Q)

that assigns each node set of possible states. Namely, it maps each node v to the set of states
p(v) C that are reachable atvinarunof Aont.

To this end, in each step the algorithms picks a node v whose children v.0,...,v.(n - 1) are
already mapped to Qg, . . ., Qp-1. For each transition R —4 g, where a = t(v) is the label of the
node, it checks whether the transition can be applied to a string qg . .. gn-1 With g; € Q; for
each i.

This means the algorithm implements a bottom-up on-the-fly powerset construction along
the tree.

5 Membership checking for NHAs

5.2 Algorithm
After the algorithm, p will be a total function. During the algorithm, we allow p to be a partial
function, i.e. we allow it to be undefined for some nodes v, p(v) = L.

Input: NHA A, tree t
Output: true iff t € L(A)
Algorithm:

Initialize p, p(v) + L forallv e T.
while 3 nodev: p(v) = L,V children v.i: p(v.i) # L do
M— &
for transition R —4 g with a = t(v) do
if 3gg € p(v.0),...,3gn-1 € p(v.n-1):qg...qn-1 € Rthen
M— MU {q}
end if
end for

p(v) — M
end while
return true if p(e) N Qf # &, false otherwise

5.3 Example
Consider the tree from Example 3.3

T
N\ PN

a C a

C

-

a

AN

We are not done check: It is not clear how the check if dgg € p(v.0),...,3gy-1 € p(v.n -
1):qgg-..qn-1 € Rcan be implemented in polynomial time.

Naively, we have to iterate over all words G € Q" with g; € pv.i. This takes in the worst case
Q", i.e. exponentially many, steps.

It can be implemented in polynomial time as follows:

« Let pjnit be the initial state of the NFA Ag representing R.

5 Membership checking for NHAs

« Collect the set Py of states of Ag reachable by symbols (states) in p(v.0) from py.
« Collect the set Py of states of Ag reachable by symbols in p(v.1) from a state in Py.
. etc.

« Collect the set P,,_1 of states of Ag reachable by symbols in p(v.n- 1) from a state in P,,_4.
This is the set of states reachable from pg by a word G with g; € pv.i.

« Checkif P,.1 contains a final state of Ag. If yes, the transition can be applied.

Theresulting algorithm is a on-the-fly powerset construction along the set of words pv.0.... .. pv.n -1
(in the automaton Ag).

5.4 Algorithm
Input: NFA Ag = (Q, P, =, po, Pr), Qo = p(v.0),...,Qp-1 = plv.n-1)
Output: true iff the transition £(Ag) —qa g can be applied
Algorithm:

Py {po}

fori=0,...,n-1do

‘ Pi— {peP|3p €Pi13qgecQ:p —qp}
end for
return true if P,.1 N Pr # &, false otherwise

Using Algorithm 5.4 to implement the if-check in Algorithm 5.7 yields the desired algorithm
for checking membership in polynomial time.

The resulting algorithm does two nested on-the-fly powerset constructions:
+ a bottom-up determinization of A along the given tree, and

- determinizations of the automata Ay for the horizontal languages along the words pro-
vided by the states for the child nodes.

5.5 Example
Consider the left child of the root labeled by a. Assume we have already determined the
possible sets of states Qg = {g}, Q1 = {qp }, Q2 = {9, gy} for the child nodes.

We want to check whether the transition
Q*qpQ"qpQ" —c qc

can be applied. Assume the regular expression is represented by the following automaton.

10

5 Membership checking for NHAs

4.9, 4c 4,9p:4c 4,9p:9¢

b % 9o
Agr —(Po P1 @

N

During the application of Algorithm 5.4, we encounter the following sets of states:

P4 = {Po} {i; Po = {Po} {%} Py = {po,p1} {qﬁ)b} Py = {PO:PhPf} .

Since pf € P;, the transition can be applied.

11

	1 Unranked trees
	2 XML specifications
	3 Hedge automata
	4 DTD revisited
	5 Membership checking for NHAs

