
Hedge automata and XML schemes

Sebastian Muskalla

June 26, 2017

This document is based on Prof. Roland Meyer’s handwritten notes on the topic.
They are available here:

• tcs.cs.tu-bs.de/documents/AutomataTheory_WS_2013/lecturenotes/30_xml_part_1.pdf

• tcs.cs.tu-bs.de/documents/AutomataTheory_WS_2013/lecturenotes/31_xml_part_2.pdf

TU Braunschweig

Summer term 2017

http://tcs.cs.tu-bs.de/documents/AutomataTheory_WS_2013/lecturenotes/30_xml_part_1.pdf
http://tcs.cs.tu-bs.de/documents/AutomataTheory_WS_2013/lecturenotes/31_xml_part_2.pdf

1 Unranked trees

1. Unranked trees

So far, we have only considered ranked trees, trees, in which the number of successors of
each node is determined by its label. This means we only consider bounded branching: The
maximum out-degree of a node in the tree is bounded by the greatest rank of a symbol in
the alphabet.

In this lecture, we want to consider so-called unranked trees, in which each node can have
an arbitrary number of successors.

Consider for example an XML document with the following content.
1 <lecture>
2 <title>Algorithmic automata theory</title>
3 <block>
4 <title>Finite words</title>
5 <topic>
6 <title>WSMO</title>
7 <goal>Satisfiablity</goal>
8 <approach>Büchi</approach>
9 </topic>

10 </block>
11 </lecture>

We can see its structure (i.e. the document without the data) as a tree.

lecture

title block

title topic

title goal approach

This is an unranked tree: A lecture could consist of an arbitrary number of blocks, a block
could consist of an arbitrary number of topics.

2. XML specifications

We want to pose requirements on the structure of XML documents.

2

2 XML specifications

In the example, we want to specify that each lecture consists of blocks, and each block con-
sists of topics.

Such requirements specify a language of unranked trees whose nodes are labeled by the
tags (lecture, title, block, …) of the document. The description of the specification is called
scheme.

A document is valid with respect to a given scheme if it satisfies the specification given by
the scheme.

We are interested in the connections to automata theory:

• Validity: Is a given document valid wrt. a given scheme?↰

Membership: Is the tree representing the structure of the document in the tree lan-
guage specified by the scheme?

• Is there a document valid for a given scheme? (Sanity check)↰

Emptiness of the tree language specified by the scheme?

• Areall documents that are validwrt. one schemaalsovalidwrt. another scheme? (Needed
when merging archives/companies.)↰

Inclusion of the tree languages.

There are several standards for XML schemes. Commonly used in practice are nowadays e.g.
RELAX NG and XSD. We will consider the older standard document type definition (DTD)
here.

A document type definition (DTD) is essentially a context-free grammar with regular expres-
sions on the right-hand side. Its tree language is the set of derivation trees of terminal words
produced by the DTD.

The document type definition corresponding to our example could look as follows.
1 <!DOCTYPE LECTURE [
2 <!ELEMENT lecture (title, (block+ | (topic,exercise?)+)) >
3 <!ELEMENT block (title, (topic,exercise?)+) >
4 <!ELEMENT topic (title, goal, problem?, approach) >
5 <!ELEMENT title (#PCDATA)) >
6 ...
7]>

The right-hand side of a DTD is called content model. Here, we use | for choice, , for se-
quences (concatenation), + for one ormore occurrences, and ? wfor zero or one occurrence.
#PCDATA represents an arbitrary character sequence, i.e. data in the document.

3

3 Hedge automata

We can represent a DTD as a context-free grammar. In the example, we obtain the following
CFG:

lecture→ title.(block+ + (topic.(exercise + ε))+)

block→ title.(topic.(exercise + ε))+

topic→ title.goal.(problem + ε).approach

title→ ε

. . .

To formally define the language of a DTD, we need hedge automata

3. Hedge automata

Let Σ be an alphabet. We will call it unranked alphabet to emphasize that we drop the re-
strictions from the previous lectures.

We consider Σ-labeled trees t : T → Σ. Each node v ∈ T can have arbitrarily many, but
finitely many children. This means we allow unbounded branching.

a

t0 t1 . . . tn

We call the subtrees t0, . . . , tn a hedge.

A hedge automaton will process such a tree bottom-up. Our goal is to obtain similar proper-
ties as for ranked trees. The problem is that since the number of children is not fixed, we can
not list all possible transitions explicitly. Instead, wewill represent an infinite set of transitions
symbolically.

3.1 Example
Consider the language of all trees

• of height 2

• with the root labeled by a,

• the children labeled by b, and

• an even number of children.

4

3 Hedge automata

A bottom-up automaton should have two states q, q′, a transition→b q′ for the leaves, and
transitions→a q, (q′, q′)→a q, (q′, q′, q′, q′)→a q,

The infinite set of transitions can be represented by

(q′q′)∗ →a q .

More generally, we want to allow transitions of the shape

R→a q ,

where R ⊆ Q∗ is a regular language over the states of the automaton.

3.2 Definition
A (non-deterministic) hedge automaton (NHA) A is a tuple

A = (Σ,Q,→,QF) ,

where

• Σ is a unranked alphabet,

• Q is a finite set of control states,

• QF ⊆ Q is the set of final states, and

• →⊆ P
(
Q∗)× Σ× Q is the transition relation.

The left hand sides R ⊆ Q∗ of transitions R→a q ∈ are required to be regular, and→ should
be finite. The R are called horizontal languages.

A run of the NHA A over the tree t : T → Σ is a function

r : T → Q

so that for all nodes v ∈ T with t(v) = a, r(v) = q, there is a transition R→a q such that

r(v.0)r(v.1) . . . r(v.(n - 1)) ∈ R ,

where n is the number of successors of v.

We are only allowed to apply a transition R→a q to a leaf if ε ∈ R.

A run is accepting if r(ε) ∈ QF.

5

3 Hedge automata

The language of A is the set of trees that have an accepting run,

L
(
A
)
=
{
t : T → Σ

∣∣ there is an accepting run of A on t
}
.

3.3 Example
Consider the alphabet Σ = a, b, c and the language of Σ-labeled trees defined by the follow-
ing condition:
There are two nodes labeled by bwhose greatest common ancestor is labeled by c.

This language is regular, it is the language of the NHA A = (Σ,Q,→,Qf) with

Q =
{
q, qa, qc

}
QF =

{
qc
}

Q∗ →a/c q

Q∗ →b qb
Q∗qbQ

∗ →a/c qb
Q∗qbQ

∗qbQ
∗ →c qc

Q∗qcQ∗ →a/b/c qc

The automaton works as follows: It assigns qb to b-labeled nodes and and propagates this
states upwards. As soon as a c occurs that has two qbs as children, it goes to the final state,
and propagates it to the root.

a

c

a b a

c b

b

a c a

qc ∈ QF

qc

q qb qb

q qb

qb

q q q

6

4 DTD revisited

4. DTD revisited

4.1 Definition
A document type definition (DTD) is a tuple D = (Σ, s, δ), where

• Σ is a finite set of tags,

• s ∈ Σ is the root tag, and

• δ is a function assigning each symbol a ∈ Σ a regular expression δ(a) over Σ.

Given a DTD D, we define the corresponding hedge automaton AD = (Σ,Q,→,QF) where

• Q =
{
qa

∣∣ a ∈ Σ
}
,

• QF =
{
qs
}
, and

• for each symbol a ∈ Σ, there is a unique transition

L
(
δ(a)

)→a qa .

The language of D is defined to be the language of AD, L
(
D
)
= L

(
AD

)
.

Note that in the expression L
(
δ(a)

)
, we implicitly assume that we convert tags a to their

corresponding state qa.

4.2 Example
Consider the transition

lecture→ title.(block+ + (topic.(exercise + ε))+)

from our running example.

The corresponding NHA is

AD = (Σ,
{
qlec, qtit, qblock, qtop, qex, . . .

}
,
{
qlec

}
,→)

with the transition
qtit.(q

+
block + (qtop.(qex + ε))+)→lecture qlec

Now we could check that our initial example document is indeed valid. There is a run that
assigns to each node labeled by tag a the state qa. In particular, it assigns to the root node
labeled by lecture the state qlec ∈ QF.

7

5 Membership checking for NHAs

How to do a validity check (membership check) algorithmically?

Validity checking against DTD
Given: DTD D, XML document doc
Decide: Is doc valid wrt. D?

By the previous discussion, this corresponds to membership checking for NHAs.

5. Membership checking for NHAs

The goal is to provide a fast decision procedure for the following problem.

Membership checking for NHAs
Given: NHA A, tree t
Decide: t ∈ L

(
A
)
?

Here, we assume that the regular horizontal languages are given by non-deterministic finite
automat (NFAs).

5.1 Theorem
Membership forNHAswithhorizontal languagesgivenbyNFAs canbedecided inpolynomial
time (in the total size of the input NHA and the NFAs for the regular languages and the tree).

Towards a proof, we construct an algorithms.

Assume A = (Σ,Q,→,QF) is the given NHA, and t : T → Σ is the given tree. We construct a
mapping

ρ : T → P
(
Q
)

that assigns each node set of possible states. Namely, it maps each node v to the set of states
ρ(v) ⊆ that are reachable at v in a run of A on t.

To this end, in each step the algorithms picks a node v whose children v.0, . . . , v.(n - 1) are
alreadymapped toQ0, . . . ,Qn-1. For each transition R→a q, where a = t(v) is the label of the
node, it checks whether the transition can be applied to a string q0 . . . qn-1 with qi ∈ Qi for
each i.

Thismeans thealgorithm implementsabottom-upon-the-flypowerset constructionalong
the tree.

8

5 Membership checking for NHAs

5.2 Algorithm
After the algorithm, ρwill be a total function. During the algorithm, we allow ρ to be a partial
function, i.e. we allow it to be undefined for some nodes v, ρ(v) = ⊥.

Input: NHA A, tree t
Output: true iff t ∈ L

(
A
)

Algorithm:

Initialize ρ, ρ(v)← ⊥ for all v ∈ T .
while ∃ node v : ρ(v) = ⊥,∀ children v.i : ρ(v.i) ̸= ⊥ do

M← �
for transition R→a qwith a = t(v) do

if ∃q0 ∈ ρ(v.0), . . . ,∃qn-1 ∈ ρ(v.n - 1) : q0 . . . qn-1 ∈ R then
M← M ∪

{
q
}

end if
end for
ρ(v)← M

end while
return true if ρ(ε) ∩ QF ̸= �, false otherwise

5.3 Example
Consider the tree from Example 3.3.

a

c

a b a

c b

b

a c a

{
q, qb, qc

}
∩ QF =

{
qc
}
̸= �⇒ true

{
q, qb, qc

}
{
q
} {

qb
} {

q, qb
}

{
q
} {

qb
}

{
qb

}
{
q
} {

q
} {

q
}

We are not done check: It is not clear how the check if ∃q0 ∈ ρ(v.0), . . . ,∃qn-1 ∈ ρ(v.n -
1) : q0 . . . qn-1 ∈ R can be implemented in polynomial time.

Naively, we have to iterate over all words q⃗ ∈ Qn with qi ∈ ρv.i. This takes in the worst case
Qn, i.e. exponentially many, steps.

It can be implemented in polynomial time as follows:

• Let pinit be the initial state of the NFA AR representing R.

9

5 Membership checking for NHAs

• Collect the set P0 of states of AR reachable by symbols (states) in ρ(v.0) from p0.

• Collect the set P1 of states of AR reachable by symbols in ρ(v.1) from a state in P0.

• etc.

• Collect the set Pn-1 of states of AR reachable by symbols in ρ(v.n - 1) from a state in Pn-1.
This is the set of states reachable from p0 by a word q⃗with qi ∈ ρv.i.

• Check if Pn-1 contains a final state of AR. If yes, the transition can be applied.

The resultingalgorithm isaon-the-flypowerset constructionalong thesetofwordsρv.0.ρv.n - 1
(in the automaton AR).

5.4 Algorithm
Input: NFA AR = (Q, P,→, p0, PF), Q0 = ρ(v.0), . . . ,Qn-1 = ρ(v.n - 1)
Output: true iff the transition L

(
AR

)→a q can be applied
Algorithm:

P-1 ← {
p0
}

for i = 0, . . . , n - 1 do
Pi ← {

p ∈ P
∣∣ ∃p′ ∈ Pi-1∃q ∈ Qi : p′ →q p

}
end for
return true if Pn-1 ∩ PF ̸= �, false otherwise

Using Algorithm 5.4 to implement the if-check in Algorithm 5.2 yields the desired algorithm
for checking membership in polynomial time.

The resulting algorithm does two nested on-the-fly powerset constructions:

• a bottom-up determinization of A along the given tree, and

• determinizations of the automata AR for the horizontal languages along thewords pro-
vided by the states for the child nodes.

5.5 Example
Consider the left child of the root labeled by a. Assume we have already determined the
possible sets of states Q0 =

{
q
}
, Q1 =

{
qb

}
, Q2 =

{
q, qb

}
for the child nodes.

We want to check whether the transition

Q∗qbQ
∗qbQ

∗ →c qc

can be applied. Assume the regular expression is represented by the following automaton.

10

5 Membership checking for NHAs

p0AR p1 pf

q, qb, qc

qb

q, qb, qc

qb

q, qb, qc

During the application of Algorithm 5.4, we encounter the following sets of states:

P-1 =
{
p0
} {

q
}→ P0 =

{
p0
} {

qb
}→ P1 =

{
p0, p1

} {
q,qb

}→ P2 =
{
p0, p1, pf

}
.

Since pf ∈ P2, the transition can be applied.

11

	1 Unranked trees
	2 XML specifications
	3 Hedge automata
	4 DTD revisited
	5 Membership checking for NHAs

