
Institute of Theoretical Computer
Science

Institute of Theoretical Computer
Science

Master’s Thesis

Memory-Model-aware
Static Analysis of

Concurrent Programs

René Maseli
June 18, 2021

Institute of Theoretical Computer Science
Prof. Dr. rer. Nat. Roland Meyer

Supervisor:
Thomas Haas, M. Sc.

Statement of Originality

This thesis has been performed independently with the support of my supervisor/s. To
the best of the author’s knowledge, this thesis contains no material previously published
or written by another person except where due reference is made in the text.

Braunschweig, June 18, 2021

Contents
1. Program 5

1.1. Program Order . 6
1.1.1. Barriers . 7

1.2. Atomicity . 9
1.2.1. Load-Reserved / Store-Conditional 10

1.3. Control Flow Analysis . 11
1.4. Dependency . 12

1.4.1. Control Dependency . 13
1.4.2. Data Dependency . 14
1.4.3. Address Dependency . 14

1.5. Boundedness . 15

2. Memory 19
2.1. Axiomatic Semantics of the Model . 19
2.2. Operational Semantics of the Model . 25
2.3. Reordering . 25
2.4. Out of Thin Air . 26

3. Verification 29
3.1. Satisfiablility . 29
3.2. Encoding . 30
3.3. Data Flow . 31
3.4. Communication . 32
3.5. Consistency . 33
3.6. Refinement . 34

4. Analysis 35
4.1. Alias Analysis . 37

4.1.1. Context-Insensitivity . 38
4.1.2. Flow-Insensitivity . 38
4.1.3. Field-Sensitivity . 39
4.1.4. Model Checking . 42

4.2. Optimisation . 42
4.3. Relation Analysis . 45

5. Related Work 49
5.1. Thread-Modular Static Analysis for Relaxed Memory Models 49

vi Contents

5.2. SAT modulo Graphs: Acyclicity . 49
5.3. A Shared Memory Poetics . 50
5.4. Understanding POWER Multiprocessors 50
5.5. Herding cats: Modelling, Simulating, Testing and Data-mining for Weak

Memory . 50
5.6. Common Compiler Optimisations are Invalid in the C11 Memory Model

and what we can do about it . 51

6. Evaluation 53
6.1. Locking . 53

6.1.1. Spinlock . 54
6.1.2. Fast userspace mutual exclusion 54

6.2. Lockfree Datastructures . 54
6.2.1. Treiber's stack . 56
6.2.2. Michael and Scott's Queue . 57

6.3. Results . 57

Bibliography 67

A. Storage Device 71

Introduction
Static analysis is the examination of properties that all executions of a given program

share. Oftentimes this entails a description of a feature and a collection of algorithms
to detect it. More so than its efficiency, the most important property of a program is
its safety, the absence of reachable error states. The attached problem bears the name
Verification and was proven to be undecidable, so there is no algorithm that, given
an arbitrary program and a well-defined set of error states, eventually either finds an
unintended behavior, or proofs the absence of such.

The instructions of a program include jumps, which redirect the process not only
forwards but also backwards, enabling executions of infinite length. Binding to a max-
imal length leads to the decidable problem Bounded Model Checking asking whether a
violation occurs in the first number of instructions of a program. In other words, only
programs are accepted which never jump back and so never repeat an instruction.

This thesis discusses static analyses specialised for bounded programs, that distribute
onto multiple threads assignable to different processing units of a computer and exe-
cutable in parallel. All participating units share a common memory space and may use
it to communicate to each other: If addresses coincide a thread can read a value that
has been previously written by another thread.

A wide variety of processor architectures exists and vendors seek clever methods to
accelerate computers. Programmers and compilers aim to make use of any mean that the
hardware provides to accelerate the program. Communication with the shared storage
is slow in comparison to regular instructions. Processing units possess their own local
storage, the registers, usually with lower capacity and lifetime and invisible to other
units. Efficient programs will prioritise the register space over the shared memory.

The shared memory is also accelerated. Processing units tend to use the time while
waiting for such slow operations to finish. Most architectures cache operations in yet
another intermediate storage, the cache, serving as a direct surrogate to the shared
memory. On one hand, this entails that write operations of a unit may be delayed and
do not immediately become visible to other units and that read operations may return
a stale value and on the other hand, that they arrive at other threads in a different
order. The capacity of the cache depends on the actual hardware and is unknown to the
program at compile time.

Barrier instructions counter this behavior, restricting the freedom of the processor on
certain program states. For example does an acquire barrier issue a refresh of the cache
before the next read operation, preventing skipping over the latest updates from other
threads. And a release barrier delays subsequent write operations until all recent writes
have been committed, thus becoming visible to the others. More types exist and the set

2 Contents

of barrier types is yet unexplored. A programmer will retain the placement of barrier
instructions to where it is necessary for consistent inter-thread communication.

The subject of this thesis is the class of concurrent programs in machine code, that
only sparsely impose restrictions, whether or in which order inter-thread communica-
tion happens. The bounded model checker Dartagnan searches for semantic anomalies
like reachable error states (assertions placed by the programmer), violations to liveness
(eventual progress of all threads) or data race freedom (all communication is synchro-
nisfed).

Research in this field describes the guarantees of an architecture with an axiomatic
memory model. Such a model is evaluated on a program trace, for each thread a sequence
of events that were caused by it, and a mapping from read events to the respective
source event of the read value. The memory model defines binary relations over the
events and constraints over those relations. For instance, a model may impose that
no thread shall read from its own write events which were not yet dispatched (Local
Consistency). If some constraint is violated, the candidate trace is impossible in the
associated architecture. Axiomatic memory models ignore technical limitations, like
the previously-mentioned cache capacity, and thus over-approximate the set of possible
traces.

The candidate trace can be constructed non-deterministically. Dartagnan encodes a
program, its safety specification, and a memory model into a comprehensive proposition.
Any model of the formula exposes a trace of the program that may be possible in the
generalised model and witnesses some violation of the specification. If the proposition
turns out unsatisfiable, the decision procedure yields a formal proof that no witness exists
inside the specified bounds. This thesis will dive into the structure of the encoding.

The task of solving a formula is done by an SMT prover like Z3 [10] and is 𝒩𝒫-
complete for the usual value domains. The static analyses in this thesis aim to reduce
the complexity of the produced formula to ease the decision process and shorten the
combined runtime. They limit on structural properties of the program and memory
model so the proposition ideally keeps the kernel problem: to exclude all candidates
that are no witnesses.

This thesis tightly orients on the Dat3M project [9, 26, 25, 27], which is currently
maintained by Hernán Ponce-de-Léon on Github. It consists of Java applications prefer-
ably accepting programs in the boogie programming language, as produced from the
SMACK project [29] given an LLVM intermediate representation as input. The Java
application recompiles and unrolls its input into an acyclic program, then embeds it
into an axiomatic model given in a reduced dialect of the modelling language cat [2].
This results in a quantifier-free boolean formula modulo strict integer order (see section
3.1), and modulo theories that support value operations used in the program (currently
bit-vectors and integers). If, for example, the application targets state-reachability, the
produced formula should be satisfiable if and only if some bounded execution reaches
an error state. Dat3M supports reachability of failed assertions, reachability of race

Contents 3

conditions (pairs of accesses to the same location with unspecified memory order), and
memory model portability [26].

Chapter 1 introduces the kind of concurrent program that will serve as the target for
analysis, as well as required memory-model-unaware static analyses. In chapter 2 the
language of memory models is amended, connecting to the already defined notion of
traces, and completing the ingredients of the verification problem. We continue to flesh
out the problem in chapter 3, together with a formal description of Dartagnan's approach,
the SMT encoding. The core of this thesis is discussed in chapter 4: the analysis of static
relationships between events of a program under a model. We summarise contributions
of other authors that inspired our approach in chapter 5 and conclude this thesis with
an evaluation through the analysis on real programs and models in chapter 6.

The evaluation shows a reduction in resource consumption in nearly all test instances,
appearing to scale well with the size of the program and the complexity of the memory
model. We confirm that this particular analysis enhances the capabilities of the verifier
by relying on the well-structuredness of axiomatic memory models.

1. Program
In this chapter we define the class of programs we will examine in this thesis. We

will use a generalised description of a program that makes use of a shared memory
storage. It is heavily inspired by RISC and does not exactly reflect the current internal
representation of the Dartagnan project. Furthermore, sections 1.3 and 1.4 describe
memory-model-unaware analyses that we will have to perform in order to encode the
dataflow later in section 3.2 and to communicate certain thread-local circumstances
influencing a concurrent execution.

Concurrent programs distribute their tasks onto different threads, which may or may
not execute in parallel. Usually, execution starts with one main thread, sometimes along
with a garbage collector thread (see section 6.2), and provides the ability to create new
threads by passing a program location to its constructor. Since we will quickly drop
unbounded programs and switch to a bounded setting (section 1.5), where even the
thread count will be fixed, and since we want to avoid dynamic jumps, where data may
freely determine the successive control state, we define a purely static program where
an already determined count of threads is already assigned to their disjoint instruction
lists.

Definition 1 (Program). Let 𝐷 be a set of values with a computable subset ∅ ⊂ true ⊂ 𝐷
and 𝒯 be a finite set of tags. A 𝐷𝒯-program, or just ‘program’, is a list of 𝐷𝒯-threads. A
𝐷𝒯-thread, or just ‘thread’, ⟨𝑅, 𝐼⟩ consists of a set of registers 𝑅 and a list of instructions
𝐼 ∈ ℐ(𝐷, 𝑅, 𝒯)∗ with ℐ(𝐷, 𝑅, 𝒯) ∶= ({⊤} + 𝑅) × 𝑆(𝐷, 𝑅) × 𝑇.

An instruction ⟨𝜑, 𝑠, 𝑡⟩ ∈ ℐ(𝐷, 𝑅, 𝒯) consists of an optional condition 𝜑 ∈ {⊤} + 𝑅, a
statement 𝑠 ∈ 𝑆(𝐷, 𝑅) and a subset of tags 𝑡 ⊆ 𝑇. Let 𝑆(𝑅, 𝐷) denote the set of events
over values 𝐷 and registers 𝑅:

𝑆(𝑅, 𝐷) ∶= 𝑆load(𝑅, 𝐷) ∪ 𝑆store(𝑅, 𝐷) ∪ 𝑆eval(𝑅, 𝐷) ∪ 𝑆goto ∪ {fail}
𝑆load(𝑅, 𝐷) ∶= {ld 𝑣 ← 𝑘 ∣ 𝑘, 𝑣 ∈ 𝑅}

𝑆store(𝑅, 𝐷) ∶= {st 𝑣 → 𝑘 ∣ 𝑘, 𝑣 ∈ 𝑅}
𝑆eval(𝑅, 𝐷) ∶= {𝑧 ← 𝑓(𝑥, 𝑦) ∣ 𝑓 ∈ 𝐷𝐷×𝐷, 𝑥, 𝑦, 𝑧 ∈ 𝑅}

𝑆goto ∶= {goto 𝑛 ∣ 𝑛 ∈ N}

A statement is either

a load ld 𝑣 ← 𝑘 on the address 𝑘 depositing the read value in 𝑣

a store st 𝑣 → 𝑘 on the address 𝑘 writing the value 𝑣

an evaluation 𝑧 ← 𝑓(𝑥, 𝑦) of a computable operator 𝑓 consigning its result in 𝑧

6

a jump goto 𝑛 to the instruction with index 𝑛

an error state fail to avoid for safety

Let 𝑋 be some set and 𝑥 ∈ 𝑋∗ be some list. |𝑥| ∈ N denotes the number of elements
in 𝑥. For 𝑖 ∈ N let 𝑥𝑖 denote the 𝑖-th element of 𝑥, which is defined if and only if 𝑖 < |𝑥|.

This purely syntactical construction misses semantics that we will detail later in section
1.5. A computation will carry thread-local register states through a path of each thread.

In the context of verification, the data domain may be infinite like N or even C,
although most practical instances will use bit vectors {0, 1}𝑛. The label will be used
only by the condition 𝜑, where the statement is executed only if 𝜑 ∈ true. Usually, all
values will be convertible to true (⊤), with the exception of one ‘zero’ value 0, convertible
to false (⊥): true ∶= 𝐷 \ {0} As expected, instructions without a condition (with 𝜑 = ⊤)
shall be executed unconditionally if reached by the control flow (see 1.3).

Note that in contrast to an assembly language, we do not allow dynamic jumps to
any address. We assume that the program is present in its entirety. Concepts like
virtual functions could be implemented by collecting all overriding implementations (thus
all allowed destinations for the jump) and replace the dynamic jump with a list of
conditionals which is targeted at runtime.

Example 1. Figure 1 describes a two-threaded litmus test, a program with ‘predefined’
read-from relationships. Note how a special register null can avoid unintended depen-
dencies (see section 1.4).

The meaning of locations {𝑥, 𝑦, 𝑧} will be detailed in definition 1.5. From this point
onwards, we will express programs in a more readable fashion, by inlining once-used
evaluations and short jumps. Note how definition 1 stays valid, even if we state the
equivalence of the program with the form in figure 1.

1.1. Program Order
Each thread consumes the instructions of its program in order of appearance. This total
order in which a thread in a trace issues the events is called the program order of the
thread. We extend this term to the program order of the entire trace as the union of
program orders of the participating threads.

𝑥 po 𝑦 implies that the events 𝑥, 𝑦 ∈ ℰ originate from the same thread. In fact, the
axiomatic memory model may derive the internal equivalence relation int of events from
the same thread: int ∶= po ∪ po−1 ∪ id.

The C and C++ standards [28] define a relation called sequenced-before, which is
related to the program order. It is a partial order over expressions in a program’s
source code that compilers have to reflect in the order of instructions produced for the
expressions, especially if visible side effects are at play.

1.1. Program Order 7

Figure 1.1.: source code of a litmus test based on Power assembly
PPC DETOUR0666
"LwSyncdWW Rfe DpDatadW Rfi DpCtrlIsyncdR Fre"
Cycle=Rfi DpCtrlIsyncdR Fre LwSyncdWW Rfe DpDatadW
Prefetch=0:x=F,0:y=W,1:y=F,1:x=T
Com=Rf Fr
Orig=LwSyncdWW Rfe DpDatadW Rfi DpCtrlIsyncdR Fre
{
0:r2=x; 0:r4=y;
1:r2=y; 1:r4=z; 1:r7=x;
}
P0 | P1 ;
li r1,1 | lwz r1,0(r2) ;
stw r1,0(r2) | xor r3,r1,r1 ;
lwsync | addi r3,r3,1 ;
li r3,1 | stw r3,0(r4) ;
stw r3,0(r4) | lwz r5,0(r4) ;

| cmpw r5,r5 ;
| beq LC00 ;
| LC00: ;
| isync ;
| lwz r6,0(r7) ;

exists
(1:r1=1 /\ 1:r5=1 /\ 1:r6=0)

1.1.1. Barriers
Barriers are synchronisation primitives that do not manipulate the register state but en-
force the processing unit to perform some form of synchronisation with a shared resource
before continuing with the program [22, 4, 31]. All barriers we encountered share being
executed by a thread and affect all events independently of their address, but depen-
dently of their relative position in the program. The tool herd treats them as distinct
events at first, but immediately encapsulate them into relations:

fence𝐹 ∶= po ; (𝐹_ ∩ po)

Heavyweight SYNC and DMB possess similar semantics [31]: All preceeding writes
become visible to all other threads and all preceeding reads have to be satisfied. This
behavior is imposed by MFENCE from TSO, as well, and marks what we assume to
be the strongest type of barrier. Apart from this, Power's ‘Lightweight SYNC’ allows
preceeding writes to be reordered with succeeding reads and EIEIO only enforces order on

8

Figure 1.2.: program of figure 1 in terms of definition 1

{null, 𝑟1, 𝑟2, 𝑥, 𝑦, 𝑧} {null, cmp, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑥, 𝑦, 𝑧}

⟨⊤, 𝑟1 ← (1)(null, null), ∅⟩ ⟨⊤, ld 𝑟3 ← 𝑦, ∅⟩
⟨⊤, st 𝑟1 → 𝑥, ∅⟩ ⟨⊤, 𝑟4 ← (≠)(𝑟3, 𝑟3), ∅⟩

⟨⊤, 𝑟4 ← inc(𝑟4, null), ∅⟩
⟨⊤, 𝑟2 ← (1)(null, null), {lwsync}⟩ ⟨⊤, st 𝑟4 → 𝑧, ∅⟩
⟨⊤, st 𝑟2 → 𝑦, ∅⟩ ⟨⊤, ld 𝑟5 ← 𝑧, ∅⟩

⟨⊤, cmp ← (=)(𝑟5, 𝑟5), ∅⟩
⟨cmp, goto 6, ∅⟩
⟨⊤, ld 𝑟6 ← 𝑥, {isync}⟩

The operators encountered in the program are defined as below.

(1) ∶= (𝑥, 𝑦) ↦ 1 inc ∶= (𝑥, 𝑦) ↦ 𝑥 + 1

(≠) ∶= (𝑥, 𝑦) ↦
⎧{
⎨{⎩

1 if 𝑥 ≠ 𝑦
0 otherwise

(=) ∶= (𝑥, 𝑦) ↦
⎧{
⎨{⎩

1 if 𝑥 = 𝑦
0 otherwise

writes. The function of ISYNC as well as ISB seem to narrow on restricting speculation
(see section 1.4.1).

This thesis'definition of program and trace do not include visible barrier instructions
or events. Instead, memory events have to be tagged appropriately. In C for example,
stores tagged as (rel) are usually compiled into regular stores prepended by a releas-
ing barrier and loads with (acq) would be regular loads immediately followed by an
acquiring barrier. Whether the associated barrier F appears program-ordered before or
after the tagged instruction is defined by the underlying memory model in assignments
respectively:

fbefore ∶= (po ∩ _𝐹) ; (id ∪ po)
fafter ∶= (id ∪ po) ; (𝐹_ ∩ po)

A multi-processor is able to execute an arbitrary number of programs at the same time.
Including GPUs, it distributes them onto a fixed number of processing units. In situa-
tions where the former number exceeds the latter, a scheduling process has to dynami-
cally reassign units to threads, ensuring liveness for every single thread. Whenever such
a reassignment happens, the entire context of a thread will usually be synchronised with
the shared memory space of its program. In a sequentially-consistent memory model, a

1.2. Atomicity 9

Figure 1.3.: program of figure 1 in an abbreviated form

Wx ∶ st 1 → 𝑥 Ry ∶ ld r1 ← 𝑦
Wy ∶ st 1 → 𝑦 (lwsync) Wz ∶ st 1 + 0 ∗ r1 → 𝑧

Rz ∶ ld r5 ← 𝑧
Rx ∶ if r5 = r5 ld r6 ← 𝑥 (isync)

context switch like this happens every time the executing thread in the sequence of the
trace changes. As a consequence, synchronisation is not restricted to those primitives
described in this section, but should be allowed to trigger spontaneously. Vafeiadis et al.
[36] demonstrate how verifiers struggle if this rule happens to be violated.

1.2. Atomicity
The common programmer would assume each instruction to be atomic by nature. This
is certainly not the case if an instruction does either access an array of (even consecutive)
addresses, or performs a read-modify-write operation. However, a single load or store on
one memory address is considered atomic in the sense that there is no further separation
of events that describe the operation. One would consider separating the start of a write
event and all of its ends at each other thread symbolising its visibility. With the kind of
axiomatic memory model described in chapter 2, this is unnecessary. Instead we define
atomicity as a property of subsets of events of a common thread. Taking the notion of
time out of the equation, we want no other thread to perceive one element of an atomic
set of events, while missing out some other.

Architectures come with a minimal size of memory space that can be modified at once,
as well as a maximal size. Usually the minimal size will still be one byte, leading to in-
consistencies when trying to concurrently modify elements in a packed bitset. Language
constructs such as the function atomic_store of the standard C library stdatomic.h
[28, section 7.17] may guarantee atomicity for arbitrary object sizes, requiring the com-
piler to insert synchronisation primitives for accesses to larger structures. In case of
verification, their safety guarantee would appear questionable itself. We count three
basic approaches to this subproblem: First would be to remain skeptical and treat the
primitives as potential safety risks. Second introduces an equivalence relation to the
memory model between events of an atomic group. Dartagnan follows a third approach
and tries to merge those cells into one address, while reasoning over values of arbitrary
bit count.

The memory model should restrict communication while an atomic operation is hap-
pening: No consistent execution shall imply that some event of an atomic operation

10

became visible strictly before another event of that operation. It is required to be sup-
ported by the instruction set associated with the memory model (see example 4). In
addition, the information which operations exhibit atomicity must therefore be commu-
nicated, serving the model some means to specify the restrictions.

void VERIFIER_begin_atomic()
void VERIFIER_end_atomic()

SVCOMP defines two primitives for arbitrary atomic operations [8]. The program
must declare all events sequenced-between calls to that functions as pairwise-atomic,
such that none of them is perceived individually. Of course, no architecture will support
all combinations in its instruction set. Dartagnan deals with this by using a simple
mutual exclusion algorithm on a static lock.

1.2.1. Load-Reserved / Store-Conditional
Based on the load-reserved/store-conditional paradigm for instruction sets [22], we deco-
rate load and store instructions with a special pair of tags. A store that is tagged (cnd)
may only be executed, if and only if there is a load tagged (rsrv) that is program-ordered
before it, without any other such load or store in-between, and the memory location ac-
cessed by the load was not manipulated since it was read. If the store also accesses the
same location as the load, this results in a read-modify-write pair (see example 4). For
instance, AARCH64 defines a fallback scenario in which the store fails and the thread
receives a respective status value in its register state, allowing retrys until the operation
succeeds.

This paradigm is usually abstracted by higher-level programming languages. Since
the programs in chapter 6 were written in C, we will use a popular primitive for lock-free
algorithms, the atomic CAS procedure. It accepts an address 𝑘 ∈ 𝐷, an expectation
𝑥 ∈ 𝐷 and an output 𝑦 ∈ 𝐷. 𝑦 is stored into memory at 𝑘 only if it overwrites 𝑥.

Figure 1.4.: program fragment performing a single compare-and-swap

ld 𝑟 ← 𝑘 (rsrv)
if 𝑟 = 𝑥 st 𝑦 → 𝑘 (cnd)

Processor architectures just have to implement this type of sequential atomicity to
allow spinlocks, lock-free linked lists and more to be safe under sequential consistency
(see example 7). Meaning, as long as any instruction including CAS is atomic, and any
store immediately becomes a visible side effect for any other thread, programs like the
one below will never fail their assertion.

1.3. Control Flow Analysis 11

Figure 1.5.: spinlock mutex accessed by two threads

0∶ ld 𝑟 ← 𝑚 (rsrv) 0 ∶ ld 𝑟 ← 𝑚 (rsrv)
if 𝑟 = 0 st 1 → 𝑚 (cnd) if 𝑟 = 0 st 1 → 𝑚 (cnd)
if 𝑟 ≠ 0 goto 0 if 𝑟 ≠ 0 goto 0
st 1 → 𝑦 st 2 → 𝑦
ld 𝑠 ← 𝑦 ld 𝑠 ← 𝑦
if 𝑠 ≠ 1 fail if 𝑠 ≠ 2 fail

st 0 → 𝑚 st 0 → 𝑚

Programming Languages - C [28] additionally describes a weak kind of CAS that is
allowed to fail spontaneously. We assume the weak operation was introduced with Load-
reserved/Store-conditional in mind, where a conditional store also fails if intervened by
another thread storing the expected value at the reserved location.

1.3. Control Flow Analysis
Given a plethora of possible executions of a program one has to mind that instructions
can be executed an arbitrary number of times, including zero times. If the program is
acyclic, each instruction is optional if the structure allows to skip it when the runtime
meets conditions contained by the program. Usually this is expressed by if control
statements or conditional jump instructions.

Definition 2. The control graph of a 𝐷𝑇-thread ⟨𝑅, 𝐼⟩ is a directed graph ⟨𝑄, →⟩,
consisting of control states 𝑄 ∶= {0 … |𝐼|} and edges →∶=→𝑓 ∪ →𝑡 consisting of

→𝑓 ∶= {⟨𝑞, 𝑞 + 1⟩ ∣ 𝑞 < |𝐼|, ¬∃𝑛, 𝑡. 𝐼(𝑞) = ⟨⊤, goto 𝑛, 𝑡⟩} (1.1)
→𝑡 ∶= {⟨𝑞, dest(𝑞)⟩ ∣ 𝑞 < |𝐼|} (1.2)

Hereby, dest denotes the destination of the instruction if executed:

dest(𝑞) ∶=

⎧{{{
⎨{{{⎩

𝑛 if 𝐼(𝑞) = ⟨𝜑, goto 𝑛, 𝑡⟩ and 𝑛 < |𝐼|
|𝐼| if 𝐼(𝑞) = ⟨𝜑, goto 𝑛, 𝑡⟩ and |𝐼| ≤ 𝑛
|𝐼| if 𝐼(𝑞) = ⟨𝜑, fail, 𝑡⟩
𝑞 + 1 otherwise

All non-halting control states 𝑞 ∈ 𝑄 \ {|𝐼|} are associated with an instruction 𝐼(𝑞).
Note that each control state yields at least one and at most two outgoing edges in the
control graph. Only those states associated with conditional jump instructions may yield
two edges. Only the halting state |𝐼| has no outgoing edge.

12

Definition 3. Let ⟨𝑄, →⟩ be a control graph. A finite sequence 𝑝 ∈ 𝑄∗ of control states
is a (finite) control path if and only if it satisfies all following conditions:

𝑞0 = 0
∀𝑖 ∈ {0 … |𝑝| − 2}. 𝑞𝑖 → 𝑞𝑖+1

𝑞|𝑞|−1 = |𝐼|

Reasoning over a collection of executions will require some intermediate results. Let
us define an order between events of a program on the basis of control flow. It relates all
those events whose control flows are implied. This notion will be useful later in section
4.3.

Definition 4. Let 𝑥, 𝑦 ∈ 𝑄 be two instructions of the same thread. 𝑥 includes 𝑦, written
as 𝑥 ≫ 𝑦, if and only if all control paths passing through 𝑥 also pass through 𝑦.

Exclusion is an irreflexive symmetric relation between control states, proposing that
no control path contains both. This relation is strongly constrained by cycles of the
control graph and therefore benefits later when assuming a bounded setting beginning
from section 1.5.

Definition 5. Let 𝑥, 𝑦 ∈ 𝑄 be two instructions of the same thread. 𝑥 excludes 𝑦, written
as 𝑥 ⊗ 𝑦, if and only if there is no control path passing through both 𝑥 and 𝑦.

Lemma 1. Given control states 𝑥, 𝑦, 𝑧 ∈ 𝑄, if 𝑥 ≫ 𝑦 and 𝑦 ⊗ 𝑧, then 𝑥 ⊗ 𝑧.

Proof. Follows directly from definitions 4 and 5.

1.4. Dependency
Computer architectures are limited in their capacity for reordering by a dependency
order. The axiomatic model will define three distinct types of dependencies between
operations: control, data and address dependency, which will be discussed in detail in
this section.

These relations originate alone from structural features of the program and are not to
be eliminated even if the result of the dependent operation is invariant to the required
value, as some artificial dependencies are intentionally placed [1]. However some optimi-
sation techniques may result in removal of said artificial dependencies, unintentionally
adding more possibilities for unsynchronised inter-thread communication [27].

As a preparation, We use the simplicity of our definition of a program (definition
1) to build the transitive dependency chain. This relation is comparable to the inter-
nal dependency relation idd of Dartagnan. We will relate instructions to the involved
registers with 𝛿provide, 𝛿require, 𝛿guard, 𝛿address, 𝛿value ⊆ ℐ(𝐷, 𝑅, 𝒯) × 𝑅 . Example 13 will
demonstrate how to compute an over-approximation of the set of direct dependencies.

1.4. Dependency 13

Definition 6. Let 𝑖 = ⟨𝜑, 𝑠, 𝑡⟩ ∈ ℐ(𝐷, 𝑅, 𝒯) be an instruction, 𝑟, 𝑥, 𝑦 ∈ 𝑅 registers and
𝑓 ∈ 𝐷𝐷×𝐷 a function.

𝛿provide ∶={⟨⟨𝜑, 𝑣 ← 𝑓(𝑥, 𝑦), 𝑡⟩, 𝑣⟩ ∣ 𝜑, 𝑣, 𝑥, 𝑦 ∈ 𝑅 ∧ 𝑡 ⊆ 𝒯}
∪{⟨⟨𝜑, ld 𝑣 ← 𝑘, 𝑡⟩, 𝑣⟩ ∣ 𝜑, 𝑣, 𝑘 ∈ 𝑅 ∧ 𝑡 ⊆ 𝒯}

Let 𝑝, 𝑞 ∈ 𝑄 \ {|𝐼|} be control states in a control graph ⟨𝑄, →⟩, and 𝛿 ⊆ ℐ(𝐷, 𝑅, 𝒯) × 𝑅
a relation between instructions and registers.

𝑝 is a 𝛿-dependency candidate of 𝑞, if and only if 𝑞 is reachable from 𝑝, 𝐼(𝑝) 𝛿provide 𝑟
and 𝐼(𝑞) 𝛿 𝑟.

𝑝 is a direct 𝛿-dependency of 𝑞 if and only if 𝑝 is a 𝛿-dependency candidate of 𝑞 and
there is no other 𝛿-dependency candidate 𝑜 of 𝑞, that is reachable from and implied by 𝑝.

𝛿require ∶={⟨⟨𝜑, 𝑦 ← 𝑓(𝑟, 𝑥), 𝑡⟩, 𝑟⟩ ∣ 𝑥, 𝑦 ∈ 𝑅, 𝑓 ∈ 𝐷𝐷×𝐷}
∪{⟨⟨𝜑, 𝑦 ← 𝑓(𝑥, 𝑟), 𝑡⟩, 𝑟⟩ ∣ 𝑥, 𝑦 ∈ 𝑅, 𝑓 ∈ 𝐷𝐷×𝐷}

𝑝 is a 𝛿-dependency of 𝑞 if and only if 𝑝 is a direct 𝛿-dependency of 𝑞 or there is some
control state 𝑜 ∈ 𝑄 where 𝑝 is a 𝛿require-dependency of 𝑜 and 𝑜 is a 𝛿-dependency of 𝑞.

1.4.1. Control Dependency
Since control graphs have just recently been introduced (definition 2), We start with
events on control path fragments guarded by a conditional jump instruction depending
on data read from memory. Branching on a thread may impose stronger constraints on
the preservation of the program order, as demonstrated by architectures like ARM and
Power [22].

Definition 7 (Control dependency). Let 𝑔 ∈ 𝑄 \ {|𝐼|} be a control state associated with
the instruction ⟨𝜑, 𝑠, 𝑡⟩. 𝑔 guards another state 𝑞 ∈ 𝑄, if and only if 𝜑 ∈ 𝑅, 𝑠 = goto 𝑛
and 𝑞 is reachable from 𝑔.

𝛿guard ∶= {⟨⟨𝜑, 𝑠, 𝑡⟩, 𝜑⟩ ∣ 𝜑 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆(𝐷, 𝑅) ∧ 𝑡 ⊆ 𝑇}

A control state 𝑝 ∈ 𝑄 is a control dependency of 𝑞 if and only if 𝑝 is associated with a
load statement and there is 𝑔 guarding 𝑞 where 𝑝 is a 𝛿guard-dependency of 𝑔.

Example 2. The following thread exhibits two control dependencies, ⟨0⟩2 and ⟨0⟩3
because 0 is a 𝛿guard-dependency of 1 and 1 guards 2 and 3.

0∶ ld 𝑎 ← 0
1∶ if 𝑎 = 0 goto 3
2∶ st 1 → 1
3∶ st 2 → 1

14

Strict models will require all dependency loads to be satisfied before the branch is
available for processing. Weaker models like ARM and Power use pipelining to anticipate
instructions whose execution is yet unclear in the context before a branching event.
Those instructions then might already influence the cache and be saturated with values
from the cache, before the processing unit determines which path to follow. Of course
this will require the processor to roll back any side effect it might have done in case that
the other branch is chosen, which will limit the possibilities for side effect of this feature.
Most important limit would be that side effects of provisional operations should not be
visible to other processing units.

Note that this notion of ‘guarding’ does not always apply. The Linux kernel [4] follows
a more restrictive definition, additionally requiring that the dependent must not be
included by one of both successor instructions of the guard (see definition 4). This
means that the dependency spans until both branches rejoin. Fortunately, since the
kernel imposes a weaker model than your usual underlying architecture, this should
never lead to new inconsistencies after compilation. But architecture-modular verifiers
should keep in mind that this other major definition exists.

1.4.2. Data Dependency
Dataflow permits combining values together that were fetched from shared memory,
resulting in new values that can be sent back. This usually entails that all read accesses,
that contribute to the value about to be written, have to be finished beforehand. In order
for a memory model to recognise this property, its dependencies have to be provided by
the program.

Definition 8 (Data dependency).

𝛿data ∶= {⟨⟨𝜑, 𝑠, 𝑡⟩, 𝑟⟩ ∈ ℐ(𝐷, 𝑅, 𝒯) × 𝑅 ∣ ∃𝑥. 𝑠 = st 𝑟 → 𝑥}

A control state 𝑝 ∈ 𝑄 is a data-dependency of another control state 𝑞 ∈ 𝑄 if and only
if 𝑝 is a 𝛿data-dependency of 𝑞.

1.4.3. Address Dependency
Even the destination of a memory event does not have to be static and can be computed
using communicated data.

Definition 9 (Address dependency).

𝛿address ∶= {⟨⟨𝜑, 𝑠, 𝑡⟩, 𝑟⟩ ∈ ℐ(𝐷, 𝑅, 𝒯) × 𝑅 ∣ ∃𝑥. 𝑠 ∈ {ld 𝑥 ← 𝑟, st 𝑥 → 𝑟}}

A control state 𝑝 ∈ 𝑄 is an address-dependency of another control state 𝑞 ∈ 𝑄 if and
only if 𝑝 is a 𝛿address-dependency of 𝑞.

1.5. Boundedness 15

1.5. Boundedness
This section deals with the restriction of programs with bounded-length executions.
Together with the set of relevant traces dramatically shrinking, verifiers gain several
opportunities to abstract some components of the program. We will see that because of
the bound, a symbolic representation of the set of executions becomes computable.

Definition 10 (Boundedness). A program 𝒫 is called bounded, if and only if all control
graphs of threads of 𝒫 are acyclic.

The first advantage concerns the set of valid addresses. In definition 1 there was
no concept of a heap or a stack; the entire memory space was assumed to be already
initialised and accessible. This is inherently problematic for verifiers, not able to handle
such a sizable state space. As instructions are limited to one address, the set of accessible
memory addresses in a bounded program becomes finite, as well, rendering a form of
pointer analysis feasible (see section 4.1).

Definition 11 (Location). Bounded programs are associated with a finite N-labeled set
𝐿 of locations, such that all threads may potentially access them: 𝐿 ⊆ 𝑅 for all register
sets 𝑅 of threads of 𝒫.

The label of 𝐿 associates the location 𝑙 ∈ 𝐿 with its array size |𝑙|, thus defin-
ing an arbitrary distribution of blocks of accessible addresses. Therefore, given some
placement 𝑝∶ 𝐿 → 𝐷 appended to a computation, the set of valid addresses shall be
{𝑝(𝑙) + 𝑖 ∣ 𝑙 ∈ 𝐿 ∧ 𝑖 ∈ {0 … |𝑙| − 1}} ⊆ 𝐷. Section 4.1 will describe how this notion can
be used to abstract the otherwise unbounded address space into a closed and manageable
domain.

Definition 12 (Program events). A bounded program 𝒫 yields a finite set ℰ of events.

ℰ ∶=ℰ𝐼 + ℰ𝑀

ℰ𝐼 ∶={⟨𝑙, 𝑖⟩ ∣ 𝑙 ∈ 𝐿 ∧ 𝑖 ∈ {0 … |𝑙| − 1}}
ℰ𝑀 ∶=ℰ𝑅 + ℰ𝑊

ℰ𝑅 ∶={⟨𝑇 , 𝑖⟩ ∣ 𝒫(𝑇) = ⟨𝑅, 𝐼⟩ ∧ 𝐼(𝑖) = ⟨𝜑, ld 𝑘 ← 𝑣, 𝑡⟩}
ℰ𝑊 ∶={⟨𝑇 , 𝑖⟩ ∣ 𝒫(𝑇) = ⟨𝑅, 𝐼⟩ ∧ 𝐼(𝑖) = ⟨𝜑, st 𝑘 → 𝑣, 𝑡⟩}
ℰ′ ∶=ℰ + ℰ𝐿 + ℰ𝐵 + ℰ𝐴

ℰ𝐿 ∶={⟨𝑇 ⟩𝑖 ∣ 𝒫(𝑇) = ⟨𝑅, 𝐼⟩ ∧ 𝐼(𝑖) = ⟨𝜑, 𝑟 ← 𝑓(𝑥, 𝑦), 𝑡⟩}
ℰ𝐵 ∶={⟨𝑇 ⟩𝑖 ∣ 𝒫(𝑇) = ⟨𝑅, 𝐼⟩ ∧ 𝐼(𝑖) = ⟨𝜑, goto 𝑛, 𝑡⟩}
ℰ𝐴 ∶={⟨𝑇 ⟩𝑖 ∣ 𝒫(𝑇) = ⟨𝑅, 𝐼⟩ ∧ 𝐼(𝑖) = ⟨𝜑, fail, 𝑡⟩}

For each tag 𝑡 ∈ 𝑇, ℰ𝑡 ⊆ ℰ𝑅 + ℰ𝑊 shall denote the set of 𝑡-tagged events.
An event 𝑥 ∈ ℰ′ is unconditional, if and only if 𝑥 ∈ ℰ𝐼 is an initialisation or the

associated instruction ⟨⊤, 𝑠, 𝑡⟩ has no condition.

16

A visible event is either an initialisation, a read event or a write event. Other events
include local evaluations, branchings and assertions. Note that the events in ℰ \ ℰ′ will
not be visible to the model in chapter 2, but have to be accounted in the encoding section
3.2. Furthermore, all but the halting control states are covered by events (see definition
2), lifting the definitions of inclusion, exclusion, as well as dependency to the domain of
events.

Instructions can communicate intra-thread messages through registers. Different to
memory locations, registers do not share owners, and the donators of a value read from
a register can always be determined by backtracking the sequence of executed events
in reverse program order. Overwriting an old value of a register does not allow any
later event to read the old value from it. In a non-branching program, the donors of
each register access are determined by the program. Only if two branches join does the
determinism of the donor require more insight on the execution.

In a bounded program, each register state has a finite set of predecessors. This means
that the program does not need to overwrite register names with new values, and could
directly refer to the previous operations that provide the respective value. In section
1.4, this idea was formalised into a memory-unaware static analysis that will build the
basis of the pointer analysis in section 4.1.

Definition 13 (Trace). Let 𝒯 be a finite set of event tags. A 𝒯-trace 𝜏 consists of

a finite set E𝐼 of initialisations

a distinct finite set E𝑅 of executed read events

another distinct finite set E𝑊 of executed write events

a location map location ∶ E𝑊 → E𝐼

a relation tag ⊆ E𝑀 × 𝒯

program order relations po, addr, ctrl, data ⊆ E𝑀 × E𝑀

a ‘read-from’ map rf ∶ E𝑅 → E𝑊 + E𝐼

The set E𝑀 ∶= E𝑅 + E𝑊 of memory events contains all events issued by a thread. The
set E ∶= E𝐼 + E𝑀 contains all events of the trace. The set E𝑡 ∶= {𝑥 ∣ 𝑥 tag 𝑡} contains
all 𝑡-tagged memory events. The location map is extended to all events with following
definitions:

location(𝑖) ∶= 𝑖 for 𝑖 ∈ E𝐼

location(𝑟) ∶= location(rf(𝑟)) for 𝑟 ∈ E𝑅

The program order is a union of total orders. The remaining relations are sparse
subsets of po with read events on the domain side and data is also restricted to write

1.5. Boundedness 17

events on its range side.

po ∩ id = ∅
po ; po ⊆ po

(po ; po−1) ∪ (po−1 ; po) ⊆ po ∪ po−1

addr ∪ ctrl ∪ data ⊆ po ∩ 𝑅_
data ⊆ _𝑊

Due to memory models relating pairs of events of a trace, literature prefers to illustrate
traces as labeled graphs with events as nodes, presumably to highlight cycles or the
absence of such. For instance, the trace targeted by the program in figure 1 would look
like below.

Wx Wy
lwsync

Ry
rf

Wz
data

Rz
rfi

Rx
ctrlisync

Definition 14 (Computation). Let 𝒫 be a bounded 𝐷𝒯-program and 𝜏 a trace. A family
of control paths 𝑝𝑡 ∶ {0 … |𝐼|} → ({⊥} + 𝐷𝑅) for 𝑡 ∈ {0 … |𝒫| − 1} is called a computation
of 𝒫 with trace 𝜏, if and only if it satisfies all of the following conditions:

Tags and types coincide E𝐼 ⊆ ℰ𝐼, E𝑅 ⊆ ℰ𝑅, E𝑊 ⊆ ℰ𝑊 and E𝑡 ⊆ ℰ𝑡 for 𝑡 ∈ 𝒯.

Events in 𝜏 imply control flow through their associated instruction. 𝑝𝑡(𝑖) denotes
the register state immediately before the execution of ⟨𝑡, 𝑖⟩ and maps exactly all
unreached events to ⊥. Manipulation of register states shall follow the expected
rules.

The equivalence relation of accessing the same address is accurately supported.

Each read event 𝑟 updates its associated register's value in 𝑝𝑡 with the same value
that rf(𝑟) has taken from its register state.

Program order is consistent with the instruction sequence and each dependency re-
lationship is supported by a chain of direct dependencies of the dependency analysis
(see section 1.3).

The computation is further a witness for 𝒫, if and only if some fail statement is
executed.

A 𝒯-trace 𝜏 originates from a bounded 𝐷𝒯-program 𝒫 if and only if there is some
computation of 𝒫 with 𝜏.

2. Memory
Now that we have worked out the kind of programs that we will examine, along with

what properties are queried, it is time to define the kind of model we are testing against.
Although there are languages for operational models out there, as briefly discussed in
section 2.2, this thesis concentrates on the axiomatic approach.

We will encounter a few examples of in-use memory models, and some extremely weak
models with a bare minimum of guarantees that turn out to be implied by the real-world
examples, hinting at the existence of a partial order over models as studied by Alglave
[1] and Ponce de León et al. [26].

A litmus test is a minimal program equipped with an embedded specification that aims
to exhibit one particular trace that both originates from the program and witnesses the
specification. When examined under a subject model or architecture, a verifier will decide
either that trace to be consistent with the model or that no consistent witness exists.
This type of program is used extensively by architecture documentations to showcase
behavior unexpected to programmers, and which program patterns act as expected.

2.1. Axiomatic Semantics of the Model
The research in this field needs a modelling language that is general enough to dive deep
into weakness properties already discovered by the industry and properties probably
exploitable in the future, while at the same time keeping its computability. Alglave,
Cousot, and Maranget [2] claim to already have found such a language, which they
implemented into the herd verification tool.

The cat language uses features of the functional programming paradigm, providing
construction of more complex objects by using a type system with function types, set
types and more. For example, the widely used memory order co (see example 6) is
defined in a standard library header cos.cat using the primitives linearisations and
partition.

Memory models are given as a set of constraints for binary relationships over events
the threads of a computation commit. Candidate traces of the program can then be
evaluated with respect to the model, formulating the problem of memory model checking
(definition 17): Given a memory model ℳ and a trace 𝜏, is 𝜏 consistent under ℳ?
The constraint types of cat include emptiness, irreflexivity and acyclicity. A verifier for
robustness (see definition 18) might also be interested in their respective negative forms
in order to characterize traces that are consistent under one model, but inconsistent
under another [26].

For simplicity of the definition below, we reduce those three types to one type. Note

20

Figure 2.1.: herd's definition of memory order
let fold f =

let rec fold_rec (es,y) = match es with
|| {} -> y
|| e ++ es -> fold_rec (es,f (e,y))
end in fold_rec

let map f = fun S -> fold (fun (e,y) -> f e ++ y) (S,{})
let rec cross S = match S with

|| {} -> { 0 } (* 0 is the empty relation *)
|| S ++ R -> let s = cross R in fold (fun (e,r) -> map (fun t -> e | t) s | r) (S,{})
end

let co0 = loc & (IW*(W\IW))
let co from cross (let f w = linearisations(w,co0) in map f (partition(W)))

that especially for acyclicity, such a reduction is not always preferable, as there might
exist better approaches when the goal is to express the constraint in SMT, as discussed
by Gebser, Janhunen, and Rintanen [14].

Lemma 2. A binary relation 𝑅 is irreflexive if and only if 𝑅 ∩ id is empty.

Lemma 3. A binary relation 𝑅 is acyclic if and only if 𝑅+ is irreflexive, where 𝑅+

denotes the smallest relation that satisfies 𝑅+ ⊇ 𝑅 ∪ (𝑅+ ; 𝑅+).

Dartagnan implements a strongly reduced cat-like dialect, that omits the functional
fragment and maintains the declarative fragment [24]. co is built into the verifier, as it
specialises for cache-consistent models, including but not limited to Sequential Consis-
tency and Total Store Order, ARM and Power [22, 3], and the Linux kernel [4]. This
thesis uses this dialect as a prototype for memory models, well-aware of its reduced
expressiveness in relation to cat.

The modelling language still bases on a particular trace to be verified as consistent
with the model. Its expressions are symbolic binary relations over the finite set of
executed memory events. The actual location memory events access is not important to
the model, as we assume that all addresses are equitable in visibility, accessibility and
value capacity. However, we have to keep the information, whether two different events
access a common address, and whether two events were issued by the same thread.

An axiomatic memory consistency model imposes a stratified fixed point problem over
terms of binary relations. ‘Stratified’ means that although non-monotonic semantics of
expressions are syntactically allowed using a set difference operator, there must always
be a linear order in which variables may be refined in an iterative algorithm, such that
monotonicity is preserved. In other words, a stratified fixed point problem is a finite
sequence of monotonic fixed point problems, where each element is bounded by the
solution of its predecessors. As Kleene’s recursion theorem states that monotonic fixed
point problems have a computable solution, this effectively also applies to such an entire
sequence.

2.1. Axiomatic Semantics of the Model 21

Definition 15 (Memory model). Let 𝒯 be a finite set of tags. An axiomatic memory
model ℳ consists of

a finite set ℛ of variables for binary relations.

a term mapping def ∶ ℛ → {⊥} + 𝐶 + terms(ℛ)

a set 𝒞 ⊆ ℛ of constrained relations.

A variable 𝑅 ∈ ℛ is free, if and only if def(𝑅) = ⊥.
The set of constants 𝐶 is defined as

𝐶 ∶= {__, id, po, addr, ctrl, data, rf, loc} + ⋃{{𝑡_, _𝑡} ∣ 𝑡 ∈ 𝒯 ∪ {𝐼, 𝑅, 𝑊}}

The set of terms terms(ℛ) includes exactly

𝑆 ∪ 𝑇 as the union of 𝑆 ∈ ℛ and 𝑇 ∈ ℛ.

𝑆 ∩ 𝑇 as the intersection of 𝑆 ∈ ℛ and 𝑇 ∈ ℛ.

𝑆 𝑇 as the difference of 𝑇 ∈ ℛ from 𝑆 ∈ ℛ.

𝑆 ; 𝑇 as the post-composition of 𝑆 ∈ ℛ with 𝑇 ∈ ℛ.

𝑆−1 as the inverse of 𝑆 ∈ ℛ.

Definition 16. The fixed point problem imposed by the memory model ℳ, the trace 𝜏
and binding 𝛽∶ ℛ → 2E×E consists of a family of variables 𝑋 ∶= (𝑋𝑅)𝑅∈ℛ and a rule
𝑋𝑅 = ⟦def(𝑅)⟧𝛽(𝑅)

𝑋 for each 𝑅 ∈ ℛ.
Let 𝑡 ∈ 𝒯 + {𝐼, 𝑅, 𝑊}, 𝑃 ∈ {po, addr, ctrl, data} and 𝑅, 𝑆, 𝑇 ∈ ℛ.

⟦⊥⟧𝑅
𝑋 ∶= 𝑅

⟦∅⟧𝑅
𝑋 ∶= ∅

⟦__⟧𝑅
𝑋 ∶= E × E

⟦id⟧𝑅
𝑋 ∶= {⟨𝑥, 𝑥⟩ ∣ 𝑥 ∈ E}

⟦𝑃⟧𝑅
𝑋 ∶= 𝑃

⟦rf⟧𝑅
𝑋 ∶= {⟨rf(𝑟), 𝑟⟩ ∣ 𝑟 ∈ E𝑅}

⟦loc⟧𝑅
𝑋 ∶= {⟨𝑥, 𝑦⟩ ∣ location(𝑥) = location(𝑦)}

⟦𝑡_⟧𝑅
𝑋 ∶= E𝑡 × E

⟦_𝑡⟧𝑅
𝑋 ∶= E × E𝑡

⟦𝑆 ∪ 𝑇⟧𝑅
𝑋 ∶= 𝑋𝑆 ∪ 𝑋𝑇

⟦𝑆 ∩ 𝑇⟧𝑅
𝑋 ∶= 𝑋𝑆 ∩ 𝑋𝑇

⟦𝑆 \ 𝑇⟧𝑅
𝑋 ∶= 𝑋𝑆 \ 𝑋𝑇

⟦𝑆 ; 𝑇⟧𝑅
𝑋 ∶= {⟨𝑥, 𝑧⟩ ∣ ∃𝑦. ⟨𝑥, 𝑦⟩ ∈ 𝑋𝑆 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑋𝑇}

⟦𝑆−1⟧𝑅
𝑋

∶= {⟨𝑥, 𝑦⟩ ∣ ⟨𝑦, 𝑥⟩ ∈ 𝑋𝑆}

22

Definition 17 (Consistency). A trace 𝜏 is consistent under an axiomatic memory model
ℳ, written as 𝜏 ⊧ ℳ, if and only if there is some binding 𝛽 ∈ (2E×E)ℛ for free variables
of ℳ that evaluates all constrained relations to the empty set. Hereby let 𝑋∶ ℛ → 2E×E

denote the associated least fixed point.

∃𝛽. ∀𝑐 ∈ 𝒞. ⟦𝜏⟧𝛽
ℳ(𝑐) = ∅

As for definition 1, the models and model fragments in this thesis are abbreviated
and inlined: We introduce a new relation 𝑅 ∈ ℛ associated with a term by 𝑅 ∶= 𝑇 and
specify a constrained relation 𝑆 ∈ 𝒞 by ∅ = 𝑆.

Example 3. All models must satisfy those conditions: Only write events can send values
to read events (1), and only if both address the same location (2). Each read event can
communicate with at most one (3) and at least one write event (4). The internal relation
is an equivalence relation, thus reflexive (5), transitive (6) and symmetrical (7). The
external relation contains all other relationships (8) and (9).

int ∶=id ∪ po ∪ po−1

ext ∶=__ \ int
∅ =(po \ id) ∪ (po ; po \ po) ∪ (po \ po−1) po is a union of total orders
∅ =rf \ (𝑊_ ∩ _𝑅 ∩ loc) rf is typed accordingly
∅ =(rf−1 ; rf) \ id reads read from at least one write

∅ =_𝑅 \ (__ ; rf) reads read from at most one write
∅ =id \ loc ∪ loc ; loc \ loc ∪ int \ int−1 loc is an equivalence relation

Example 4. Atomic read-modify-write operations are declared in the program. Of course
their existence in a program requires that no execution shall feature an interference to
their atomicity. Without a notion of time, the axiom could be stated as follows: If in a
trace, two operations atomically read and write to the same location, they cannot read
from the same event, since one of them will have happened beforehand and overwritten
that value.

rmw𝑅 ∶= (rsrv)_
rmw𝑊 ∶=_ (cnd)

rmw ∶=(rmw𝑅 ∩ po ∩ rmw𝑊) \ (po ; (rmw𝑅 ∩ po) ∪ (po ∩ rmw𝑊) ; po)
∅ =(rf−1 ; rf) ∩ ((rmw ∩ loc) ; __) \ id

Example 5. Local Consistency is the weakest constraint there is, requiring that each
thread perceives its own side effects in the order they were issued.

∅ = rf ∩ po−1

∅ = rf ∩ ((po ∩ loc ∩ 𝑊_ ∩ _𝑊) ; po)
∅ = rf ∩ ((loc ∩ 𝐼_ ∩ _𝑊) ; po)

2.1. Axiomatic Semantics of the Model 23

Note that the rules explicitly disallow internal communication with other writes than the
most recent.

Definition 18. Let ℳ be a memory model. A memory model 𝒩 is robust against ℳ,
written as 𝒩 ⊧ ℳ if and only if ∀𝜏. (𝜏 ⊧ 𝒩) ⇒ (𝜏 ⊧ ℳ)

Definition 19 (Local consistency). A memory model ℳ is locally-consistent, if and
only if ℳ ⊧ Local Consistency

Example 6. Cache Consistency is one of the weakest practical models, requiring some
total orderings of all accesses with common addresses. This is implied by most industrial
processor architectures, including x86, ARM and Power.

∅ =po−1 ∩ (rf ∪ co ∪ (co ; rf) ∪ fr ∪ (fr ; rf))

To refer to the total ordering of writes in a trace, we define the memory order or
coherence relation co, with expected properties described below. Cache consistent models
make use not only of co, but also of the from-read relation fr, effectively lifting the
trichotomy of the total order into the realm of read events: Each read-write pair accessing
the same location, is either in rf, (co ; rf), or fr−1.

fr ∶=rf−1 ; co
∅ =co ∩ id irreflexivity
∅ =(co ; co) \ co transitivity
∅ =co ∩ co−1 asymmetry
∅ =co \ (loc ∩ 𝑊_ ∩ _𝑊) relating writes on common addresses
∅ =(loc ∩ 𝑊_ ∩ _𝑊) \ (id ∪ co ∪ co−1) totality
∅ =co ∩ _𝐼 initialisations are minimal

Definition 20 (Cache consistency). A memory model ℳ is cache-consistent, if and
only if ℳ ⊧ CacheConsistency

Example 7 (SC). Sequential consistency is a model where all threads share a common
view on the memory: all stores are immediately visible to all other threads and there is
a centralised memory device whose state is visible to all threads.

The popular definition from Lamport [20]: [...] the result of any execution is the same
as if the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified by
its program.

We express that by requiring the graph made of edges in po, co, rf and the fr to be
acyclic.

hb ∶= (hb ; hb) ∪ po ∪ co ∪ rf ∪ fr
∅ =hb ∩ id

24

Example 8 (TSO). Total Store Ordering is implemented by modern x86 processors,
allowing each thread to keep an arbitrary amount of recent store operations in a queue
before updating the shared memory. The order of store operations per thread stays and
each write becomes visible for all other threads at the same time. However, each write
becomes immediately visible to the issuing thread, thus ensuring sequential consistency
with single-thread applications. Additionally, there is the mfence barrier, flushing all
writes into the shared memory in the order they were issued. Its tag 𝐹 is attached to
the first memory event after the barrier, so that such a write event would possess release
semantics. In fact, the model guarantees sequential consistency over all writes that are
separated to both next and previous writes by a barrier.

rfe ∶=rf ∩ ext
com ∶=rfe ∪ co ∪ fr
ppo ∶=(po ∩ 𝑅_) ∪ (po ∩ 𝑊_ ∩ _𝑊)

fence ∶=(po ∩ 𝑊_ ∩ _ (rsrv)) ∪ (po ∩ (cnd)_ ∩ 𝑅_) ∪ ((po ∩ _𝐹) ; (po ∪ id))
hb ∶=(hb ; hb) ∪ com ∪ ppo ∪ fence

∅ =id ∩ hb

Example 9 (AARCH64). Besides being cache-consistent and supporting atomicity, the
AARCH64 memory model relies on three classes of memory barriers: The Data Memory
Barrier and the Data Synchronization Barrier, although the latter being slightly weaker
thread-locally, exhibit the same behavior in regards to the memory model, prohibiting
reordering. The Instruction Synchronization Barrier flushes the instruction pipeline,
effectively limiting the speculation described in section 1.4.1.

rfi ∶=rf ∩ int
coi ∶=co ∩ int
obs ∶=ext ∩ (rf ∪ co ∪ fr)

dobaddr ∶=addr ∪ (addr ; po ∩ _𝑊) ∪ (addr ; rfi)
dobdata ∶=data ∪ (data ; rfi) ∪ (data ; coi)
dobctrl ∶=(ctrl ∩ _𝑊) ∪ (ctrl ; coi)
dobisb ∶=(ctrl ∪ (addr ; po)) ; ((isb)_ ∩ _𝑅 ∩ (id ∪ po))

aob ∶=rmw ∪ (rfi ∩ (cnd)_ ∩ _ (acq))
bob ∶=(po ∩ (acq)_) ∪ ((po ∩ _ (rel)) ; (id ∪ coi)) ∪ (po ∩ (rel)_ ∩ _ (acq))

bobdmb ∶=(po ∩ _ (dmb)) ; (id ∪ po)
hb ∶=(hb ; hb) ∪ dobaddr ∪ dobdata ∪ dobctrl ∪ dobisb ∪ aob ∪ bob ∪ bobdmb

∅ =id ∩ hb

2.2. Operational Semantics of the Model 25

Alglave, Maranget, and Tautschnig [3] provided a different model for the former series
of ARM architectures, along with what we now use as the model of IBM Power. The
actual cat files are appended to this thesis and can alternatively be fetched from the
Dartagnan Project [9].

2.2. Operational Semantics of the Model
The issue with the axiomatic model is that it is not optimised for trace search but
for model checking. One can use the program for enumerating traces, then filter those
that are consistent with the model like Alglave, Maranget, and Tautschnig [3] do or
like described in section 3.6. An operational model describes its subject as a transition
system, consisting of a class of configurations together with a transition relation over
them. Consistent executions correspond to the paths through the system.

Alglave, Maranget, and Tautschnig [3] defines an intermediate machine and compare
it to a previously proposed PLDI machine from Sarkar et al. [32]. The intermediate
machine is based on an axiomatic memory model with memory order, preserved program
order, propagation order and happens-before relation and differentiates when a store is
committed (becomes perceivable by some other thread) and when it reaches ‘coherence
point’ (all threads agree on its position in the memory order), as well as when a read is
satisfied (determined from which write it reads) and when it is committed (the thread
inserts the value into its register state). Its configurations consist of a map from a finite
set of memory events to their location in 𝐷, a memory order over a subset of writes and
a map from the subset of satisfied reads to their write. Transitions either commit a new
write, insert a committed write into the memory order, satisfy a new read with some
committed write or commit a satisfied read.

Combining such a transition system with that of a program appears to be manageable.
Although satisfying its requirements based on an arbitrary axiomatic model is a non-
trivial task and remains yet to be automatised, it may provide useful heuristics for the
case that the input model has a fitting form.

2.3. Reordering
Alglave, Maranget, and Tautschnig [3] use the term reordering. It basically refers to the
program order which is served as a linearisation of instructions given by the program, as
explained in section 1.1. Instructions are fed to a processing unit in program order, but
their events do not have to follow it when committed or becoming visible to other threads.
The axiomatic model allows expressing weaker forms for those situations. Kusano and
Wang [18] distinguish four general cases:

In a read-read-reordering some thread issues two loads, but the latter returns earlier
and was able to read from a store that was not yet visible at the time the first read
accessed the memory.

26

read-write-reordering describes a situation where a thread issues a load and a store in
that order, but the store operation becomes a visible side effect (to at least some other
thread) before the load operation is resolved. This enables other threads to read from
the store operation and afterwards store some value which is read from the earlier load
operation.

When a write-read-reordering happens, some thread issues a write 𝑤 and then a read
𝑟, but 𝑟 returns before 𝑤 becomes visible to other threads. This is common for TSO.

Finally, write-write-reordering concerns pairs of write operations of the same thread
that are committed to the shared memory in the opposite order.

Reorderings have no direct correspondence with the axiomatic model, but some models
are designed to describe a preserved program order [3], explicitly enumerating the pairs
of program-ordered events that can never be reordered, may it be grounded on types or
because of a barrier in-between.

Local consistency (definition 19) can be alternatively described as the requirement
that reorderings of events on the same address do not happen.

2.4. Out of Thin Air
The term ‘Out of Thin Air’ refers to a special scenario where some thread reads a value
from a write, whose value depends on the read. Since it is practically impossible to know
a value before it is computed, all models should prohibit it. However, the axiomatic
model described in this chapter does allow this until explicitly constrained.

It is a common understanding that committing a memory event is only possible as
soon as its address value is completely computed. The same usually holds for the values
being written, as architectures hardly support reserving cells for future values. In an
architecture like this, a processing unit would promise to other threads to have written a
certain value, allowing them to continue as if that value has indeed been written, while
itself waiting for some of them to provide the resources to compute it.

Example 10.

R0 ∶ ld 𝑟 ← 𝑥 R1 ∶ ld 𝑟 ← 𝑦
W0 ∶ st 𝑟 → 𝑦 W1 ∶ st 𝑟 → 𝑥

This simple program consists of two threads, sharing memory at two addresses 𝑥 and 𝑦.
Each store is data-dependent on the previous load. Without explicitly forbidding behavior
like this, the following execution is consistent under Local Consistency.

data
rfe

data
rfe

R0

W1

R1

W0

2.4. Out of Thin Air 27

Forbidding out-of-thin-air values takes the form of an acyclicity constraint that in-
cludes at least rf, addr and data.

hb ∶=(hb ; hb) ∪ rf ∪ addr ∪ data
∅ =hb ∩ id

Considering control dependency: Events are usually not committed until the pro-
cessing unit has secured a path that dictates their eventual issue. This means that all
read events that contribute to the condition should have happened before any event in
the branch becomes a visible side effect. When Dartagnan processes computations of
a program under a memory model, the presence of any event in the trace (its satisfied
execution variable), including its participation in relations of the memory model, implies
its inclusion in a consistent control path (its satisfied control flow variable), and therefore
mutually excludes any event in alternative paths.

The ARM and Power [1] architectures impose a kind of weakness in their memory
model as they implement an anticipating approach (see section 1.4.1). Instructions in
a branch may be issued before their path is secured. Store instructions with evaluated
address and value may alter the cache, as long as no synchronisation is performed before
the path is decided. This allows rolling back, should the path finally be discarded.
Loads can also communicate with the cache. Their result can be stored in an unused
register and finalised as soon as their path is secured. However, as the branch condition
awaits synchronisation with the shared memory, it may turn out more up-to-date than
its dependents. In summary, write events must still await their control dependencies
in a global happens-before relation, but read events may happen before their control
dependencies.

Example 11 (MP+sync+ctrl).

𝑎∶ st 1 → 𝑥 𝑐∶ ld 𝑟 ← 𝑦
𝑏∶ st 1 → 𝑦 (sync) 𝑑 ∶ if 𝑟 = 1 ld 𝑠 ← 𝑥

In this program with a situation described above, the following trace has been observed
on a Power processor [32].

sync
rfe

ctrl
fre

a

b

c

d

3. Verification
This chapter refers to the bounded verifier Dartagnan [25, 27]. It aims to decide

bounded reachability in-so-far that in its default behavior it tries to find executions of
the input program that somehow reach a call passing 0 to assert(int), like when an
assertion placed by the programmer fails.

The tool specialises in concurrent programs and it is aware of memory models in-so-
far as it accepts an axiomatic model in the cat file format [2]. It participates in the
SVCOMP competition for software verification [8] as a verifier.

Dat3M was designed to analyse compiled machine code, preferably grounded on a
platform-independent instruction set, but accepts it in a disassembled format, the verifier-
oriented Boogie programming language [21]. This means that the input may have already
undergone various forms of optimisation.

The program is unrolled a specified number of times so that it no longer exhibits
unbounded executions. Each backward jump results in a copy of the program fragment
beginning at the destination and ending at the jump itself, which is then being unrolled
with a decreased bound. Therefore, the bound effectively describes a maximal recursion
depth, or a maximal total number of duplicate instructions in an execution. This process
happens explicitly, resulting in a data structure that is linear in the size of the program,
but exponential in the size of the bound appended to the input.

As expected from the premise of boundedness, dynamic linking is not supported, as
is an arbitrarily-sized initial state for the input program. Therefore, the to-be-analysed
program code has to be completely present.

3.1. Satisfiablility
Instances of the problem tend to be expressible in a way that is intuitive for most
people. SAT instances are simple as they consist only of variables and junctors. Using
the conjunctive normal form, an SAT instance can be implemented by a finite set of
clauses, each clause being a finite set of literals, and each literal being either a variable
or its negation.

There are two major goals: Searching some model for the instance, thus proving
that the instance is satisfiable, or otherwise returning a formal proof that there is no
instance, meaning a finite sequence of lemmas where each lemma directly derives from
the instance and previous lemmas. The Davis-Putnam-Logemann-Loveland algorithm
(DPLL) is a sound and complete backtracking-based algorithm originally tailored for
instances in conjunctive normal form, It is the most popular algorithm used today due
to two properties: it supports the construction of both goals and it is extensible for

30

SMT.
DPLL accepts quantifier-free formulas in conjunctive normal form, and builds on par-

tial maps from variables to a truth value. In each iteration of the splitting rule, the
algorithm guesses a value for some variable. When an unsatisfied clause raises a conflict,
the most recently guessed variable is backtracked and reassigned. To avoid this costly
rule, clauses with only one literal trigger the unit propagation rule, specifying a value
for the associated variable. Variables that appear only in positive or only in negative
literals are pure literals and do not have to be guessed, as well.

Satisfiability Modulo Theories (SMT), according to Barrett and Tinelli [6], means the
satisfiability problem extended to formulas of at least first-order logic with fixed interpre-
tation of predicates. The term hints that theories can be loaded into a general-purpose
solver like a module. De Moura and Bjørner [10] present Z3 as such an implementation
of a theory-modular DPLL, treating predicates as variables. Theory modules accept a
conjunction of literals and try to detect theory-specific inconsistencies, raising a conflict
for the current iteration if that is the case. The SMT-Lib project collects numerous
defined theories [33].

Example 12. Integer difference logic, as suggested by Gebser, Janhunen, and Rintanen
[14], has order 1, no functions, but additional binary predicates 𝑘 ≤ 𝑥 − 𝑦 for 𝑘 ∈ Z.
Specialisations IDL(𝐾) exist that allow just 𝑘 ∈ 𝐾 ⊆ Z, including negation. For
instance, IDL({1}) adds just the predicate 𝑥 < 𝑦.

3.2. Encoding
In this section, we present a naïve encoding of a bounded program 𝒫 with event set ℰ
under a memory model ℳ with relations ℛ, term map def and constraint set 𝒞 ⊆ ℛ.

Each model of the formula shall correspond to a trace 𝜏, together with a computation
testifying that 𝜏 witnesses 𝒫 and a binding testifying that 𝜏 is consistent with ℳ.

The encoding will make use of the extended event set ℰ′, as well as an extended relation
set:

ℛ′ ∶= ℛ + {deprequire, depguard, depaddress, depvalue}

The additional relation symbols are associated with 𝛿require, 𝛿guard, 𝛿address and 𝛿value from
section 1.4. It should be sufficient to mention that the three dependency relations are
factorised into dep+

require ; dep𝑥. Note that besides this extended set of relations ℛ′, there
is also the extended set of events ℰ′.

It uses boolean variables 𝑥 𝑅 𝑦 for all visible events 𝑥, 𝑦 ∈ ℰ and 𝑅 ∈ ℛ, symbolising
the binding 𝛽 from definition 17. The additional relations 𝑅 ∈ 𝑅′ \ 𝑅 also yield boolean
variables 𝑥 𝑅 𝑦 for all events 𝑥, 𝑦 ∈ ℰ′. The transitivity of the dependency chain is
expressed with variables 𝑥 dep+

require 𝑦 for 𝑥, 𝑦 ∈ ℰ′.

3.3. Data Flow 31

⋀
𝑥,𝑧∈ℰ′

𝑥 dep+
require 𝑧 ⇔ 𝑥 deprequire 𝑧 ∨ ⋁

𝑦∈ℰ′

(𝑥 dep+
require 𝑦 ∧ 𝑦 dep+

require 𝑧) (3.1)

⋀
def(𝑅)=addr

𝑥,𝑧∈ℰ

𝑥 𝑅 𝑧 ⇔ 𝑥 depaddress 𝑧 ∨ ⋁
𝑦∈ℰ′

(𝑥 dep+
require 𝑦 ∧ 𝑦 depaddress 𝑧) (3.2)

⋀
def(𝑅)=ctrl

𝑥,𝑧∈ℰ′

𝑥 𝑅 𝑧 ⇔ 𝑥 depguard 𝑧 ∨ ⋁
𝑦∈ℰ′

(𝑥 dep+
require 𝑦 ∧ 𝑦 depguard 𝑧) (3.3)

⋀
def(𝑅)=data

𝑥,𝑧∈ℰ′

𝑥 𝑅 𝑧 ⇔ 𝑥 depvalue 𝑧 ∨ ⋁
𝑦∈ℰ′

(𝑥 dep+
require 𝑦 ∧ 𝑦 depvalue 𝑧) (3.4)

3.3. Data Flow
Starting with the encoding of the memory, since 𝐿 ⊆ 𝑅 for all thread's register sets,
let us assume that pairs of threads only share registers in 𝐿, while other registers are
well-distinguishable, and create 𝜆𝑟 for all registers to represent their initial value. Let
|𝑙| denote the size of the location 𝑙 ∈ 𝐿.

⋀
𝑎,𝑏∈𝐿
𝑎≠𝑏

𝜆𝑎 + |𝑎| ≤ 𝜆𝑏 ∨ 𝜆𝑏 + |𝑏| ≤ 𝜆𝑎 (3.5)

Being sensitive to the control flow (section 1.3) requires that events issued by a thread
are optional. For each event 𝑥 ∈ ℰ′, the variable 𝜒𝑥 shall symbolise that the modelled
trace contains 𝑥 ∈ E. To simplify the rules of execution, boolean variables of the form
𝛾𝑥 shall denote that control flow passes through the instruction of 𝑥.

⋀
𝑥∈ℰ′

𝛾𝑥 ⇔
⎧{
⎨{⎩

⊤ if 𝑥 ∈ ℰ𝐼

⋁
𝑦→𝑡𝑥

𝜒𝑦 ∨ ⋁
𝑦→𝑓𝑥

(𝛾𝑦 ∧ ¬𝜒𝑦) otherwise
(3.6)

The program order relation is predetermined by the control graph. As mentioned in
section 1.5, we lift the defined relations over instructions of a common thread, especially
the control graph and the dependency relations, into the domain of events. For example,
an event 𝑥 ∈ ℰ′ reaches another event 𝑦 ∈ ℰ′, if and only if 𝑥 = ⟨𝑡, 𝑖⟩ and 𝑦 = ⟨𝑡, 𝑗⟩ for
a common thread 𝑡 and 𝑗 is reachable from 𝑖 in the associated control graph.

⋀
def(𝑅)=po

𝑥 𝑅 𝑦 ⇔
⎧{
⎨{⎩

𝜒𝑥 ∧ 𝜒𝑦 if 𝑥 reaches 𝑦
⊥ otherwise

(3.7)

Concerning the data flow, we utilise the lifted dependency analysis of section 1.4.
Register states are expressed by integer variables 𝑟𝑥 for an event 𝑥 and a register 𝑟 of

32

the associated thread 𝑡 and shall be bound to 𝑝𝑡(𝑥)(𝑟) for the modelled computation 𝑝.
The result value of a provider 𝑥 ∈ ℰ𝐿 + ℰ𝑅 is symbolised by an integer variable 𝜐𝑥.

⋀
𝑥∈ℰ𝐿 evaluates 𝑓(𝑦,𝑧)

𝜐𝑥 = 𝑓(𝑦𝑥, 𝑧𝑥) (3.8)

⋀
𝑥 provides 𝑟

𝑧𝛿𝑑𝑟

𝑥 dep𝑑 𝑧 ⇒ 𝜐𝑥 = 𝑟𝑧 (3.9)

Conforming to definition 14, the most recent executed provider of a required register
determines the respective state. If there is no such, the initial value is fetched instead.

⋀
𝑥,𝑧∈ℰ′

𝑥 dep𝑑 𝑧 ⇔
⎧{
⎨{⎩

𝜒𝑥 ∧ 𝜒𝑦 ∧ ¬ ⋁ 𝑥 reaches 𝑦
𝑦 provides 𝑟

𝜒𝑦 if 𝑥 provides 𝑟 ∧ 𝑧 𝛿𝑑 𝑟

⊥ otherwise
(3.10)

⋀
𝑧𝛿𝑑𝑟

𝑟𝑧 = 𝜆𝑟 ∨ ⋁
𝑦 provides 𝑟

𝜒𝑦 (3.11)

We already mentioned that there is a difference between an instruction 𝑥 ∈ ℰ′ passed
through by the control path (𝛾𝑥) and that instruction being executed (𝜒𝑥), if it is
equipped with a condition. Now that we have defined the register state, we can complete
the specification for event execution.

⋀
𝑥∈ℰ′

𝜒𝑥 ⇔ 𝛾𝑥 ∧
⎧{
⎨{⎩

𝜑𝑥 ∈ true if 𝑥 𝛿guard 𝜑
⊤ otherwise

(3.12)

3.4. Communication
Let us add another set of variables 𝑥 rf 𝑦 for 𝑥, 𝑦 ∈ ℰ, describing the read-from mapping
of the modelled trace.

⋀
def(𝑅)=rf

𝑥,𝑦∈𝐸

𝑥 𝑅 𝑦 ⇔ 𝑥 rf 𝑦 (3.13)

We demand totality and determinism of the modelled read-from map.

⋀
𝑦∈ℰ𝑅

𝜒𝑦 ⇒ ⋁
𝑥∈ℰ𝑊

𝑥 rf 𝑦 (3.14)

⋀
𝑥,𝑦,𝑧∈ℰ

¬ (𝑦 rf 𝑥 ∧ 𝑧 rf 𝑥) (3.15)

3.5. Consistency 33

We alias the address expression 𝛼𝑥 of each memory event 𝑥 ∈ ℰ to either 𝛼𝑥 ∶= 𝜆𝑙 + 𝑖,
if 𝑥 = ⟨𝑙, 𝑖⟩ ∈ ℰ𝐼 is an initialisation, or 𝛼𝑥 ∶= 𝑟𝑥, if 𝑥 = ⟨𝑡, 𝑖⟩ is a load or store and
𝑖 𝛿address 𝑟.

⋀
def(𝑅)=loc

𝑥,𝑦∈ℰ

𝑥 𝑅 𝑦 ⇔
⎧{
⎨{⎩

𝜒𝑥 ∧ 𝜒𝑦 ∧ 𝛼𝑥 = 𝛼𝑦 if 𝑥 ∈ ℰ ∧ 𝑦 ∈ ℰ
⊥ otherwise

(3.16)

⋀
𝑥,𝑦∈ℰ

𝑥 rf 𝑦 ⇒
⎧{
⎨{⎩

𝜒𝑥 ∧ 𝜒𝑦 ∧ 𝛼𝑥 = 𝛼𝑦 ∧ 𝑟𝑥 = 𝜐𝑦 if 𝑥 𝛿value 𝑟 ∧ 𝑦 ∈ ℰ𝑅

⊥ otherwise
(3.17)

Up to this point, we have effectively transferred definitions 13 and 14 into a proposition.
Each trace 𝜏 originating from 𝒫 corresponds to a model of the formula and vice-versa.
To express our intention to test reachability of some error state, we simply propose that
the models shall correspond with witnesses:

⋁
𝑥∈ℰ𝐹

𝜒𝑥 (3.18)

3.5. Consistency
Compound relations follow simple rules that can easily be encoded.

⋀
def(𝑅)=𝐷

𝑥,𝑦∈ℰ

𝑥 𝑅 𝑦 ⇔ ⟦𝐷⟧(𝑥, 𝑦) (3.19)

⟦__⟧(𝑥, 𝑦) = 𝜒𝑥 ∧ 𝜒𝑦

⟦id⟧(𝑥, 𝑦) =
⎧{
⎨{⎩

𝜒𝑥 if 𝑥 = 𝑦
⊥ otherwise

⟦𝑡_⟧(𝑥, 𝑦) =
⎧{
⎨{⎩

𝜒𝑥 ∧ 𝜒𝑦 if 𝑥 ∈ ℰ𝑡

⊥ otherwise

⟦_𝑡⟧(𝑥, 𝑦) =
⎧{
⎨{⎩

𝜒𝑥 ∧ 𝜒𝑦 if 𝑦 ∈ ℰ𝑡

⊥ otherwise

⟦𝑆−1⟧(𝑥, 𝑦) = 𝑦 𝑆 𝑥
⟦𝑆 ∪ 𝑇⟧(𝑥, 𝑦) = 𝑥 𝑆 𝑦 ∨ 𝑥 𝑇 𝑦
⟦𝑆 ∩ 𝑇⟧(𝑥, 𝑦) = 𝑥 𝑆 𝑦 ∧ 𝑥 𝑇 𝑦
⟦𝑆 \ 𝑇⟧(𝑥, 𝑦) = 𝑥 𝑆 𝑦 ∧ ¬ (𝑥 𝑇 𝑦)
⟦𝑆 ; 𝑇⟧(𝑥, 𝑧) = ⋁

𝑦∈ℰ
(𝑥 𝑆 𝑦 ∧ 𝑦 𝑇 𝑧)

34

Finally, the constrained relations are assumed to be empty:

⋀
𝑅∈𝒞

𝑥,𝑦∈ℰ

¬ (𝑥 𝑅 𝑦) (3.20)

3.6. Refinement
Beside a full reduction to SMT, where a verification instance is transformed to one
formula, the verifier may divide its task into several components. For instance, one may
extract the memory-aware part from section 3.5, thus keeping the dataflow-oriented
formula 𝜑𝒫 from sections 3.3 and 3.4. The models of the remaining proposition will be
executions of 𝒫 that witness 𝒮, but are not bound to be consistent to ℳ.

Once the SMT-solver finds such an execution, the memory model has to be consulted.
This is an instance of memory model checking as described in definition 17 and exactly the
kind of task that Alglave, Cousot, and Maranget [2] described in their cat specification.

Figure 3.1.: refinement algorithm
1: Let 𝑅 = ∅
2: loop
3: Guess a trace 𝜏 of 𝜑𝒫 ∧ ⋀ 𝑅.
4: if unsatisfiable then
5: 𝒫 is 𝒮-safe under ℳ. return
6: else
7: Model check 𝜏 under ℳ.
8: if consistent then
9: 𝜏 witnesses that 𝒫 is not 𝒮-safe under ℳ. return

10: else
11: Let 𝑇 be an unsatisfiable core of 𝜏.
12: 𝑅 ← 𝑅 ∪ (¬𝑇)
13: end if
14: end if
15: end loop

4. Analysis
With a working basis for an encoding of the verification problem into SMT in mind,

this chapter identifies some useful properties of a concurrent program that may aid the
reasoning process. As we have done in sections 1.3 and 1.4, one may attempt to approx-
imate the desired property based on a more feasible decision procedure. Note how our
shallow knowledge on the control flow lets us over-approximate the set of possible paths,
as conditions may be non-trivially unsatisfiable or unfalsifiable. As a consequence, some
dependencies may unnoticably exclude related dependents or be always overwritten, in
retrospective resulting in encoded relationships that do not contribute to the solving
process.

In the context of bounded verification, it seems natural to over-approximate the set
of possible and relevant relationships that may appear in a fixed point of the memory
model checking problem, as so many variables of the encoding presented in section
3.2 can be immediately falsified. Gavrilenko et al. [13] describes how the fixed point
problem can be lifted from traces to programs, effectively yielding a family of ‘maximal’
relations, consisting of possible relationships. More precision can be achieved by filtering
the relevant relationships, ignoring those that cannot contribute to a violation of any
constraint.

On the other hand, we expect some collection of trivially-satisfied relationships, allow-
ing us to further truncating the set of variables in the encoding. Since we have to treat
events as optional, a more generalised definition of static relationships will be necessary.
This will be discussed in section 4.3.

However, memory instructions may compute their target addresses at runtime, and
sometimes with more complex expressions. In order to confine the set of variable loc
pairs in more complex programs, and ideally populate its static set, some preemptive
analysis is necessary.

The pointer analysis requires knowledge about the control flow (chapter 1.3) and
especially the dependency relationships (section 1.4).

Introduced by Kam and Ullman [16] as an approach for data flow analysis, monotone
frameworks describe properties of a program with fixed point solutions. The control flow
graph ⟨𝑄, →⟩ of the to-be-analysed thread is considered, where it is possible to invert
the direction in order to analyse backwards, if required. Let ⟨𝐼, ⊑⟩ be a complete lattice.
Each block or instruction 𝑞 ∈ 𝑄 is assigned a homomorphism ℎ𝑞 ∶ 𝐼 → 𝐼 describing the
propagation of information. A family of variables (𝑋𝑞)𝑞∈𝑄 has then to be assigned values
of 𝐼 such that the following equation holds:

𝑋𝑞 = ⨆
𝑝→𝑞

ℎ𝑝(𝑋𝑝)

36 4. Analysis

If all transfer functions ℎ𝑞 are monotone, a least fixed point exists. Its computability
requires that all transfer functions are computable and that the encountered monotone
chains in the lattice must stabilize.

Definition 21. A dataflow system ⟨𝑄, →, 𝐼, ⊑, 𝑖, 𝑓⟩ consists of

A control graph ⟨𝑄, →⟩

A complete lattice ⟨𝐼, ⊑⟩ where all monotone chains (𝑑𝑖)𝑖∈N with ∀𝑖 ∈ N. 𝑑𝑖 ⊑ 𝑑𝑖+1
satisfy ∃𝑛 ∈ N. ∀𝑖 ∈ N. 𝑑𝑛 = 𝑑𝑛+𝑖

Transfer functions ℎ𝑞 ∶ 𝐼 → 𝐼 for each block 𝑞 ∈ 𝑄

The system induces a fixed point problem over 𝑋 ∈ 𝐼𝑄:

𝑋 = 𝑞 ↦ ⨆
𝑝→𝑞

ℎ𝑝(𝑋(𝑝))

Example 13. With control graphs of chapter 1 in mind, consider the complete lattice
⟨𝑅 × 𝑄, ⊆⟩ where 𝑅 is the set of all registers of the thread. Transfer functions ℎ𝑞 are
specified below and the union of all joining states is considered.

ℎ(𝑞) = 𝑋 ↦ 𝑋 ∪ {⟨𝑟, 𝑞⟩} if 𝑞 𝛿provide 𝑟 ∧ 𝑞 𝛿guard 𝜑
ℎ(𝑞) = 𝑋 ↦ (𝑋 \ ({𝑟} × 𝑄)) ∪ {⟨𝑟, 𝑞⟩} otherwise, if 𝑞 𝛿provide 𝑟
ℎ(𝑞) = id otherwise

The least fixed point maps each register for each instruction to a set of providers for that
register. It corresponds to direct 𝛿-dependencies in definition 6.

For acyclic control graphs, the least fixed point would be easy to determine, as no
recursion takes place. As soon as we take the shared memory into account, together
with multiple threads, recursion reappears. We have to define behavior of load and
store instructions, which communicate outside the control flow. Note that although
architectures may reorder thread-local events at runtime (see section 2.3), we assume
that this has no influence on the active register state.

We get a multi-threaded framework by adding a special block 𝑀 for the memory,
add 𝑥 → 𝑀 for all stores 𝑥 and 𝑀 → 𝑥 for all loads 𝑥, effectively connecting the
formerly-isolated thread graphs. In the worst case we cannot know anything about the
address being accessed, and over-approximate the analysed behavior. 𝑓𝑀 should project
memory-specific information when propagated from stores to loads (or vice versa during
backwards analyses). The fixed-point variable 𝑋𝑀 shall serve as a pool for inter-thread
communicated information.

Example 14. Consider the lattice ⟨(𝑅 + 𝐷) × 𝐷, ⊆⟩ with register set 𝑅 and transition
functions as follows:

4.1. Alias Analysis 37

𝑋 ↦ 𝑋 \ ({𝑣} × 𝐷) ∪ {⟨𝑣, 𝑓(𝑎, 𝑏)⟩ ∣ ⟨𝑥, 𝑎⟩, ⟨𝑦, 𝑏⟩ ∈ 𝑋} for evaluations 𝑣 ← 𝑓(𝑥, 𝑦)
𝑋 ↦ 𝑋 \ ({𝑣} × 𝐷) ∪ {⟨𝑣, 𝑥⟩ ∣ ⟨𝑎, 𝑥⟩, ⟨𝑘, 𝑎⟩ ∈ 𝑋} for loads ld 𝑣 ← 𝑘
𝑋 ↦ 𝑋 ∪ {⟨𝑟, 𝑎⟩ ∣ ⟨𝑣, 𝑟⟩, ⟨𝑘, 𝑎⟩ ∈ 𝑋} for stores st 𝑣 → 𝑘
𝑋 ↦ 𝑋 ∩ (𝐷 × 𝐷) for block 𝑀
id for all others

The analysis over-approximates the dataflow independently of the memory model. The
memory block collects an address-value relation, while loads fetch the relevant portion of
it and stores insert new relationships into it. Also, the scopes of register states are taken
into account. The least fixed point, if computable, relates each memory location and each
register in the local register state to values it could take in some computation. However,
for instance with 𝐷 = N, the lattice does not satisfy the chaining condition.

4.1. Alias Analysis
Pointer analyses relate memory events of the program to the addresses they may access.
They are useful to find accesses to uninitialised memory like null pointer dereferences,
and dangling pointers.

A relevant subclass of pointer analyses is the class of alias analyses, relating memory
events which can refer to the same memory location. Results are useful not only to other
analyses like Available Expressions, which is primarily used for optimisation, but also for
the memory-model-aware verification. Additionally, it turns out to be implementable in
a memory-model-aware manner itself (see section 4.1.4).

st 𝑎 → 𝑏
ld 𝑎 ← 𝑐

With an alias analysis determining 𝑏 = 𝑐 for the above program fragment, an optimizer
will be able to eliminate both events (see section 4.2), i.e. in C, as long as none of them
is explicitly tagged as sensible to side effects. In the applications relevant to this thesis,
all memory event are implicitly marked as sensitive and require to be proven insensitive.

Dartagnan makes use of an abstraction layer of the program, the dynamic allocation
with the heap storage. The analysis may take into account that (valid) addresses do
not have to be statically predefined by the program, like by elements placed into a
program’s data segment, but may also be allocated by a single thread using malloc
or similar factories and may itself be communicated to other threads via the shared
memory. As long as addresses are used in a well-defined manner, no thread will be able
to access a location that some other thread has allocated dynamically without having it
been communicated directly or indirectly by that thread.

38

Sound and complete alias analysis turns out to be undecidable, as shown by Reps [30].
Therefore, one aims for performant approximations. The most common approach would
be the pointer analysis by Andersen [5], a fixed point problem over the expression may
point to address relation.

4.1.1. Context-Insensitivity

Pointer analysis quickly reaches its capacity for reasoning when faced with procedures
of a larger program. Since any call to a procedure may introduce new variables to
the analysis, the associated fixed-point problem would have to be adapted to a infinite
domain or would no longer be monotonic, such that the problem’s decidability becomes
questionable. However, we focus on bounded programs in an assembly-like language,
whose call structure is eliminated via inlining, if there was any to begin with.

The original program may have exhibited a call stack, usually implemented by a
growing array in memory and dedicated stack pointer registers for management. This
structure will have been decompiled for the verification task [29]. Note that since the
program is bounded, it will never be able to make use of a growing stack structure.
This means that the feature of context-sensitivity is not applicable in the context of this
thesis.

4.1.2. Flow-Insensitivity

Dependency analysis was able to determine the thread-local communication via of reg-
isters (section 1.4). But it is the shared memory that introduces the lion's share of
data flow. Threads will exchange addresses of dynamically allocated arrays in order to
increase the bandwidth in which messages can be passed. The pointer analysis has to
take this into account.

When considering weak memory models, possibilities of perceiving out-of-thin-air val-
ues and inter-branch communication become unwanted side effects that have to be tol-
erated in favor of performance. The result is an over-approximation that is insensitive
to memory states.

Example 15.

𝑙0 ∶st 𝑥 → 𝑦
𝑙1 ∶ld 𝑟 ← 𝑦
𝑙2 ∶st 𝑦 → 𝑦

Although any such execution would not be locally-consistent, the flow-insensitive anal-
ysis deduces that 𝑟 may receive the address 𝑦, by reading from 𝑙2.

4.1. Alias Analysis 39

Example 16.

𝑙0 ∶if 𝜑 goto 𝑙3
𝑙1 ∶st 𝑦 → 𝑥
𝑙2 ∶goto 𝑙4
𝑙3 ∶ld 𝑟 ← 𝑥

This simple program lets a guard condition 𝜑 decide either to write to a location 𝑥
or to read from it. Control flow analysis has determined that executions through 𝑙1 and
executions through 𝑙3 are mutually exclusive. But since 𝑙1 is no dead code, its effects on
the memory are considered, relating location 𝑥 to the value 𝑦. Now in the next iteration,
we would conclude that 𝑙3 can read 𝑦.

𝑙0 ∶if 𝜑 goto 𝑙3
𝑙1 ∶𝑠 ← 𝑦
𝑙2 ∶goto 𝑙4
𝑙3 ∶𝑟 ← 𝑠

Note that control flow analysis has managed to fix equivalent behavior when accessing
registers. In this variant, the dependency list of 𝑙3 does not include 𝑙1, hence from this
program fragment alone, there is no reason for 𝑟 to be able to contain 𝑦.

4.1.3. Field-Sensitivity
Given an arithmetics on 𝐷 with at least (+) ∈ 𝐷𝐷×𝐷, the analysis should take into
account that memory is allocated in blocks of consecutive addresses, sometimes by arrays,
primarily by data structures. Oftentimes the addresses of memory events take the form
𝑟 + 𝑘 for a variable 𝑟 ∈ 𝑅 ∪ 𝐷 and a constant offset 𝑘 ∈ Z. It will be desirable for the
alias analysis to take into account that adjacent fields or members of a structure will
receive different values and communicate different addresses.

As already stated in definition 11, bounded programs possess a finite set of valid
addresses. Some of them will originate from static storage, and directly accessed by
multiple threads from the beginning. Others were compiled from dynamic allocations
performed by a thread and are to be revealed to others via inter-thread communication.

Example 17.

𝑙0 ∶st 1 → 𝑥 𝑙3 ∶ld 𝑟0 ← 𝑥
𝑙1 ∶𝑥1 ← 𝑥 + 1 𝑙4 ∶𝑥1 ← 𝑥 + 1
𝑙2 ∶st 2 → 𝑥1 𝑙5 ∶ld 𝑟1 ← 𝑥1

40

Consider this message-passing program under the premise that 𝑥 points to some static
array of size at least 2 and is known to both threads. This means that the address
constants 𝑥 + 0 and 𝑥 + 1 are valid addresses. Alias analysis determines already during
its preprocessing that 𝑙0 must access the same location as 𝑙3, since both always access the
location of 𝑥 and only that. Both evaluations now conform to the offset pattern and each
yields the address constant 𝑥 + 1. The may-result sets of both operations are equal.

During the first iteration, 𝑙2 and 𝑙5 both receive the computed address of the respective
may-result set. At this point we have derived that those two may access the same location.
Since the first iteration already reaches a fixed point, we not only conclude that 𝑙2 and
𝑙5 must access the same location, but also that ⟨𝑙0, 𝑙2⟩, ⟨𝑙0, 𝑙4⟩, ⟨𝑙2, 𝑙3⟩ and ⟨𝑙3, 𝑙5⟩ must
not. On one hand we have increased the static set of loc, on the other hand its maximal
set was reduced. In this particular example, both sets even turn out identical, leaving no
space for non-determinism in this relation.

Example 18.

𝑙0 ∶st 𝑥 → 𝑥
𝑙1 ∶ld 𝑟 ← 𝑥 𝑙4 ∶ld 𝑟 ← 𝑦 𝑙7 ∶ld 𝑟 ← 𝑧
𝑙2 ∶𝑟 ← 𝑟 + 1 𝑙5 ∶𝑟 ← 𝑟 + 1 𝑙8 ∶𝑟 ← 𝑟 + 1
𝑙3 ∶st 𝑟 → 𝑦 𝑙6 ∶st 𝑟 → 𝑧 𝑙9 ∶st 𝑟 → 𝑥

The above program lets the flow-insensitive analysis deduce 𝑙1 to read 𝑥 + 3𝑘 from 𝑥.
In order to keep computability along with field-sensitivity, the address space has to be
bounded again.

Introducing address validity: With each location carrying a size property, valid ad-
dresses can be decomposed into a base address and an offset. An address 𝑙 + 𝑖 associated
with the location 𝑙 and with offset 𝑖 ∈ 𝐷 added to some integral constant 𝑘 ∈ 𝐷 yields
another address, that is also associated with 𝑙 and holds offset 𝑖 + 𝑘. Beyond addition,
the operations under which address validity is closed reaches its limits at more com-
plex operations like multiplication and bitwise manipulation. We abstract all invalid
addresses into a single value 𝜔, leading to a still-finite domain of abstract addresses.

Definition 22 (Valid address). Let 𝒫 be a bounded 𝐷𝒯-program with finite set of
locations 𝐿 and sizes |𝑙| ∈ 𝐷 for 𝑙 ∈ 𝐿. The set of valid address constants is defined as
follows.

𝐴 ∶= {𝑙 + 𝑖 ∣ 𝑙 ∈ 𝐿 ∧ 𝑖 ∈ 𝐷 ∧ 0 ≤ 𝑖 < |𝑙|}

Let 𝜔 be some distinguishable object that is no address. 𝐴𝜔 = 𝐴 + {𝜔} denotes the
abstracted address domain.

All operators 𝑓 ∈ 𝐷𝐷×𝐷 are mapped to 𝑓𝜔 ∈ 𝐴𝜔
𝐴𝜔×𝐴𝜔 , such that arithmetics based on

4.1. Alias Analysis 41

addition is defined as a family of endomorphisms 𝑘+ for 𝑘 ∈ 𝐷:

𝑘+∶ 𝐴 + {𝜔} → 𝐴 + {𝜔}
𝑘 + (𝜔) = 𝜔

𝑘 + (𝑙 + 𝑖) =
⎧{
⎨{⎩

𝑙 + (𝑖 + 𝑘) if 0 ≤ 𝑖 + 𝑘 < |𝑙|
𝜔 otherwise

Problems may arise for more complex address transformations. Take for example hash
tables that use addresses as the identity of stored objects. In this case, usually a location
is combined with an unpredictable offset. If the verifier is not able to deduce that the
result is an appropriately-bounded offset, it has to fall back to 𝜔.

Dartagnan would benefit from avoiding this fallback scenario, that some memory
event's address expression was too complicated to statically compute. Once this happens
anywhere in the program, the common behavior of all events that may access a given
address has to be generalised.

Overall Algorithm We utilise the results of the dependency analysis from chapter 1.3,
previously performed on 𝒫.

The initial register state of location 𝑙 ∈ 𝐿 can initially be 𝑙. Any other register state
initially cannot be any address. Each memory event initially cannot access any address.
Each memory address initially cannot contain any address.

For each write event st 𝑣 → 𝑘, if 𝑘 can be some address 𝑎, the location at 𝑎 can contain
any address that 𝑣 can be.

For each read event ld 𝑣 ← 𝑘, if 𝑘 can be some address 𝑎, 𝑣 can be any address that
the location at 𝑎 can contain.

For each evaluation 𝑟 ← 𝑥 + 𝑦, if 𝑥 can be some address 𝑎, and 𝑦 is either a constant
𝑛 or a register that can be some constant 𝑛, then 𝑟 can be 𝑎 + 𝑛. Otherwise, if the
evaluation is too complicated, 𝑟 can be any address.

Definition 23 (Pointer analysis). The pointer analysis of a bounded program 𝒫 is a
fixed point problem with variables for 2𝐴𝜔 . Each memory event 𝑒 ∈ ℰ𝑀 has an address
variable 𝐴𝑒. Each write event 𝑒 ∈ ℰ𝑊 has a value variable 𝑊𝑒. Each register provider
𝑒 ∈ ℰ𝑅 + ℰ𝐿 has a result variable 𝑅𝑒.

To treat initial values as providers, abstract locations 𝑙 ∈ 𝐿 + {𝜔} provide a constant
𝑅𝑙 ∶= {𝑙}. Let 𝛿𝑒 denote all direct 𝛿-dependencies of 𝑒 ∈ ℰ and in case that the initial
value of the associated register 𝑟 is readable by 𝑒, let 𝛿𝑒 additionally contain the initial
address, which is either 𝑟 ∈ 𝐿, or otherwise 𝜔 if 𝑟 ∉ 𝐿.

𝐴𝑒 = ⋃{𝑅𝑑 ∣ 𝑑 ∈ 𝛿𝑒
address}

𝑊𝑒 = ⋃{𝑅𝑑 ∣ 𝑑 ∈ 𝛿𝑒
value}

𝑅𝑒 = ⋃{𝑊𝑤 ∣ 𝑤 ∈ ℰ𝑊 ∧ ((𝜔 ∈ 𝐴𝑤 ∪ 𝐴𝑒) ∨ (𝐴𝑤 ∩ 𝐴𝑒 ≠ ∅))} if 𝑒 ∈ ℰ𝑅

𝑅𝑒 = ⋃{𝑓𝜔[𝑅𝑎, 𝑅𝑏] ∣ 𝑎, 𝑏 ∈ 𝛿𝑒
require ∧ 𝑎 𝛿provide 𝑥 ∧ 𝑏 𝛿provide 𝑦} if 𝑒 evaluates 𝑓(𝑥, 𝑦)

42

The least fixed point relates events to abstract addresses they may interact with.
With this information, if two memory events end up with distinct address sets, their
equivalence in loc is impossible for all traces.

4.1.4. Model Checking
Let us test consequences of a relationship 𝑤 rf 𝑟 for some 𝑤 ∈ ℰ𝑊 and 𝑟 ∈ ℰ𝑅: First
direct consequence is that both events are executed. That means that all events 𝑥 with
𝑤 ≫ 𝑥 or 𝑟 ≫ 𝑥 must be executed, as well. Also, all excluded events 𝑦 with 𝑥 ⊗ 𝑦 must
not be executed.

On the model side, rf usually contributes to compound relations, enabling more rela-
tionships between 𝑤 and 𝑟, preferably up to some axiom. In case that one relationship
alone violates an axiom of the model, this would usually be accomplished by an internal
read opposing the program order. This observation leads us to the conjecture that, if
the memory model is locally-consistent, the pointer analysis described above may ignore
thread-local communication opposing the program order.

This reasoning could be extended to arbitrary sets of rf relationships, resulting in a
series of partial traces of the program being model-checked, in order to gain precision
for the running pointer analysis. However, we will require the model to have supportive
properties. If not verified, the analysis would ignore behavior that would turn out to
be consistent with the model, given some other communication that was not considered,
rendering the process unsound.

4.2. Optimisation
Blocks that are unreachable from the initial block in a control graph (see chapter 1.3) will
not be included in any execution and therefore will never exhibit side effects neither on
the register state of the associated thread nor on the shared memory, and can therefore
be removed from the instance without influencing the semantics of the program [7].

This well-known class of anomalies, structural features of a program, is called unused
code or dead code and introduces one of the simplest forms of code elimination, or slicing.
Slicing belongs to the family of refactoring techniques, aiming to transform programs
such that effects to their semantics are manageable. This particular form aims to shrink
the program’s complexity.

Another class of anomalies that can be detected with control flow analysis are unused
variables. Thread-local evaluations that are never queried do not effectively influence
the register state of the thread. These anomalies would propagate to later analyses and
the resulting SAT instance without contributing to the decision procedures. On the
contrary, concerning alias analysis (4.1) for example, an unused variable would result in
a sink node of the variable graph, its information never able to enrich that of memory
operations.

4.2. Optimisation 43

Definition 24. An event 𝑥 of a program 𝒫 is obsolete under a model ℳ if and only if
the program 𝒫 − 𝑥 that results by ‘removing’ 𝑥 exhibits the same behavior under ℳ:

∀𝜏. (𝜏 ⊧ ℳ ∧ 𝜏 is a witness of 𝒫) ⇔ (𝜏 − 𝑥 ⊧ ℳ ∧ 𝜏 − 𝑥 is a witness of 𝒫 − 𝑥)

Slicing an event from 𝒫 may be implemented by replacing it with 𝑟 ← 𝑟 for some
𝑟 ∈ 𝑅, with the intention that the indexes of the thread's instruction list do not change.
Removing it from 𝜏 is a no-op if 𝑥 ∉ E, but non-deterministic if 𝑥 ∈ E𝑊 is a write that
is read by at least one read.

For instance, unconditional jumps whose destination is the next instruction are obso-
lete, since they support no control dependency.

Lemma 4. Thread-local evaluations whose result is unused are obsolete under any model.

Proof. Let 𝑥 ∈ ℰ𝐿 be such an event in a program 𝒫 providing the register 𝑟 ∈ 𝑅 and
𝜏 ⊧ ℳ a trace. 𝑥 is invisible to the memory model by definition 13. Therefore, the sets
of visible events ℰ of 𝒫 and 𝒫 − 𝑥 are identical. If 𝜏 originates from 𝒫, with computation
𝑝𝑡 of the containing thread, then 𝑝𝑡 modified on all control states beginning with 𝑥 and
ending before the next providers of 𝑟 or with the halting state testifies that 𝜏 originates
from 𝒫 − 𝑥. Vice versa can be shown analogously.

The next step would be to extend this notion to memory events. However, the
definition 15 of axiomatic models allows patterns like ‘All loads prevent reordering’:
po ; po ∩ 𝑅_ ⊆ hb. Consider this rule added to TSO, the resulting model does not
allow arbitrary loads to be removed even if they do not contribute to the dataflow, as
that could introduce new consistent behavior.

Kokologiannakis, Raad, and Vafeiadis [17] encountered a similar issue when they for-
mulated a proof of correctness of the GenMC project. Their approach included assuming
a series of properties on the input model. Although it would have been favorable to
provide a decision procedure for the property on arbitrary models, over the course of
this thesis we did not manage to develop one.

Definition 25 (Unawareness). A memory model ℳ is unaware if and only if for each
𝑇-trace 𝜏 ⊧ ℳ with event set E, tag relation tag ⊆ E × 𝑇 and read-from map rf ∶ E →
{⊥} + E, and for each untagged and unread event 𝑥 ∈ E𝑅 + E𝑊 with ¬∃𝑡 ∈ 𝑇. 𝑥 tag 𝑡
and ¬∃𝑟 ∈ E. rf(𝑟) = 𝑥, the trace 𝜏 − 𝑥 with 𝑥 removed is also consistent 𝜏 − 𝑥 ⊧ ℳ.

We expect Sequential Consistency, Total Store Ordering, ARM and Power to be un-
aware, since their preserved program order is defined by barriers or other tags. We
further suspect the C model described by Vafeiadis et al. [36] to be unaware, if non-
atomic operations are tagged ‘non-atomic’ and untagged events mean relaxed-atomic
(see 5.6).

Theorem 1. If ℳ is unaware, untagged loads that result in an unused variable are
obsolete under ℳ.

44

Proof. Let 𝑥ℰ𝑅 be such a read in the program 𝒫 and 𝜏 ⊧ ℳ be a trace. Since ℳ is
unaware and 𝑥 is untagged, 𝜏 − 𝑥 ⊧ ℳ. Since 𝑥 has no effect on the dataflow, 𝜏 − 𝑥 ∼ 𝜏.
If 𝜏 originates from 𝒫, we construct a computation for 𝜏 − 𝑥 on 𝒫 − 𝑥 in a similar
manner as in the proof of lemma 4. Starting from 𝜏 − 𝑥 originating from 𝒫 − 𝑥 works
analogously.

Theorem 2. If ℳ is unaware, untagged stores that can never be read are obsolete under
ℳ.

Proof. Let 𝑥ℰ𝑊 be such a write event in the program 𝒫 and 𝜏 ⊧ ℳ be a trace. By
premise, 𝑥 is not read by any event of 𝜏, therefore 𝜏 − 𝑥 is well-defined. Again we
deduce 𝜏 − 𝑥 ⊧ ℳ as before. This time, showing witness-equivalence does not require
modification, as stores do not manipulate the register state, and we conclude, 𝜏 − 𝑥
originates from 𝒫 − 𝑥.

Not all addresses have to be shared between threads. If some location could be proven
only accessible by one thread, it could be replaced with a new register in following
procedures, including verification. Any means of release-acquire-like synchronisation on
this location could also be omitted since it would require some other thread to access it.
Note that the required premise entails that the pointer analysis was perfect, such that
no memory event was related to 𝜔. Yet we were not able to implement a pointer analysis
that returned perfect results on any benchmark and therefore have not evaluated the
impact of the following optimisation on the verification procedure.

Theorem 3. If the memory model is locally-consistent and unaware, an address that is
accessible by only one thread and only by untagged events, is ‘obsolete’: It can be replaced
by a new register.

Proof. Let 𝑎 = ⟨𝑙, 𝑖⟩ ∈ 𝐿 × 𝐷 be such an address. First transform the owning thread by
adding the new register 𝑟. Prepend 𝑟 ← 𝑖 to the thread's instruction list. Each store
st 𝑣 → 𝑘 that can access 𝑎 is appended if 𝑘 = 𝑙 + 𝑖 𝑟 ← 𝑣. Each load ld 𝑣 ← 𝑘 that can
access 𝑎 is prepended if 𝑘 = 𝑙 + 𝑖 𝑣 ← 𝑟. If the event must access 𝑎, the condition may
be ⊤, but this has no effect on this proof. This is a refactorisation: the evaluations
added to the stores are obsolete by lemma 4, and removing them reveals the remainders
to be obsolete, as well.

Now swap each load with its prepended evaluation, so that it may override the load.
Local consistency ensures that this is a refactorisation, as the communicated value always
coincides with the value in 𝑟.

Finally, for each involved memory event 𝑥 ∈ ℰ𝑀 in reversed instruction order, if 𝑥
must access 𝑎, it is obsolete analogously to theorem 1 or 2, respectively. Otherwise,
adding the condition 𝑘 ≠ 𝑙 + 𝑖 to 𝑥 is a refactorisation. We then can remove 𝑎 from
the set of reachable addresses of the modified 𝑥 and continue with the previous memory
event. When the first event was processed, 𝑎 has become unaccessible.

4.3. Relation Analysis 45

The insights gained by pointer analysis extend from what we have discussed. We
might observe that programs use multiple addresses for compound assignments and
ensure atomicity with locks. In those fragments, clustering multiple communications
might reduce the expected problem size significantly: in terms of chapter 3, this would
mean directly relating multiple relationships of rf. For instance, consider a pair of critical
sections on a buffer, one updating all elements, the other copying all elements. When a
thread locks with the intention to copy, and synchronises with a previous unlock of an
update, the sources of the read events will be determined.

popo
rfrf

W

unlock

lock

R

This process would have to answer two essential questions: Which valid addresses are
protected by some kind of synchronisation mechanism? And what kind of synchronisation
safety does the mechanism guarantee? Question is which accesses actually just concern
the data-flow and which are important to the order of events.

4.3. Relation Analysis
This chapter focuses on the task of shrinking the encoding of the memory model under
the context of a bounded program. The reduction to a formula presented in 3 intro-
duced many variables that are directly or indirectly equalised to a false statement. This
starts with the atomic relations, as demonstrated by read-from, where only write events
may appear as domain-side event of this relation, and only read events can ever read
from them and fill the range-side. Impossible relationships propagate upwards through
compound relations, thus defining an over-approximation of possible pairs.

Additionally, not all possible relationships have to be relevant for a constraint. In
fact, irreflexivity just focuses on relationships events have with themselves, while the
subset of heterogenous pairs may be ignored. As a special case of irreflexivity, acyclicity
is unaffected by possible pairs that will never contribute to any cycle. Iteratively mark-
ing possible relationships as relevant yields an even more precise over-approximation of
possible-and-relevant pairs.

Those steps of reducing the encoding with an over-approximation of possible and rele-
vant event pairs were already discussed by Gavrilenko et al. [13]. Basically, Relationships
that are irrelevant to verification, or impossible due to some static precondition being
violated, can be encoded with ⊥ and ignored by the solver.

We can examine the behavior of a bounded program under an axiomatic memory
consistency model by filling out the relations defined in the model. Axiomatic memory
consistency models lay constraints on relations between events of a program. Taking

46

branching and conditional instructions into account, events issued by threads of the
program become optional.

With events 𝑥, 𝑦 ∈ ℰ′ and relation 𝑅 ∈ ℛ′ of some program and model, we denote the
proposition that a trace 𝜏 executes 𝑥 by 𝜏 ⊧ 𝑥 and the proposition that 𝜏 relates 𝑥 to 𝑦
in 𝑅 by 𝜏 ⊧ 𝑥 𝑅 𝑦. Note that by definition 17, 𝜏 ⊧ 𝑥 𝑅 𝑦 always implies 𝜏 ⊧ 𝑥 and 𝜏 ⊧ 𝑦.

The performance of Dartagnan highly depends on the complexity of the produced
formula. As shown in chapter 6, the running time of its static analysis is towered by the
solving time by several magnitudes. This is due to the fact, that the solver's problem
still is 𝒩𝒫-complete, at best.

The relationships between events of a program are expressed by boolean variables that
are decorated with preconditions. For instance, the preconditions of loc relationships
include the equality of the participating event's address values, as does rf together with
the communicated value. However, as the membership of an event in the trace can be
optional, all relationships require at least that both events are executed.

Would that not be the case, we would experience some relationships to always hold
unconditionally. This section targets such relationships, as this property exhibits inter-
esting propagation properties similar to the maximal tuple set.

Definition 26 (Static relationship). Let 𝒫 be a bounded program with extended event
set ℰ′, and ℳ be memory consistency model with extended relation set ℛ′.

The triple ⟨𝑅, 𝑥, 𝑦⟩ ∈ ℛ × ℰ × ℰ is called static, if and only if it denotes a relationship
that always holds as long as both events are executed:

∀𝜏. 𝜏 ⊧ 𝒫 ∧ 𝜏 ⊧ 𝑥 ∧ 𝜏 ⊧ 𝑦 ⇒ 𝜏 ⊧ 𝑥 𝑅 𝑦

The static relation mapping maps relations of the model to a subrelation.

staticℳ,𝒫(𝑅) ∶= {⟨𝑥, 𝑦⟩ ∣ ⟨𝑅, 𝑥, 𝑦⟩ is static}

𝑅 ∈ ℛ′ is called static if and only if 𝑅 = staticℳ,𝒫(𝑅)

Example 19. Some relations defined in the memory consistency modelling language
are static in the sense that all possible relationship variables are bound to that minimal
premise. We already know po completely beforehand, given the unrolled program in its
entirety. We already know the types and tags of events, therefore domain and range
constructions yield static relations.

Lemma 5. Let 𝑅 ∈ ℛ′ and 𝑡 ∈ 𝑇 ∪ {𝐼, 𝑅, 𝑊} be a tag. If def(𝑅) ∈ {po, __, id, 𝑡_, _𝑡},
then 𝑅 is static.

Proof. Follows directly from definitions 14 and 17.

Lemma 6. Let 𝑥, 𝑦 ∈ ℰ′ be events and 𝑅, 𝑆, 𝑇 ∈ ℛ′ be relations.

If def(𝑅) = 𝑆−1, ⟨𝑅, 𝑥, 𝑦⟩ is static if and only if ⟨𝑆, 𝑦, 𝑥⟩ is static.

4.3. Relation Analysis 47

If def(𝑅) = 𝑆 ∪ 𝑇, ⟨𝑅, 𝑥, 𝑦⟩ is static if and only if at least one of ⟨𝑆, 𝑥, 𝑦⟩ and
⟨𝑇 , 𝑥, 𝑦⟩ is static.

If def(𝑅) = 𝑆 ∩ 𝑇, ⟨𝑅, 𝑥, 𝑦⟩ is static if and only if both ⟨𝑆, 𝑥, 𝑦⟩ and ⟨𝑇 , 𝑥, 𝑦⟩ are
static.

If def(𝑅) = 𝑆 \ 𝑇, ⟨𝑅, 𝑥, 𝑦⟩ is static if and only if ⟨𝑆, 𝑥, 𝑦⟩ is static and ⟨𝑆, 𝑥, 𝑦⟩ is
not even maximal.

With the information gained from control flow analysis (section 1.3), staticality can
propagate onto compositions.

Theorem 4. Let 𝑥, 𝑦, 𝑧 ∈ ℰ′ be events and 𝑅, 𝑆, 𝑇 ∈ ℛ′ be relations with def(𝑅) = 𝑆 ; 𝑇.
If ⟨𝑆, 𝑥, 𝑦⟩ and ⟨𝑇 , 𝑦, 𝑧⟩ are static, 𝑦 is unconditional and at least 𝑥 ≫ 𝑦 or 𝑧 ≫ 𝑦, then
⟨𝑅, 𝑥, 𝑧⟩ is static.

Proof. Let 𝜏 ⊧ 𝑥 and 𝜏 ⊧ 𝑧 and 𝑥 ≫ 𝑦 (or 𝑧 ≫ 𝑦). Since 𝑦 is unconditional, we infer 𝜏 ⊧ 𝑦
(analogously). 𝜏 ⊧ 𝑥 𝑆 𝑦 and 𝜏 ⊧ 𝑦 𝑇 𝑧 follow from the presumed staticality. We conclude
𝜏 ⊧ 𝑥 𝑅 𝑧.

This is indeed helpful for barrier relations, as oftentimes barriers are placed into the
same control path as immediately preceding or succeeding memory events. Architec-
tures whose instruction set does not support memory-ordered loads and stores like
atomic_load(A) [28] will instead prepend or append a fence to regular memory in-
structions. Nevertheless, barrier relations require the execution of a third event and will
not always be static.

The ARM and Power models define their preserved program order recursively [22].
The preserved program order is a term widely used in literature and denotes a subset
of the program order that has not been reordered in the trace. Static tuples propagate
nicely through recursion and may eliminate vast portions of the encoding.

Considering dependencies, there is also a useful static characterisation, based on the
fact that the latest executed register provider will always determine the current value.
Note that for this purpose, definition 6 was lifted to the domain of events.

Theorem 5. Let 𝑥, 𝑦 ∈ ℰ be events and 𝑅 ∈ ℛ′ \ ℛ a direct dependency relation
associated with 𝛿 ⊆ ℐ(𝐷, 𝑅, 𝑇) × 𝑅. If 𝑥 is a direct 𝛿-dependency of 𝑦 and for all other
direct 𝛿-dependencies 𝑧 ∈ ℰ, 𝑧 is not reachable from 𝑥, then ⟨𝑅, 𝑥, 𝑦⟩ is static.

Proof. Let 𝜏 ⊧ 𝑥, 𝜏 ⊧ 𝑦 and 𝑝𝑡 ∶ {0 … |𝐼|} → ({⊥} + 𝐷𝑅) a computation from definition
14. By premise, there is no provider between 𝑥 and 𝑦 for the register 𝑟 in question.
Therefore, the most recent manipulation of 𝑝𝑡(𝑦)(𝑟) must have been that of 𝑥. We
conclude 𝜏 ⊧ 𝑥 𝑅 𝑦 by the definition of direct dependency.

Now we know that for each dependent event and required register, there will always
be at least one static relationship for the direct dependency relation. In combination
with theorem 4, this can propagate up to the general dependency relations.

48

Example 20.

0∶ ld 𝑟 ← 𝑎
1∶ if 0 ≤ 𝑟 𝑟 ← −𝑟
2∶ st 𝑟 → 𝑎

This program fragment updates a stored value by its absolute value. By the theorems
above, the set of static deprequire-relationships include at least ⟨0, 1⟩, and ⟨1, 2⟩. But
⟨data, 0, 2⟩ is also static, taking all possible control paths into account. We have not yet
implemented an analysis covering such a scenario.

At last, the memory variable loc exhibits static relationships, that we discussed in
section 4.1. Since they tend to be highly connected to the dataflow of the program,
there is little to expect from rf that is not already covered in section 4.2.

Lemma 7. Let 𝑥, 𝑦 ∈𝐸 be events, 𝑙 ∈ 𝐿 a location and 𝑖 ∈ {0 … |𝐿| − 1} an offset. If
alias analysis determines 𝐴𝑥 = 𝐴𝑦 = {𝑙 + 𝑖}, then ⟨loc, 𝑥, 𝑦⟩ is static.

Proof. Let 𝑥 = ⟨𝑡𝑥, 𝑖𝑥⟩ ∈ ℰ𝑀, 𝑦 = ⟨𝑡𝑦, 𝑖𝑦⟩ ∈ ℰ𝑀, 𝑖𝑥 𝛿address 𝑘𝑥, and 𝑖𝑦 𝛿address 𝑘𝑦. Since
the algorithm over-approximates the dataflow, we infer 𝑝𝑡𝑥

(𝑖𝑥)(𝑘𝑥) = 𝑙 + 𝑖 = 𝑝𝑡𝑦
(𝑖𝑦)(𝑘𝑦)

for all computations (𝑝𝑡) relating 𝜏 to the program, thus location(𝑥) = location(𝑦) and
finally 𝜏 ⊧ 𝑥 loc 𝑦.

Considering initialisation, from 𝑧 ∈ ℰ𝐼 follows 𝑧 = ⟨𝑙, 𝑖⟩, thus 𝜏 ⊧ 𝑥 loc 𝑧 and 𝜏 ⊧ 𝑧 loc 𝑦,
as well.

Lemma 8. Let 𝑡 ∈ {0 … |𝒫| − 1} be a thread with instruction list 𝐼, 𝑄 ∶= {0 … |𝐼| − 1}
and 𝑑 ∶= {⟨𝑝, 𝑞⟩ ∈ 𝑄 × 𝑄 ∣ 𝑝 is an address-dependency of 𝑞}. If 𝑑(𝑥) = 𝑑(𝑦) ≠ ∅ for
some 𝑥, 𝑦 ∈ 𝑄 and ⟨𝑡, 𝑥⟩, ⟨𝑡, 𝑦⟩ ∈ ℰ𝑀, then ⟨loc, ⟨𝑡, 𝑥⟩, ⟨𝑡, 𝑦⟩⟩ is static.

Proof. Note that both events use the same register 𝑟 with 𝑥 𝛿address 𝑟 and 𝑦 𝛿address 𝑟.
Again consider a trace originating from the program and some testifying computation
𝑝. Since the subset of executed events represented by 𝑑(𝑥) stays equal, the respective
latest provider is the same for both events and we conclude 𝑝𝑡(𝑥)(𝑟) = 𝑝𝑡(𝑦)(𝑟).

Computing the exact static tuple sets for a program under some model would re-
quire exhausting analysis. In the context of verification, we can settle for an under-
approximation, in order to effectively shrink the encoding without changing its seman-
tics: For all triples that were identified as static, the subformulas carrying their original
definitions can be replaced by

⋀
⟨𝑅,𝑥,𝑦⟩ is static

𝑥 𝑅 𝑦 ⇔ 𝜒𝑥 ∧ 𝜒𝑦 (4.1)

The expected impact on the solving process for the truncated proposition entails a
reduced set of variables, as static ‘inner’ relationships may become obsolete after this
analysis, and a shift of unit propagation invocations into earlier iterations of the solver.

5. Related Work
This chapter discusses recent work done in the field that we consulted during this

thesis. We provide summaries for several publications.

5.1. Thread-Modular Static Analysis for Relaxed
Memory Models

Kusano and Wang [18] check reachability in their own decision procedure. They define
mandatory relationships like ‘must happen before’ and ‘must not read from’ in order to
reason about consistency with the model. Speaking of which, models are described in
a more restricted language where RR- RW- WR- WW-reordering can either be permit-
ted or prohibited. SC, TSO, PSO, RMO of the SPARC-hierarchy are expressible, but
AARCH64 and Power are not.

Must Not Read From uses non-static premises. When transferred to a SAT instance,
results will look like ¬𝑆1 ⊧ ∨¬(𝐿1rf𝑆0) ∨ ¬(𝐿2rf𝑆0) and will be added to the instance.
When the effort is done to compute a static part of an acyclicity constraint, the results
should be honored when encoding the rules.

When collecting the must-part of a relation, we effectively decide a part of the SAT
instance that is linearly decidable (in DPLL solvable using unit propagation). While
this part does not have to be encoded anymore, the time advantage is not impressive.

Moreso the restrictions gained from the static analysis possible with it. There is a
fraction of the program order that must not be reordered by any memory model.

5.2. SAT modulo Graphs: Acyclicity
Gebser, Janhunen, and Rintanen [14] define the problem ACYC-SAT, where instances
consist of a main proposition and a graph with edges annotated with propositions. A
model of the main proposition models the instance, if and only if the subgraph of en-
abled edges is acyclic. They discuss four different approaches to reduce ACYC-SAT to
SAT, and briefly argue the contribution of the approaches to the solving process via
unit propagation. The authors propose and prove that ACYC-SAT is linear-time inter-
reducable to IDL(1)-SAT, a first-order logic with integer terms and one predicate of the
form 𝑥 < 𝑦, which additionally is not allowed to appear in negated context. They claim
to have inspected the source code of Z3 unsuccessfully to confirm specialised behavior if
faced with acyclicity instances.

50

5.3. A Shared Memory Poetics

Alglave [1] bases her understandings on the SPARC architecture and applies it to the
Power ISA specification, for which she aimed to formulate a memory consistency model.
The thesis is accompanied by the diy testing tool for a model of the Power architecture,
which contributes to the early stages of the memory-model-aware herd tool (section
5.5), and adds more groundwork for the class of axiomatic memory models that at that
time had yet to be further formalised (chapter 2). She also discusses the DEC Alpha
architecture, exposing its own weak memory model, which she shows to be incomparable
to Relaxed Memory Order.

The uniproc axiom ∅ = id ∩ ((po ∩ loc) ∪ com)+ frequently provided by the cat files of
Dartagnan seems to have gotten its name from this contribution.

5.4. Understanding POWER Multiprocessors

Sarkar et al. [32] discussed the processor series of IBM Power. They document exper-
iments performed on such a device and compared it to the expected behavior of the
specification. They formulated a generalised operational model in which instructions
become in-flight before being committed. Instructions in this state may even become
visible past a control dependency (see chapter 1.3). They compare Power with ARM,
which implements similar methods of speculation and similar families of barriers.

5.5. Herding cats: Modelling, Simulating, Testing
and Data-mining for Weak Memory

Alglave, Maranget, and Tautschnig [3] present the tool herd, which enumerates consis-
tent runs for a given program and axiomatic memory model, as well as the tool mole,
which extracts multi-thread-sensitive fragments from larger code bases written in C.
Motivated by the machine defined in [32], they define an operational memory model on
the basis of an axiomatic one, prove its equivalence to its base, and compare it to the
machine. In addition to this, they evaluated the tools on Debian Linux version 7.1 of
which pattern search was performed with mole, resulting in a variety of smaller test
cases that were then verified with herd.

5.6. Common Compiler Optimisations are Invalid in the C11 Memory Model and
what we can do about it 51

5.6. Common Compiler Optimisations are Invalid
in the C11 Memory Model and what we can
do about it

Vafeiadis et al. [36] show that the memory model defined in the C and C++ standard
from 2011 has flaws that result in some common optimisations and compilations unsound
and provide means to fix it. To us, it came unexpected, that the standard model seems
to not take spontaneous synchronisations into account when dealing with non-atomic
memory accesses. Such a read must be satisfied by the latest write that happened before
it, where inter-thread happens-before just requires explicit synchronisation (i.e. using
release-acquire read-from relationships). Non-atomic accesses seem to follow a stronger
memory order than relaxed atomic accesses. Standard-conform architectures are thereby
required to cache arbitrarily.

ld 𝑟 ← 𝑦 (relaxed) ld 𝑟 ← 𝑧 (relaxed)
if 𝑟 st 1 → 𝑧 (relaxed) if 𝑟 st 1 → 𝑦 (relaxed)

The first program (called ‘CYC’) demonstrates that the model allows speculation
with relaxed accesses: There is a consistent execution where both threads read from
each other.

st 1 → 𝑥 (non − atomic) ld 𝑟 ← 𝑥 (non − atomic)

The second program is not data-race-free, therefore its behavior is undefined and
contains an execution in which the load reads from the store.

ld 𝑟 ← 𝑦 (relaxed) ld 𝑟 ← 𝑧 (relaxed)
st 𝑥 → 1 (non − atomic) ld 𝑟 ← 𝑥 (non − atomic)

st 1 → 𝑧 (relaxed) st 1 → 𝑦 (relaxed)

The third program (called ‘SEQ’) would include a data race like the former if the load
is executed. However, this would require non-atomic communication through 𝑥, which is
only allowed with synchronisation that the program does not provide. Therefore, there
shall be no execution with the load and the program is data-race-free.

6. Evaluation
This chapter contains some example programs that were verified using Dartagnan.

This includes mechanisms for mutual exclusion (section 6.1) as well as popular imple-
mentations of lockfree datastructures (section 6.2).

Section 6.3 compares the usage of static tuples (section 4.3) to the original encoding
with just the over-approximation using

6.1. Locking
The most popular method of inter-thread communication. When shared data structures
that are distributed into several distant locations have to be manipulated in an atomic
manner, or when the manipulations performed on them extend the limits of regular
atomic operations, programmers want to make sure that no other thread will be able to
intervene the process once it has started and until it has ended. The program fragment
that describes the operation is called a critical section. Its start and end may each
consist of several control states, and have to be properly occupied by subprocedures to
enforce temporary mutual exclusion. Those subprocedures are called lock and unlock
respectively.

For instance, the contribution of Lamport [19] would consist of two rounds 𝑚 and
𝑚 + 1 and a flag 𝑚 + 2 + 𝑡 for each thread 𝑡. This implementation requires at least
cache consistency for its liveness property, as otherwise a scenario could arise that two
candidate threads disagree on the current value of the second round.

Szymański [34] proposed an implementation for mutual exclusion that consists of two
waiting rooms for locking candidates, each implemented by spin-locks. During locking,
a thread communicates its progress through a system of five states to its concurrents.
Initially threads reside in state 0, as long as they do not intend to lock. State 1 marks the
first waiting room, 3 the second, 2 in-between the rooms and 4 for the critical section.

Taking C memory order [28] into account, lock must develop acquire semantics, as
unlock must have release semantics, in order to let the modifications in a critical section
appear atomic from the viewpoint of the successive threads.

The locking tests consist of five worker threads, all performing the same instruction
list, beginning with acquiring ownership on the lock 𝑚, performing a simple concurrent
but non-atomic operation on the protected location 𝑥, and releasing 𝑚 again. This
particular number of threads was chosen specifically to stay solvable in a reasonable
amount of time for our setup while also being able to exploit any vulnerability of the
implementation, although for the selection described below, three threads might have
sufficed.

54

Figure 6.1.: thread of the TTAS program

lock ∶ ld 𝑟 ← 𝑚 (x)
if 𝑟 goto lock

ld 𝑟 ← 𝑚 (rsrv) (acq)
st ⊤ → 𝑚 (cnd)
if 𝑟 goto lock

critical ∶ st elem → 𝑥
ld 𝑟 ← 𝑥
if 𝑟 ≠ elem fail

unlock ∶ st ⊥ → 𝑚 (rel)

6.1.1. Spinlock
The most simplistic lock consists of a single boolean value which controls access to its
critical section. It starts initially unset, as a set value would signal to other candidates
that some thread currently owns the lock. TTAS means test and test-and-set and differs
to the description above in a preliminary test loop before the slightly more expensive
read-modify-write operation that implements the locking.

Each thread enters a critical section by locking 𝑚 and exits it by unlocking it. The
test uses one data variable 𝑥 to verify mutual exclusion under the assumption that the
memory model is at least locally-consistent (definition 19). Only if another thread is
disturbing the computation, shall the locking thread be able to read from a different
store than its own.

6.1.2. Fast userspace mutual exclusion
Franke, Watson, and Kirkwood [12] proposed an alternative mutual exclusion imple-
mentation that avoids the kernel mode of a Linux operating system. The lock has three
states, stored at 𝑚: unlocked, locked, and locked-with-waiting-threads. It is equipped
with a counter at 𝑚 + 1, signaling to all waiting threads that the current owner has
unlocked. This ensures that no thread polls for the duration of more than one critical
section.

6.2. Lockfree Datastructures
For inter-thread communication that follows a simpler structure, like that of a homoge-
nous collection of values, numerous contributions were added to the repertoire of a

6.2. Lockfree Datastructures 55

Figure 6.2.: thread of the ‘futex’ test

lock ∶ ld 𝑟 ← 𝑚 (rsrv) (acq)
if 𝑟 = 0 st 1 → 𝑚 (cnd) (x)
if 𝑟 = 0 goto critical

𝑙0 ∶ ld 𝑟 ← 𝑚 (rsrv) (x)
if 𝑟 = 1 st 2 → 𝑚 (cnd)
ld 𝑠 ← 𝑚 + 1 (acq)
ld 𝑟 ← 𝑚 (acq)
if 𝑟 ≠ 2 goto critical

𝑙1 ∶ ld 𝑟 ← 𝑚 + 1 (acq)
if 𝑟 = 𝑠 goto 𝑙1
ld 𝑟 ← 𝑚 (rsrv) (acq)
if 𝑟 ≠ 0 goto 𝑙0
st 2 → 𝑚 (cnd) (x)

critical ∶ st elem → 𝑥
ld 𝑟 ← 𝑥
if 𝑟 ≠ elem fail

unlock ∶ ld 𝑟 ← 𝑚 (rsrv) (x)
if 𝑟 = 1 st 0 → 𝑚 (cnd) (rel)
if 𝑟 = 1 goto 𝑙2
st 0 → 𝑚 (rel)
ld 𝑟 ← 𝑚 + 1 (rsrv) (x)
st 𝑟 + 1 → 𝑚 + 1 (cnd) (rel)

𝑙2 ∶

56

programmer. In this section, We discuss some popular approaches for shared LIFO and
FIFO storage.

The tests follow a simple structure; each participating thread will add a value be-
fore attempting to remove some value. Each item of the data structure is dynamically
allocated into the locations pointed to by elem of each thread and composed of a next-
pointer at elem and a value at elem + 1.

The removed item is kept allocated by the thread, as our focus does not lie on storage
reclamation mechanisms. The problem arises when a concurrent program insists on
manual deallocation instead of automatic garbage collection, which would entail another
thread performing a dynamic storage reachability analysis, as the worker threads perform
their tasks. The garbage collector would synchronise regularly with the other threads
and deallocate any memory that has become unreachable by any worker, thus avoiding
dangling pointers while also enabling reclamation.

A single-threaded program should have no refutation to free its resources before falling
out of scope. In a concurrent situation, however, some other thread might itself be
in the process of popping, having loaded a now stale version of the location at TOP,
and the address of its next item, its own progress currently at around loop: (give
or take reordered instructions). Since no communication between the two threads has
taken place yet, the thread that is about to deallocate the item would impose undefined
behavior, so in the jargon of the C specification.

The magnitude in which the other thread might be delayed is unbound. It might even
occur that other threads have enough ‘time’ to reallocate the memory of the item, assign
a new value and next element to it, possibly push it into another stack or even give that
address completely different semantics, without the paused thread noticing.

In a bounded setting, reclamation is unnecessary, and Dartagnan does not yet im-
plement any verification on this matter. One should note, however, that by enforcing
disjoint arrays to be returned by the function family of malloc, as the tool currently
does, the possible behavior of the original program is under-approximated.

6.2.1. Treiber's stack
The stack by Treiber [35] consists of a singly linked list and one sole location TOP of size
1 per container that may store the address to the top item. Once successfully inserted
into the stack, and until successfully popped from it, a list item is not manipulated. In
addition, barriers are placed appropriately in order to ensure that no element gets lost
during stack manipulation. The data structure heavily relies on the atomic compare-
and-swap operation.

The push procedure accepts some address TOP ∈ 𝑅 to a stack and some value 𝑣 ∈ 𝑅
to insert at the top of it. For simplicity, all involved arguments are already assumed to
be present in the register state. Note that all lockfree examples discussed in this thesis
contain at least one cycle in the control graph in order to allow polling.

6.3. Results 57

The pop procedure accepts some address TOP ∈ 𝑅 to a stack and returns some value
result ∈ 𝑅. If the stack was empty, the result register is not touched. Note again that
for simplicity, safe memory reclamation has been abstracted out of the program.

Hendler, Shavit, and Yerushalmi [15] extend this implementation by an elimination
scheme, invoked on an unsuccessful manipulation attempt. Threads are instructed to
deposit an individual identifier at the lock using a CAS operation, effectively giving one
of them a small head start for reattempting the stack manipulation, while the others are
being delayed by another loop.

6.2.2. Michael and Scott's Queue
As typical for a queue, the header consists of two item references HEAD and TAIL for head
and tail of the sequence, respectively, where the tail item's next pointer will be updated
to a new item when enqueued into the structure, and the head item indirectly accesses
the whole sequence.

The queue starts with a dummy element, to which both HEAD and TAIL point and
whose next pointer is NULL. This means that there will always be some item in the
queue whose value is to be ignored and dequeue will have to check with TAIL before
returning the item it found at HEAD.

As Treiber's stack in section 6.2.1, the algorithm requires the cas operation in order
to verify that the view the thread has on the structure is current.

Suggesting an unnecessary failing condition in the dequeue procedure, Doherty et al.
[11] proposed a slight derivation by preponing the final CAS on HEAD. The idea is that
any thread, that had successfully incremented the head, would only be able to perceive
TAIL pointing to the removed item, if another thread had inserted the next element and
yet missed to synchronise. In this situation, the original would reattempt, while the new
implementation just copies the missed update to tidy the queue. The enqueue procedure
was left unchanged.

6.3. Results
The following tables show the verifier in two configurations on a different input, each
input consisting of a program and an unroll bound ‘k’. Both configurations differ only in
their usage of static tuples, first omitting their computation, and second performing it.
Each table groups the results for one of the tested memory models SC, TSO, AARCH64
and Power.

‘k’ contributes to the size of the bounded program being verified, resulting in higher
analysis time ‘pre’, measuring the entire transformation in seconds on our machine from
when the tool finished parsing to when the proposition has been completed. The results
of the relation analysis are summarised into the total number of maximal relationships
between events, the total number of static relationships, if applicable, and the total

58

Figure 6.3.: lockfree stack, left T [35], right HSY [15]

push ∶ st TID → elem + 1 push ∶ st TID → elem + 1
𝑙0 ∶ ld 𝑡 ← TOP (acq) 𝑙0 ∶ ld 𝑡 ← TOP (acq)

st 𝑡 → elem st 𝑡 → elem

ld 𝑠 ← TOP (rsrv) (acq) ld 𝑠 ← TOP (rsrv) (acq)
if 𝑠 = 𝑡 goto 𝑙2 if 𝑠 = 𝑡 goto 𝑙2

𝑙1 ∶ ld 𝑤 ← WAIT (acq)
ld 𝑠 ← WAIT (rsrv) (acq)
if 𝑠 ≠ 𝑤 goto 𝑙1
st elem → WAIT (cnd) (rel)

goto 𝑙0 goto 𝑙0
𝑙2 ∶ st 𝑛 → TOP (cnd) (rel) 𝑙2 ∶ st 𝑛 → TOP (cnd) (rel)

pop ∶ld 𝑡 ← TOP (acq) pop ∶ld 𝑡 ← TOP (acq)
if 𝑡 = 0 result ← 0 if 𝑡 = 0 result ← 0
if 𝑡 = 0 goto check if 𝑡 = 0 goto check

ld 𝑛 ← 𝑡 ld 𝑛 ← 𝑡
ld 𝑠 ← TOP (rsrv) (acq) ld 𝑠 ← TOP (rsrv) (acq)
if 𝑠 = 𝑡 goto 𝑙4 if 𝑠 = 𝑡 goto 𝑙4

𝑙3 ∶ ld 𝑤 ← WAIT (acq)
ld 𝑠 ← WAIT (rsrv) (acq)
if 𝑠 ≠ 𝑤 goto 𝑙3
st elem → WAIT (cnd) (rel)

goto pop goto pop

𝑙4 ∶ st 𝑛 → TOP (cnd) (rel) 𝑙4 ∶ st 𝑛 → TOP (cnd) (rel)
ld result ← 𝑡 + 1 ld result ← 𝑡 + 1

check ∶ if result = 0 fail check ∶ if result = 0 fail

6.3. Results 59

Figure 6.4.: lockfree queues, left MS [23], right DGLM [11]

enqueue ∶ st 1 → elem enqueue ∶ st 2 → elem

𝑙0 ∶ ld 𝑡 ← TAIL (acq) 𝑙0 ∶ ld 𝑡 ← TAIL (acq)
ld 𝑛 ← 𝑡 (acq) ld 𝑛 ← 𝑡 (acq)
ld 𝑟 ← TAIL (acq) ld 𝑟 ← TAIL (acq)
if 𝑛 = 𝑟 goto 𝑙0 if 𝑛 = 𝑟 goto 𝑙0
if 𝑛 = 0 goto 𝑙1 if 𝑛 = 0 goto 𝑙1
ld 𝑟 ← TAIL (rsrv) (acq) ld 𝑟 ← TAIL (rsrv) (acq)
if 𝑟 = 𝑡 st 𝑛 → TAIL (cnd) (rel) if 𝑟 = 𝑡 st 𝑛 → TAIL (cnd) (rel)
goto 𝑙0 goto 𝑙0

𝑙1 ∶ ld 𝑟 ← 𝑛 (rsrv) (acq) 𝑙1 ∶ ld 𝑟 ← 𝑛 (rsrv) (acq)
if 𝑟 ≠ 𝑛 goto 𝑙0 if 𝑟 ≠ 𝑛 goto 𝑙0
st elem → 𝑛 (cnd) (rel) st elem → 𝑛 (cnd) (rel)
ld 𝑟 ← TAIL (rsrv) (acq) ld 𝑟 ← TAIL (rsrv) (acq)
if 𝑟 = 𝑡 st elem → TAIL (cnd) (rel) if 𝑟 = 𝑡 st elem → TAIL (cnd) (rel)

dequeue ∶ ld ℎ ← HEAD (acq) dequeue ∶ ld ℎ ← HEAD (acq)
ld 𝑡 ← TAIL (acq)
ld 𝑛 ← ℎ (acq) ld 𝑛 ← ℎ (acq)
ld 𝑟 ← HEAD (acq) ld 𝑟 ← HEAD (acq)
if 𝑟 ≠ ℎ goto dequeue if 𝑟 ≠ ℎ goto dequeue

if 𝑛 = 0 result ← 0 if 𝑛 = 0 result ← 0
if 𝑛 = 0 goto check if 𝑛 = 0 goto check

ld 𝑟 ← HEAD (rsrv) (acq)
if 𝑟 ≠ ℎ goto dequeue

ld 𝑡 ← TAIL (acq)
st 𝑛 → HEAD (cnd) (rel)

if ℎ ≠ 𝑡 goto 𝑙2 if ℎ ≠ 𝑡 goto 𝑙2
ld 𝑟 ← TAIL (rsrv) (acq) ld 𝑟 ← TAIL (rsrv) (acq)
if 𝑟 = 𝑡 st 𝑛 → TAIL (cnd) (rel) if 𝑟 = 𝑡 st 𝑛 → TAIL (cnd) (rel)
goto dequeue

𝑙2 ∶ ld 𝑟 ← HEAD (rsrv) (acq)
if 𝑟 ≠ ℎ goto dequeue

st 𝑛 → HEAD (cnd) (rel)
ld result ← 𝑛 + 1 𝑙2 ∶ ld result ← 𝑛 + 1

check ∶ if result = 0 fail check ∶ if result = 0 fail

60

number of encoded relationships, contributing to the number of variables contained in
the encoding.

Dartagnan usually uses two SMT instances for verification: One for reachability of
an error state in the bounded context, and one for reachability of a higher bound. In
the tables below, the second instance is ignored, as it roughly has a similar complexity.
Instead, the column ‘smt’ contains the solving time of Z3 for the first proposition in
seconds and we added some insights from the solving process itself: ‘vars’ counts the
number of boolean variables, including predicates. ‘prop’ stands for the propagations
counter that was incremented each time a variable was eliminated using the unit propa-
gation rule from DPLL. ‘dec’ does the same for the splitting rule, and was taken from the
counter decisions. ‘conf’ for conflicts counts the number of times the backtracking
had to be invoked when the solver reached a conflicting variable assignment.

Our machine runs Ubuntu 20.04.1 on an Intel Core i5-3450 with 7.7 GB RAM. Some
of the tests not only exceeded our time threshold but also used up enough memory to
block the timeout of Z3, resulting in the test being continued beyond 600 seconds and
occasionally in the process being killed by the operation system, once it requested more
than 150 percent of physical memory. The latter cells of those tests were left blank.

As expected, comparing the results grouped by memory model shows us that the order
SC, TSO, AARCH64 and Power correlates with the order of complexity. Having been
formulated in terms of Alglave, Maranget, and Tautschnig [3], together with recursive
in-flight/commit relations, a preserved program order and a happens-before relation, the
Power model turned out to exhibit the least beneficial structure. The ‘pre’-analysis timer,
while also measuring the fixed point problem for static relationships, which are omitted
on each first entry, also highly depends on the number of encoded tuples. The additional
relation analysis results in a smaller encoding that is faster to build. In contrast to the
majority of tests, only four configurations exhibited additional costs, attesting that our
approach does not generally benefit all aspects of the verifier.

Note how MS (bound 2) under AARCH64 and ‘futex’ (bound 3) under Power got
solvable in our testing setup before timed out, where about 30 percent of the encoded
relationships were replaced. We attribute this to the shifting of propagating clauses into
earlier iterations of DPLL mentioned in section 4.3. It seems that our setup exhibits a
rough limit at about 100K encoded tuples for feasibly solving the encoding.

While the usage of static relationships noticeably reduces the number of encoded
ones by an average of around 30 percent as well as the number of variables in the
encoding, this does not always propagate to the reasoning. The column ‘conf’ features
occasional increases in conflicts during the solving process, for instance TTAS under SC
and MS under AARCH64 and Power. We suspect that since the encoding replaced many
interconnected but simple rules, the decision making of Z3 is confused by the increased
number of execution variables, biased towards satisfying static relationships when other
variables would faster lead to a proof.

6.3. Results 61

Figure 6.5.: Tests under Sequential Consistency
k pre max static encoded smt vars prop dec conf

futex 1 1.09 17540 14178 0.51 23K 407 0 1
1.01 17510 4658 13107 0.54 21K 407 0 1

2 2.67 33500 27954 1.7 50K 55 0 1
2.43 33458 9443 25149 1.9 45K 55 0 1

3 5.26 55973 47442 4.1 96K 55 0 1
4.95 55919 16661 42021 3.4 85K 55 0 1

ttas 1 0.29 5267 3896 0.14 8655 100K 283 50
0.28 5261 1559 3554 0.14 7778 92K 75 49

2 0.55 10208 7856 0.6 19K 644K 697 175
0.51 10196 2816 7106 0.6 17K 776K 1173 228

3 1.07 17687 13919 1.9 36K 2.3M 3549 333
0.94 17669 4928 12467 1.9 31K 2.3M 4622 390

t 1 0.31 4878 3403 0.17 7959 238K 3469 172
0.25 4870 2004 2905 0.22 7102 210K 4006 174

2 0.53 10734 8313 1.2 20K 1.5M 13K 617
0.49 10718 4100 6993 1.1 17K 1.3M 20K 629

3 1.08 18880 15413 3.5 39K 3.8M 28K 992
1.07 18856 6984 12855 3.3 34K 3.4M 24K 1079

ms 1 0.64 12986 9439 0.91 22K 1.3M 11K 424
0.61 12966 5126 8083 0.89 20K 1.0M 18K 411

2 4.63 53448 42233 117 103K 121M 193K 14K
3.83 53404 22856 34205 109 88K 88M 179K 14K

3 31.1 177844 144669
33.2 177768 85618 111873

hsy 1 0.45 8394 5926 0.28 13K 225K 6900 149
0.38 8378 3572 5084 0.27 12K 269K 5447 154

2 1.80 28658 22824 3.5 52K 2.9M 29K 540
1.68 28618 11590 19044 2.6 46K 2.0M 41K 490

3 16.3 107256 91762 96 246K 77M 368K 3678
14.9 107168 42862 74768 80 208K 68M 385K 3785

dglm 1 0.73 14839 10048 2.06 26K 2.3M 35K 752
0.71 14819 5981 8640 1.76 23K 1.7M 31K 629

2 3.85 51685 39166 54.7 103K 55M 633K 7473
3.61 51641 20853 32398 53.7 89K 45M 345K 7037

3 28.0 146843 117480
23.5 146767 63055 94100

62

Figure 6.6.: Tests under Total Store Ordering
k pre max static encoded smt vars prop dec conf

futex 1 1.05 31336 16281 0.60 25K 407 0 1
1.09 31336 12589 14823 0.53 23K 407 0 1

2 2.60 60886 33258 1.7 56K 55 0 1
2.32 60886 24775 29217 2.3 52K 55 0 1

3 6.06 103573 57570 7.3 108K 55 0 1
5.53 103573 43384 49416 4.1 100K 55 0 1

ttas 1 0.32 9900 4456 0.16 9218 127K 198 57
0.31 9900 4468 3926 0.14 8604 119K 201 59

2 0.63 18669 9178 0.51 20K 834K 935 183
0.59 18669 7678 8063 0.56 19K 811K 713 185

3 1.07 32373 16540 2.1 39K 2.6M 2932 369
1.03 32373 13015 14375 1.7 37K 2.2M 4844 346

t 1 0.28 9598 4002 0.27 8422 297K 5467 177
0.26 9598 5492 3176 0.22 7288 201K 4542 158

2 0.62 20688 10122 0.95 22K 1.3M 23K 514
0.53 20688 11124 7856 0.97 19K 1.2M 17K 599

3 1.23 36140 19142 3.2 43K 4.2M 38K 873
1.06 36140 18910 14650 3.2 36K 3.6M 35K 984

ms 1 0.74 25033 11241 0.84 24K 1.4M 6144 422
0.63 25033 13577 9007 0.77 21K 903K 15K 359

2 4.50 107389 55035 119 118K 138M 124K 15K
4.19 107389 60163 39485 80 98K 83M 168K 11K

3 47.1 378797 202421
39.0 378797 227345 132109

hsy 1 0.42 16398 6813 0.30 14K 350K 5336 182
0.40 16398 9624 5408 0.24 12K 210K 7669 132

2 1.97 54890 27447 4.0 56K 3.6M 33K 681
1.72 54890 30676 20736 2.7 47K 3.0M 56K 579

3 15.3 205160 114475 86.0 267K 79M 435K 3548
15.2 205160 112920 82806 65.2 221K 63M 392K 3486

dglm 1 0.768 28920 11964 1.88 27K 2.5M 66K 735
0.678 28920 15980 9658 1.84 24K 2.5M 57K 841

2 4.62 101712 49878 51.4 115K 58M 355K 7273
4.10 101712 54392 37724 46.3 100K 50M 517K 6781

3 29.0 299112 157692
27.0 299112 163686 112952

6.3. Results 63

Figure 6.7.: Tests under AARCH64
k pre max static encoded smt vars prop dec conf

futex 1 2.47 50187 21259 2.5 66K 473 0 1
2.26 50187 22948 18066 2.1 57K 492 0 1

2 5.80 104367 43843 14 217K 166 0 1
5.61 104367 51250 35508 20 178K 295 0 1

3 13.5 183336 76177 128 545K 211 0 1
12.5 183336 93952 60105 28 439K 475 0 1

ttas 1 0.68 15196 6341 0.55 27K 292K 245 36
0.64 15196 7335 4948 0.49 22K 276K 104 40

2 1.21 28975 12482 2.2 69K 3.0M 736 175
1.17 28975 13221 9931 2.4 59K 2.6M 860 190

3 2.24 50536 21761 7.6 152K 12M 2572 413
2.19 50536 22869 17515 6.6 132K 11M 1762 396

t 1 0.68 16190 6033 0.85 27K 1.2M 5068 198
0.49 16190 9523 4013 0.62 20K 839K 4408 222

2 1.46 35414 14919 7.2 88K 7.2M 16K 584
1.40 35414 20027 10023 3.8 66K 5.6M 15K 582

3 3.25 62490 27931 20 207K 30M 32K 1081
2.90 62490 34861 18783 15 150K 19M 26K 1053

ms 1 1.77 42193 16431 5.8 96K 7.5M 6440 397
1.67 42193 24254 11407 5.0 70K 5.2M 11K 492

2 14.3 198151 80995
11.5 198151 116158 51113 403 602K 576M 120K 9508

3 113 727341 298045
127 727341 443000 173185

hsy 1 1.06 26879 9935 1.7 50K 1.6M 6646 193
1.01 26879 15650 6942 1.4 38K 1.2M 4866 170

2 5.49 96283 40013 41 341K 36M 14K 752
5.03 96283 55376 27102 33 249K 23M 41K 715

3 52.8 379197 167467
49.8 379197 220972 109458

dglm 1 1.99 45770 17194 9.47 105K 13M 46K 868
1.68 45770 25563 12114 7.13 79K 8.8M 43K 739

2 11.9 176556 71876 335 744K 483M 194K 7250
11.1 176556 97667 48100 211 538K 279M 271K 6297

3 74.2 544572 228774
77.0 544572 308605 145588

64

Figure 6.8.: Tests under Power
k pre max static encoded smt vars prop dec conf

futex 1 4.97 79064 40988 23 110K 995 0 1
4.60 79064 31391 32527 12 93K 648 0 1

2 15.9 177422 96626 113 388K 8065 0 1
13.8 177422 77297 71482 92 306K 664 0 1

3 42.1 328862 183035
37.1 328862 150338 132424 218 767K 1524 0 1

ttas 1 1.30 21759 11985 2.2 77K 1.2M 886 55
1.11 21759 8445 9393 1.7 65K 1.0M 174 52

2 2.99 43971 25941 8.0 222K 8.5M 928 201
2.85 43971 16107 19986 10.4 186K 8.3M 1415 218

3 7.13 81582 50301 53 558K 41M 7524 392
6.27 81582 29589 37998 28 467K 33M 3767 380

t 1 1.50 29353 14632 3.9 86K 3.7M 3712 240
1.29 29353 13631 10092 2.6 64K 2.6M 7513 195

2 4.31 70543 38526 33 330K 45M 17K 728
3.72 70543 34483 25160 25 232K 29K 26K 704

3 10.1 130215 73924 132 826K 119M 19K 1209
7.97 130215 66133 47128 73 564K 79M 39K 1054

ms 1 4.55 84463 41774 26 318K 19M 13K 402
3.93 84463 41587 27444 24 232K 21M 13K 484

2 62.5 475911 254282
46.2 475911 265867 148120

3 >24 1937897 1066304
>25 1937897 1167569 584668

hsy 1 2.37 52378 25176 8.1 159K 7.0M 6910 227
2.20 52378 24258 17526 7.1 122K 5.0M 11K 193

2 18.5 207384 111898 248 1.3M 164M 27K 839
14.3 207384 104038 72976 194 944K 99M 30K 657

3 190 861552 493738
158 861552 464822 305690

dglm 1 5.17 90974 43333 42.9 361K 42M 37K 756
3.91 90974 42574 28869 25.9 264K 32M 39K 758

2 50.2 402004 214445
38.5 402004 203360 132819

3 3111 1342436 749427
1342436 729328 444575

Conclusion
The kernel of memory-model-aware verification consists of two decisions: Which as-

sertion to violate and for each involved load, which store to read from, in order to enable
the violation. Specialised algorithms exist for SC, TSO, as well as ARM and Power,
and are based on an operational model. In a generalised approach, the axiomatic model
restricts combinations of inter-thread communication in a well-structured manner, that
is non-the-less difficult to automatically reverse-engineer.

Dartagnan heavily relies on boundedness of the program, presenting a quantifier-free
boolean formula modulo at least some theory supporting arithmetics on some address
space, like integers or bit vectors. Boundedness establishes a kind of relation analysis,
a sound over-approximation of the set of possible and relevant relationships between
events of the program.

Motivated by the usage of must-components in other verifiers, we have introduced an-
other relation analysis to Dartagnan, under-approximating the set of static relationships
which only require both participating events to be executed, effectively reducing the set
of to-be encoded relationships and shifting their representing variables to be assigned
a truth value into an earlier iteration of a DPLL-based solver. This corresponds to
prepending a part of the solving process and supplying lemmas for the remainder based
entirely on structural properties of the input.

We have modified the already present control-flow-, dependency and pointer analyses
in order to present their results for successive tasks and to access those relevant structural
properties. The under-approximation performed by our tool has been proven correct in
this thesis.

Evaluation on some configurations show that the modified formulas can sometimes
confuse the solving process, potentially resulting in even greater resource consumption.
We will further examine this factor in the context of DPLL to understand its character
and enable the development of a more performant verifier.

To uncover more on this field, we mentioned in section 4.1.4 that pointer analysis may
be suggestible to memory-based information, enabling a higher precision for this ap-
proximative approach. In section 4.2, we studied the possibility of verification-exclusive
slicing, once the pointer analysis reaches a satisfying level of precision. Those methods
promise scalability to the verifier for larger programs and will be subject of our future
reseach.

Bibliography
[1] Jade Alglave. “A Shared Memory Poetics”. PhD thesis. Université Paris 7, 2010.

[2] Jade Alglave, Patrick Cousot, and Luc Maranget. “Syntax and semantics of the
weak consistency model specification language cat”. In: (Aug. 2016).

[3] Jade Alglave, Luc Maranget, and Michael Tautschnig. “Herding Cats: Modelling,
Simulation, Testing, and Data-mining for Weak Memory”. In: CoRR abs/1308.6810
(2013). eprint: 1308.6810. url: http://arxiv.org/abs/1308.6810.

[4] Jade Alglave et al. “Frightening Small Children and Disconcerting Grown-Ups:
Concurrency in the Linux Kernel”. In: Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems. ASPLOS ’18. Williamsburg, VA, USA: Association for Computing
Machinery, 2018, pp. 405–418. isbn: 9781450349116. doi: 10 . 1145 / 3173162 .
3177156.

[5] Lars Ole Andersen. “Program Analysis and Specialization for the C Programming
Language”. PhD thesis. DIKU, University of Copenhagen, May 1994.

[6] C. Barrett and C. Tinelli. “Satisfiability Modulo Theories”. In: Handbook of Satis-
fiability. 2018.

[7] Bernhard Beckert et al. “Using Relational Verification for Program Slicing”. In:
Software Engineering and Formal Methods. Ed. by Peter Csaba Ölveczky and
Gwen Salaün. Springer International Publishing, 2019, pp. 353–372. isbn: 978-3-
030-30446-1.

[8] Dirk Beyer. Software Verification: 10th Comparative Evaluation (SV-COMP 2021).
2021. url: https://sv-comp.sosy-lab.org/2021.

[9] Dat3M: Memory Model Aware Verification. url: github.com/hernanponcedeleon/
Dat3M.

[10] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Proceedings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’08/ETAPS’08. Budapest, Hungary: Springer-Verlag, 2008, pp. 337–340.
isbn: 3540787992.

[11] Simon Doherty et al. “Formal Verification of a Practical Lock-Free Queue Algo-
rithm”. In: vol. 3235. Sept. 2004, pp. 97–114. isbn: 978-3-540-23252-0. doi: 10.
1007/978-3-540-30232-2_7.

[12] H. Franke, T. J. Watson, and M. Kirkwood. “Fuss , Futexes and Furwocks : Fast
Userlevel Locking in Linux Hubertus Franke IBM”. In: 2005.

1308.6810
http://arxiv.org/abs/1308.6810
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://sv-comp.sosy-lab.org/2021
github.com/hernanponcedeleon/Dat3M
github.com/hernanponcedeleon/Dat3M
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-540-30232-2_7

68 Bibliography

[13] N. Gavrilenko et al. “BMC for Weak Memory Models: Relation Analysis for Com-
pact SMT Encodings”. In: Dillig I., Tasiran S. (eds) Computer Aided Verification.
CAV 2019. Lecture Notes in Computer Science, vol 11561. Springer, Cham. (2019).
doi: 10.1007/978-3-030-25540-4_19.

[14] Martin Gebser, Tomi Janhunen, and Jussi Rintanen. “SAT modulo Graphs: Acyclic-
ity”. In: Aug. 2014. isbn: 978-3-319-11557-3. doi: 10.1007/978-3-319-11558-
0_10.

[15] Danny Hendler, Nir Shavit, and Lena Yerushalmi. “A scalable lock-free stack al-
gorithm”. In: SPAA 2004: Proceedings of the 16th annual ACM symposium on
parallelism in algorithms and architectures. ACM, 2004.

[16] John B. Kam and Jeffrey D. Ullman. “Monotone data flow analysis frameworks”.
In: Acta Informatica, Issue 3, Volume 7, Page 305-317 (1977). issn: 1432-0525.
doi: 10.1007/BF00290339.

[17] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. “Model Checking
for Weakly Consistent Libraries”. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI 2019.
Phoenix, AZ, USA: Association for Computing Machinery, 2019, pp. 96–110. isbn:
9781450367127. doi: 10.1145/3314221.3314609.

[18] Markus Kusano and Chao Wang. Thread-Modular Static Analysis for Relaxed
Memory Models. 2017. eprint: 1709.10077.

[19] Leslie Lamport. “A Fast Mutual Exclusion Algorithm”. In: ACM Transactions on
Computer Systems 5, 1 (February 1987), 1-11. Also appeared as SRC Research
Report 7. (Nov. 1985), pp. 1–11. url: https://www.microsoft.com/en-us/
research/publication/fast-mutual-exclusion-algorithm/.

[20] Leslie Lamport. “How to Make a Correct Multiprocess Program Execute Correctly
on a Multiprocessor”. In: IEEE Trans. Comput. 46.7 (July 1997), pp. 779–782. issn:
0018-9340. doi: 10.1109/12.599898.

[21] K. Leino and M. Rustan. “This is Boogie 2”. June 2008. url: https://www.
microsoft.com/en-us/research/publication/this-is-boogie-2-2/.

[22] Luc Maranget, Susmit Sarkar, and Peter Sewell. A Tutorial Introduction to the
ARM and POWER Relaxed Memory Models. Aug. 2012. url: http://www.cl.
cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.

[23] Michael and Scott. “Simple, Fast, and Practical Non-Blocking and Blocking Con-
current Queue Algorithms”. In: PODC (1996).

[24] Hernán Ponce de León et al. “BMC with Memory Models as Modules”. In: Formal
Methods in Computer Aided Design (FMCAD) (2018), pp. 1–9.

[25] Hernán Ponce de León et al. “Dartagnan: Bounded Model Checking for Weak
Memory Models (Competition Contribution)”. In: Feb. 2020.

https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.1007/BF00290339
https://doi.org/10.1145/3314221.3314609
1709.10077
https://www.microsoft.com/en-us/research/publication/fast-mutual-exclusion-algorithm/
https://www.microsoft.com/en-us/research/publication/fast-mutual-exclusion-algorithm/
https://doi.org/10.1109/12.599898
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

Bibliography 69

[26] Hernán Ponce de León et al. “Portability Analysis for Weak Memory Models.
PORTHOS: One Tool for all Models”. In: (Aug. 2017).

[27] Hernán Ponce-de-León, Thomas Haas, and Roland Meyer. “Dartagnan: Leveraging
Compiler Optimizations and the Price of Precision (Competition Contribution)”.
In: Tools and Algorithms for the Construction and Analysis of Systems27th Inter-
national Conference, TACAS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27 – April 1, 2021, Proceedings, Part II 12652 (Feb. 2021), pp. 428–432.
url: https://europepmc.org/articles/PMC7984541.

[28] Programming Languages - C. 2011. url: http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1570.pdf.

[29] Zvonimir Rakamaric and Michael Emmi. “SMACK: Decoupling Source Language
Details from Verifier Implementations”. In: Proceedings of the 26th International
Conference on Computer Aided Verification (CAV). Ed. by Armin Biere and Roder-
ick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014, pp. 106–
113. doi: 10.1007/978-3-319-08867-9_7.

[30] Thomas Reps. “Undecidability of Context-Sensitive Data-Dependence Analysis”.
In: ACM Trans. Program. Lang. Syst. 22.1 (Jan. 2000), pp. 162–186. issn: 0164-
0925. doi: 10.1145/345099.345137.

[31] Susmit Sarkar et al. “Synchronising C/C++ and POWER”. In: Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’12. Beijing, China: Association for Computing Machinery, 2012,
pp. 311–322. isbn: 9781450312059. doi: 10.1145/2254064.2254102.

[32] Susmit Sarkar et al. “Understanding POWER Multiprocessors”. In: PLDI (2011).

[33] SMT-LIB The Satisfiability Modulo Theories Library: Logics. url: smtlib.cs.
uiowa.edu/logics.shtml.

[34] Bolesław K. Szymański. “A simple solution to Lamport’s concurrent programming
problem with linear wait”. In: Proceedings of the 2nd international conference on
Supercomputing - ICS ’88. ACM, June 1988, pp. 621–626. doi: 10.1145/55364.
55425.

[35] R. K. Treiber. Systems programming: Coping with parallelism. Tech. rep. RJ 5118.
IBM Almaden Research Center, 1986.

[36] Viktor Vafeiadis et al. “Common Compiler Optimisations Are Invalid in the C11
Memory Model and What We Can Do about It”. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’15. Mumbai, India: Association for Computing Machinery, 2015, pp. 209–
220. isbn: 9781450333009. doi: 10.1145/2676726.2676995.

https://europepmc.org/articles/PMC7984541
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1145/345099.345137
https://doi.org/10.1145/2254064.2254102
smtlib.cs.uiowa.edu/logics.shtml
smtlib.cs.uiowa.edu/logics.shtml
https://doi.org/10.1145/55364.55425
https://doi.org/10.1145/55364.55425
https://doi.org/10.1145/2676726.2676995

A. Storage Device
The storage device contains a git repository Dat3M, containing a copy of our fork of

the project [9]. The branches final-no and final-yes define the configurations that
were evaluated and compared in chapter 6, one without and one with analysis of static
relationships, respectively.

Besides the programmatic appendix, the directory evaluation contains copies of all
measurements taken during the course of this thesis. The subdirectory 2021-06-15
especially contains the logs that the presented tables base on. The program and model
definition files can also be found there.

In directory ref there is a collection of scientific articles and related work that were
consulted for this thesis.

The git repository thesis maintains the source code of this document.

	Program
	Program Order
	Barriers

	Atomicity
	Load-Reserved / Store-Conditional

	Control Flow Analysis
	Dependency
	Control Dependency
	Data Dependency
	Address Dependency

	Boundedness

	Memory
	Axiomatic Semantics of the Model
	Operational Semantics of the Model
	Reordering
	Out of Thin Air

	Verification
	Satisfiablility
	Encoding
	Data Flow
	Communication
	Consistency
	Refinement

	Analysis
	Alias Analysis
	Context-Insensitivity
	Flow-Insensitivity
	Field-Sensitivity
	Model Checking

	Optimisation
	Relation Analysis

	Related Work
	Thread-Modular Static Analysis for Relaxed Memory Models
	SAT modulo Graphs: Acyclicity
	A Shared Memory Poetics
	Understanding POWER Multiprocessors
	Herding cats: Modelling, Simulating, Testing and Data-mining for Weak Memory
	Common Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it

	Evaluation
	Locking
	Spinlock
	Fast userspace mutual exclusion

	Lockfree Datastructures
	Treiber's stack
	Michael and Scott's Queue

	Results

	Bibliography
	Storage Device

