
Roland Meyer

Concurrency Theory

– Lecture Notes –

February 17, 2012

University of Kaiserslautern

Contents

Part I Concurrent Programs and Petri Nets

1 Introduction to Petri Nets . 3
1.1 Syntax and Semantics . 3
1.2 Boundedness . 5

2 Invariants . 11
2.1 Marking Equation . 11
2.2 Structural and Transition Invariants . 13
2.3 Traps and Siphons . 15
2.4 Verification by Linear Programming . 17

3 Unfoldings . 23
3.1 Branching Processes . 24
3.2 Configurations and Cuts . 26
3.3 Finite and Complete Prefixes . 27

3.3.1 Constructing a finite and complete prefix 27

4 Coverability . 29
4.1 Coverability Graphs . 29

Part II Network Protocols and Lossy Channel Systems

5 Introduction to Lossy Channel Systems . 35
5.1 Syntax and Semantics . 35

6 Well Structured Transition Systems . 39
6.1 Well Quasi Orderings . 39
6.2 Upward and downward closed sets . 41
6.3 Constructing well quasi orderings . 42
6.4 Well Structured Transition Systems . 43
6.5 Abdulla’s Backwards Search . 44

v

vi Contents

7 Simple Regularity and Symbolic Forward Analysis 49
7.1 Simple Regular Expressions and Languages . 49
7.2 Inclusion among simple regular languages . 52
7.3 Computing the Effect of Transitions . 53
7.4 Computing the Effect of Loops . 54
7.5 A Symbolic Forward Algorithm for Coverability 56

8 Undecidability Results for Lossy Channel Systems 59

9 Expand, Enlarge, and Check . 63
9.1 Domains of Limits . 64
9.2 Underapproximation . 65
9.3 Overapproximation . 65

9.3.1 And-Or Graphs . 66
9.3.2 Over(TS,Γ ′,L′) . 66

9.4 Overall Algorithm . 68

Part III Dynamic Networks and π-Calculus

10 Introduction to π-Calculus . 73
10.1 Syntax . 74
10.2 Names and Substitutions . 75
10.3 Structural Congruence . 76
10.4 Transition Relation . 77

11 A Petri Net Translation of π-Calculus . 79
11.1 Restricted Form . 80
11.2 Structural Semantics . 82

12 Structural Stationarity . 87
12.1 Structural Stationarity and Finiteness . 87
12.2 Derivatives . 88
12.3 First Characterization of Structural Stationarity 89
12.4 Second Characterization of Structural Stationarity 91

13 Undecidability Results . 95
13.1 Counter Machines . 95
13.2 From Counter Machines to Bounded Breadth 96
13.3 Undecidability of Structural Stationarity . 98
13.4 Undecidability of Reachability in Depth 1 . 100

List of Figures

1.1 Tree computation in the decision procedure for boundedness. 7
1.2 Petri net N0 computing A0(x) := x+1. 9
1.3 Petri net Nn+1 computing An+1(x+1) := An(An+1(x)). 10

3.1 Unfolding procedure. 28

4.1 Coverability graph computation. 31

7.1 Symbolic forward algorithm for coverability in LCS. 57

8.1 Sketch of the lossy channel system in the encoding of CPCP 60
8.2 Non-computability of channel contents . 62

9.1 Expand, Enlarge, and Check. 69

11.1 Graph interpretation of a π-Calculus process . 80
11.2 Illustration of unnecessary transitions . 84
11.3 Structural semantics of an example process . 85
11.4 Illustration of the transition system isomorphism in Theorem 11.1 . . . 86

12.1 Transition sequence illustrating unbounded breadth 91
12.2 Transition sequence illustrating unbounded depth 92

13.1 Proof of undecidability of structural stationarity 98

vii

Part I
Concurrent Programs and Petri Nets

Concurrent programs, communicating asynchronously over a shared memory or
synchronously via remote method invocation, can be conveniently modelled in
terms of Petri nets. We introduce the basics of place/transition Petri nets, discuss
fundamental verification problems, and study related analysis algorithms.

Chapter 1
Introduction to Petri Nets

Abstract First definitions on Petri nets and the notion of boundedness.

1.1 Syntax and Semantics

We present the basic concepts of Petri nets along the lines of [?, ?, ?]. Different
from classical textbooks, we put some emphasis verification problems like deadlock
freedom, reachability, coverability, and boundedness.

Definition 1.1 (Petri net). A Petri net is a triple N = (S,T,W) where S is a finite
set of so-called places, T a finite set of transitions, and W : (S×T)∪ (T ×S)→ N
a weight function. Places and transitions are disjoint, S∩T = /0.

Graphically, we represent places by circles, transitions by boxes, and the weight
function by directed edges. More precisely, for W (s, t) = k with k ∈ N we draw an
edge from s to t that is labelled by k, and similar for edges W (t,s) from t to s. We
omit edges weighted zero, and draw unlabelled ones if the weight is one.

The preset •s of a place s ∈ S contains the transitions with an arc leading to
this place, •s := {t ∈ T | W (t,s) > 0}. Those transitions act productive on s. The
transitions that consume from s are in the postset of s, s• := {t ∈ T | W (s, t)> 0}.
For transitions t ∈ T , the notions are similar. They operate upon the places in their
preset •t := {s ∈ S | W (s, t)> 0} and in their postset t• := {s ∈ S | W (t,s)> 0}.

Petri nets are automata comparable to finite state automata or Turing machines.
Like every automaton model, they come equipped with a notion of state — called a
marking in Petri nets — that influences the actions taken along a computation. What
differentiates Petri nets from the remaining automata is the concurrency they reflect.
A single Petri net typically captures the interaction of several programs. Therefore, a
marking has to determine the next actions in all programs. The solution is to collect
the places the different programs are currently in.

Definition 1.2 (Marking and marked Petri net). Let N = (S,T,W). A marking is a
function M ∈NS that assigns a natural number to every place. A marked Petri net is a

3

4 1 Introduction to Petri Nets

pair (N,M0) of a Petri net and an initial marking M0. We also write N =(S,T,W,M0)
for a marked Petri net.

Markings are visualised by tokens, dots inserted into the circles that represent the
places of a Petri net. For M(s) = k with k ∈ N we put k dots into the corresponding
circle and say that place s contains k tokens.

To assess the complexity of verification problems for Petri nets, we measure their
size by counting the number of places, transitions, arcs, and tokens.

Definition 1.3 (Size of a Petri net). The size of N = (S,T,W,M0) is ||N|| := |S|+
|T |+∑s∈S ∑t∈T (W (s, t)+W (t,s))+∑s∈S M0(s).

The execution of transitions, called firing and denoted by1 M1[t〉M2, changes the
token count. But as markings are defined to be semi-positive, there is a restriction.
A transition can only be fired if the places in its preset contain enough tokens.

Definition 1.4 (Enabledness and deadlock). Consider N = (S,T,W) and M ∈ NS.
Transition t ∈ T is enabled in M if M ≥W (−, t). Marking M is a deadlock of N if it
does not enable any transition.

The detection of deadlocks in a concurrent program is a fundamental problem in
verification. Deadlocks point to incorrect assumptions on the synchronisation be-
haviour and thus to major flaws in the system of interest.

If transition t is enabled, its firing produces W (t,s) tokens on every place s in its
postset and, at the same time, consumes W (s, t) tokens from the places in its preset.

Definition 1.5 (Firing relation). Let N =(S,T,W). By definition, the firing relation
[〉 ⊆NS×T ×NS contains the triple (M1, t,M2), denoted by M1[t〉M2, if t is enabled
in M1 and M2 = M1−W (−, t)+W (t,−).

We extend the firing relation to finite sequences of transitions σ ∈ T ∗ inductively
as follows. The empty word ε does not change a marking, M[ε〉M for all M ∈ NS.
For any two markings M1,M2 ∈NS we then have M1[σ .t〉M2 if there is M ∈NS with
M1[σ〉M and M[t〉M2. The syntax M1[σ〉 indicates that transition sequence σ ∈ T ∗

is enabled in M1, which means there is a marking M2 ∈ NS so that M1[σ〉M2. An
infinite transition sequence σ ∈ T ω is enabled in M1, if so are all its finite prefixes.
This means for all σa ∈ T ∗ and σb ∈ T ω with σ = σa.σb we have M1[σa〉.

Definition 1.6 (Termination). A Petri net N =(S,T,W,M0) terminates if no infinite
transition sequence is enabled in M0.

Termination is a second elementary problem in verification. Infinite transition se-
quences point to livelocks in a concurrent program, where components fail to leave
certain commands.

A marking M2 is said to be reachable from marking M1, if there is a firing se-
quence leading from M1 to M2. We denote the set of all markings reachable from
M1 by R(M1) := {M2 ∈ NS | M1[σ〉M2 for some σ ∈ T ∗}. For the initial marking,

1 Automata theory commonly uses the syntax M1
t→M2 for the execution of transitions.

1.2 Boundedness 5

we typically write R(N) instead of R(M0) and call it the state space of Petri net N.
Based on these notions, we define the reachability graph that documents the full
firing behaviour of a Petri net. Its set of vertices is the state space of the Petri net,
the edges correspond to the firing relation. More precisely, a t-labelled edge from
M1 to M2 represents the firing M1[t〉M2. The initial marking forms the initial vertex.

Definition 1.7 (Reachability graph). Consider the Petri net N = (S,T,W,M0). The
reachability graph of N is RG(N) := (R(N), [〉∩ (R(N)×T ×R(N)),M0).

Mutual exclusion properties fail if at least two programs enter the critical section.
Hence, in the correctness proof one ensures that no marking M′ is reachable that
dominates marking M with two programs in the critical section. This weaker notion
of reachability is called coverability.

Definition 1.8 (Coverability). Consider the Petri net N = (S,T,W). Marking M2 is
coverable from M1, if there is M ∈ R(M1) with M ≥M2.

We give a precise definition of the ordering among markings. Let M,M′ ∈ NS. We
write M ≥ M′ for the fact that M(s) ≥ M′(s) for all places s ∈ S. Syntax M M′

indicates that M ≥M′ and additionally there is a place s ∈ S with M(s)> M′(s).
Not only is coverability often sufficient to ensure a system’s correctness. As we

shall see, it is also a property that remains decidable for infinite state models where
reachability is lost.

1.2 Boundedness

Petri nets may have an infinite state space. Equivalently, there is no bound on the
number of tokens that a place may contain. Amongst the bounded nets, safe nets
where places carry at most one token play an important role.

Definition 1.9 (Boundedness). Consider Petri net N = (S,T,W,M0). Place s ∈ S is
called k-bounded with k ∈ N if in every reachable marking M ∈ R(N) it carries at
most k tokens, M(s)≤ k. The place is safe if it is 1-bounded, and it is bounded if it
is k-bounded for some k ∈ N. The Petri net is called k-bounded, safe, or bounded if
all its places satisfy the corresponding property.

We restrict our attention to unbounded and to safe Petri nets.

As was indicated above, unbounded Petri nets are those with an infinite state space.

Lemma 1.1 (Finiteness). Petri net N is bounded if and only if R(N) is finite.

One of the fascinating things about Petri nets is that important verification problems
remain decidable in the infinite state case. In this section, we develop a decision
procedure for boundedness that may be applied, for example, to examine the number

6 1 Introduction to Petri Nets

of threads a server may generate. The argumentation serves as an appetiser for the
proofs that are about to follow in this lecture. In particular, the idea of monotonicity
appears in different flavours. Technically, monotonicity states that larger markings
are able to imitate the behaviour of smaller ones.

Lemma 1.2 (Monotonicity). Consider a Petri net N = (S,T,W) and markings
M,M1,M2 ∈ NS. If M1[σ〉M2 then (M1 +M)[σ〉(M2 +M).

Monotonicity shows that sequences of increasing markings point to an infinite state
space.

Lemma 1.3 (From increasing markings to unboundedness). Consider some Petri
net N. If there are M1 ∈ R(N) and M2 ∈ R(M1) with M2 M1, then N is unbounded.

Idea. By monotonicity, a transition sequence σ from M1 to M2 with M2M1 can be
repeated in M2. It leads to a marking M3 with M3 M2 for which the argumentation
again holds. We thus obtain

M0[τ〉M1[σ〉M2[σ〉M3[σ〉 . . . with M1 �M2 �M3 � . . .

The sequence adds an unbounded number of tokens to at least one place.

Proof. Assume M0[τ〉M1[σ〉M2 with M2 M1 and σ ,τ ∈ T ∗. Since M2 M1, the
difference M := M2−M1 is greater zero, M 0. The observation that M2 = M1+M
now justifies M1[σ〉(M1 +M). With monotonicity in Lemma 1.2, we add M to M1
and have (M1 + M)[σ〉(M1 + 2M). This means, sequence σ can also be fired in
M1 +M. Repeating the argumentation shows that M1[σ

i〉(M1 + iM) for every i ∈N.
To establish unboundedness, we proceed by contradiction. Let k ∈ N bound

the token count in all markings on all places. Since M 0, there is a place
s ∈ S with M(s) > 0. We argued above that firing σ for (k + 1)-times is feasi-
ble and yields M1[σ

k+1〉(M1 +(k+ 1)M). In the resulting marking, place s carries
(M1 +(k+ 1)M)(s) = M1(s)+ (k+ 1)M(s) ≥ k+ 1 tokens, which contradicts the
boundedness assumption. ut

Interestingly, also the reverse holds. If a Petri net is unbounded, one finds the token
count increasing on some path. The proof relies on the fact that NS is well-quasi-
ordered. Every infinite sequence of markings (Mi)i∈N contains comparable elements
i < j with Mi ≤M j. We devote the full Section ?? to well-quasi-orderings and take
this fact for granted.

Lemma 1.4 (Comparable elements). Consider Petri net N. Every infinite sequence
(Mi)i∈N of markings in R(N) contains indices i < j with Mi ≤M j.

Lemma 1.5 (From unboundedness to increasing markings). If N is unbounded,
then there are M1 ∈ R(N) and M2 ∈ R(M1) with M2 M1.

Idea. We summarise all transition sequences that do not repeat markings in a tree.
To be precise, we say that a transition sequence M0[t1〉M1[t2〉 . . . [tn〉Mn does not
repeat markings, if Mi 6= M j for all i 6= j. Note that every reachable marking can

1.2 Boundedness 7

be obtained without repetitions. Hence, as we have an infinite state space, the tree
is infinite. The outdegree is bounded by the number of transitions. An application
of König’s lemma2 now shows the existence of an infinite path (Mi)i∈N in this tree.
Lemma 1.4 gives two comparable elements i < j with Mi ≤ M j on the path. By
construction, the markings are distinct, Mi �M j, as required.

Proof. Consider the unbounded Petri net N = (S,T,W,M0). We construct a tree
(Q,→,q0, lab) with vertices Q, edges→⊆Q×T ×Q, root q0, and vertex labelling
lab that assigns to every q ∈ Q a marking M ∈ NS. The procedure, stated in pseudo
code in Figure 1.1, works as follows. The root q0 is labelled by the initial marking.
For every vertex q1 ∈Q labelled by M1 and every transition t ∈ T , compute M2 with
M1[t〉M2. If M2 does not label a vertex on the path from q0 to q1, add a new vertex
q2 to the tree and label it by M2. Add the edge (q1, t,q2). If transition t is disabled
in M1 or M2 has already been seen, consider the next transition.

lab(q0) = M0

for all q1 ∈ Q do
for all t ∈ T do

let lab(q1) = M1

if M1[t〉M2 and M2 does not label a vertex on the path from q0 to q1 then
add new vertex q2 to Q with lab(q2) = M2

add edge (q1, t,q2) to→
(♠) //decision procedure in Theorem 1.1

end if
end for all

end for all
(♣) //decision procedure in Theorem 1.1

Fig. 1.1 Tree computation in the decision procedure for boundedness.

Since N is unbounded, its state space is infinite according to Lemma 1.1. Every
marking M ∈ R(N) is reachable without repetitions and thus labels some q ∈ Q.
Therefore, the tree computed above is infinite. Its outdegree is bounded by the
number of transitions, hence finite. By König’s lemma, there is an infinite path
q0, t1,q1, t2,q2, t3 . . . in the tree with (qi, ti+1,qi+1) ∈ → for all i ∈ N. Its vertex
labelling lab(qi) = Mi forms an infinite sequence of markings (Mi)i∈N for which
Lemma 1.4 finds two comparable elements Mi≤M j with i< j. They are different by
construction, Mi �M j. The observation that edges represent transition firings yields
M0[t1〉M1[t2〉M2[t3〉 . . . and allows us to conclude Mi ∈ R(M0) and M j ∈ R(Mi). ut

The proof of Lemma 1.5 suggests the following decision procedure for bounded-
ness. Compute the tree of all transition sequences and report unboundedness at (♠)

2 König’s lemma states that every infinite tree of finite outdegree contains an infinite path.

8 1 Introduction to Petri Nets

when increasing markings are found. If no such markings exist, the computation
eventually stops and returns boundedness at (♣). The procedure is correct for both,
depth-first and breadth-first implementations of the tree computation.

Theorem 1.1 (Decidability of boundedness). It is decidable, whether a Petri net N
is bounded.

To turn the algorithm given in Figure 1.1 into a decision procedure for boundedness,
add the following commands at the points specified:

(♠) if M2 M for some M labelling a vertex on the path from q0 to q1 then
return unbounded

end if

(♣) return bounded

Proof. To establish correctness, assume the decision procedure is applied to an
unbounded Petri net. By Lemma 1.5, there are M1 ∈ R(N) and M2 ∈ R(M1) with
M2 M1. Hence, a breadth-first implementation of the tree computation will find
vertices q1 reachable from q0 and labelled by M1 as well as q2 reachable from q1
and labelled by M2. The if condition in (♠) applies and returns unbounded.

The proof of Lemma 1.5 actually shows that every infinite path contains two
comparable elements M2 M1. Hence, a depth-first implementation either finds
(♠) satisfied or backtracks from a finite path. As the tree contains an infinite path,
the search eventually returns the correct answer.

If the algorithm is applied to a bounded Petri net, by Lemma 1.3 (contraposition)
there are no M1 ∈R(N) and M2 ∈R(M1) with M2M1. Condition (♠) never applies.
However, as the Petri net is bounded its state space is finite by Lemma 1.1. The tree
computation eventually stops and returns bounded at (♣). ut

For bounded Petri nets, the decision procedure determines the full state space. To
demonstrate that this leads to unacceptable runtimes, we present a construction by
Ernst Mayr (∗1950) and Albert Meyer (∗1941). It provides bounded Petri nets of size
O(n) that generate the astronomic number of A(n) tokens. The Ackermann function
A(n) is well known to be not primitive recursive.

Definition 1.10 (Ackermann function). Consider the functions Ai ∈NN defined by

A0(x) := x+1 An+1(0) := An(1) An+1(x+1) := An(An+1(x))

The Ackermann function A ∈ NN is defined as A(n) := An(n).

Theorem 1.2 (Mayr and Meyer [?]). For every n ∈N, there is a bounded Petri net
Nn of size O(n) that generates A(n) tokens on some place.

As a consequence, there is no primitive recursive relationship between the size of a
bounded Petri net and the size of its state space.

1.2 Boundedness 9

Corollary 1.1. For bounded Petri nets N, the size of R(N) and thus RG(N) is not
bounded by a primitive recursive function in the size of N.

Proof (of Theorem 1.2). We follow the presentation in [?]. The sequence of Petri
nets Nn is constructed inductively. To this end, we equip them with four interface
places. A starting and a halting place control the computation so that the Petri nets
terminate when the halting place gets marked. The input place expects x ∈N tokens
and the transition sequences produce up to An(x) tokens on the output place.

Let Nn(x) mean that the input of Nn contains x ∈N tokens and the start place has
a single token. The remaining places are unmarked. To make our statement precise,
we require that Nn(x) is bounded by An(x). The Petri net terminates. Moreover,
M ∈ R(Nn(x)) is a deadlock if and only if M(stop) = 1 and M(start) = 0. There is
such a deadlock with M(stop) = 1, M(out) = An(x), and M(s) = 0 otherwise.

Petri net N0 is depicted in Figure 1.2. It moves all tokens on the input place
to the output place, and finally adds one token before halting. The conditions on
boundedness and termination are readily checked.

Fig. 1.2 Petri net N0 comput-
ing A0(x) := x+1.

start

in

stop

out

Petri net Nn+1 extends Nn by connecting to the interface places. The construction,
given in Figure 1.3, exploits the equation

An+1(x) = An(. . .An(An︸ ︷︷ ︸
(x+1)−times

(1)) . . .).

To compute An+1(x) with Nn+1(x), observe that by the induction hypothesis Nn(1)
always terminates with a token on stop. Among the transition sequences there is one
that, upon halting, gives An(1) tokens on the output place and an otherwise (up to
stop) empty net Nn. We transfer the tokens back to the input place of Nn, thereby
decrementing x. This restarts Nn with input An(1), Nn(An(1)). We again apply the
hypothesis to find a terminating run that produces An(An(1)) tokens on the output
place of Nn. This means, we have An+1(1) tokens on the output place of Nn and still
x− 1 tokens in the input place of Nn+1. Repeating the computation and transfer of
Nn for another (x−1)-times provides An+1(x) tokens on the output place of Nn. The
Petri net cannot be restarted as no tokens are left on the input of Nn+1. Instead the
An+1(x) tokens on the output of Nn are transferred to the output of Nn+1. Petri net
Nn+1(x) then halts with the required token count. In Figure 1.3, the start of Nn on 1
as well as the loop construction from the output place of Nn back to its input place
are highlighted in red and blue, respectively.

Petri net Nn+1(x) does not guarantee that all tokens on the output place of Nn
are transferred back to the input. This does not lead to a bound larger than An+1(x).
Assume we transfer y tokens and x tokens remain in the output place of Nn. After

10 1 Introduction to Petri Nets

start

in

strt

in
Nn

stp

out

stop

out

Fig. 1.3 Petri net Nn+1 computing An+1(x+1) := An(An+1(x)).

the computation of Nn(y), we find at best An(y)+ x tokens on the output of Nn. By
An(y)+x≤ An(y+x), keeping tokens in the output place only decreases the overall
token count. Hence, An+1(x) in fact bounds the token count of Nn+1(x).

The size of N0 is 17. For Nn, we add 33 items to the size of Nn−1 and obtain

||Nn||= 33+ ||Nn−1||= 33n+17.

Initially, the input place of Nn carries n tokens and the start place has a single token.
The marked Petri net thus has a size of 34n+18 ∈ O(n). ut

Chapter 2
Invariants

Abstract Linear programming techniques for Petri net verification.

2.1 Marking Equation

Our goal is to exploit linear algebraic techniques for reasoning about (un)reachability
and (non)coverability of markings. To this end, we rephrase the firing relation as a
linear algebraic operation. As a first step, equip the set of places in N = (S,T,W,M0)
with a total ordering that we indicate by indices S = {s1, . . . ,sn}. It turns marking
M ∈ NS into a vector M ∈ N|S| of dimension |S|. Similarly, for a fixed transition
t ∈ T the weight function W : (S×T)∪(T ×S)→N is expressed by the two vectors

W (−, t) :=

W (s1, t)
...

W (sn, t)

 W (t,−) :=

W (t,s1)
...

W (t,sn)

 in N|S|.

With an additional ordering on transitions, T = {t1, . . . , tm}, the weight function W
yields two matrices. The forward matrix F ∈ N|S|×|T | contains the weights on arcs
from places to transitions, i.e., forward relative to the places. The backwards matrix
B ∈ N|S|×|T | gives the arcs from transitions to places:

F :=
(

W (−, t1) . . . W (−, tm)
)

B :=
(

W (t1,−) . . . W (tm,−)
)
.

Together, forward and backward matrix contain full information about the weight
function so that we may alternatively give N = (S,T,W) as N = (S,T,F,B).

Definition 2.1 (Connectivity matrix). Let N = (S,T,F,B). Its connectivity matrix
is C := B−F ∈ Z|S|×|T |.

11

12 2 Invariants

The connectivity matrix does not indicate loops in the Petri net. If there are arcs
from place s to transition t and vice versa, W (s, t) = 1 =W (t,s), we get C(s, t) = 0.
Missing arcs with W (s, t) = 0 =W (t,s) have the same entry.

The i-th column of C gives the difference W (ti,−)−W (−, ti), which is precisely
the vector added to a marking upon firing of ti. With this insight, we can determine
the goal marking M2 reached from M1 via a full transition sequence σ directly from
M1 and σ , without intermediary firings. The key is that just the number of transitions
but not their ordering in a firing sequence is important.

Definition 2.2 (Parikh image). Consider transitions T . The Parikh image of σ ∈ T ∗

is the function p(σ) ∈ NT with (p(σ))(t) = number of occurrences of t in σ .

To illustrate the independence of the transition ordering, consider some sequence
σ = t1.t2.t1 over two transitions. If M1[σ〉M2 by definition of firing M2 satisfies

M2 = M1 +C(−, t1)+C(−, t2)+C(−, t1)
= M1 +C(−, t1)(p(σ)(t1))+C(−, t2)(p(σ)(t2)).

Taking the Parikh image as a vector, this sum is M0 +C · p(σ).

Lemma 2.1 (Marking equation). Consider N = (S,T,W) with connectivity matrix
C ∈ N|S|×|T |, M1,M2 ∈ N|S|, and σ ∈ T ∗. If M1[σ〉M2 then M2 = M1 +C · p(σ).

As an immediate consequence, if marking M2 is reachable from M1 the equation
M2−M1 = C · x has a solution in N|T |. This can be applied in contraposition for
verification. If the equation has no solution then M2 is not reachable from M1.

Vice versa, any vector K ∈ N|T | is the Parikh image of a transition sequence,
K = p(σ) for some σ ∈ T ∗. This σ has an enabling marking, say M1 ∈N|S|. Hence,
the following weak reverse of the above holds. If M = C · x has a natural solution,
then there is a marking M1 that reaches M1 +M. We summarise both arguments.

Lemma 2.2. Consider N = (S,T,F,B) with connectivity matrix C∈N|S|×|T | and let
M ∈N|S|. There is a marking M1 ∈N|S| with M1+M ∈ R(M1) if and only if M =C ·x
has a solution in N|T |.

Interestingly, in combination with the statements on boundedness from Section 1.2,
Lemma 2.2 provides a characterisation of structural boundedness, i.e., boundedness
under any initial marking.

Proposition 2.1 (Characterisation of structural boundedness). Consider Petri
net N =(S,T,F,B) with connectivity matrixC∈N|S|×|T |. There is an initial marking
M0 so that (N,M0) is unbounded if and only if C · x 0 has a solution in N|T |.

Proof. For the direction from right to left, assume C · x 0 has a solution in N|T |.
This means, there is a marking M 0 with C · x = M. By Lemma 2.2, we find a
marking M1 with M1 +M ∈ R(M1). We are thus in a position to apply Lemma 1.3
to the Petri net N with initial marking M1, which proves unboundedness. ut

2.2 Structural and Transition Invariants 13

Parametric verification considers families of systems where the instances differ only
in certain parameters. A typical example are client server architectures that vary in
the number of threads. In this light, Proposition 2.1 can be interpreted as follows.
Solving C · x 0 checks for whether the size, for example of buffers, is bounded in
all instances of the architectural family.

2.2 Structural and Transition Invariants

In our running example, we noticed that always either the semaphore or the critical
section carries a token. This can be formulated as

M(pcs)+M(sem) = 1, (2.1)

and the equation holds in every reachable marking. Structural invariants provide a
means to derive such equations. Technically, a structural invariant is a vector I ∈Z|S|
with CT · I = 0. Here, CT denotes the transpose of the connectivity matrix, and
therefore I is in fact an |S|-dimensional vector. The intuition is that I gives a weight
to the tokens on each place.

Definition 2.3 (Structural invariant). Consider N = (S,T,W) with connectivity
matrix C ∈ Z|S|×|T |. A structural invariant I ∈ Z|S| is a solution to CT · x = 0.

The main property of structural invariants is that the I-weighted sum of tokens stays
constant under transition firings. This follows, by a beautiful algebraic trick, from
the marking equation and the requirement that CT · I = 0.

Theorem 2.1 (Invariance of structural invariants). Let I ∈ Z|S| be a structural
invariant of N = (S,T,W,M0). Then for all M ∈ R(N) we have IT ·M = IT ·M0.

Before we turn to the proof, we show how to derive Equation 2.1 in our example
with the help of Theorem 2.1. Note that I(pw) = 0 and I(pcs) = 1 = I(sem) is a
structural invariant of NM+S. The initial marking is M0(pw) = 2, M0(sem) = 1, and
M0(pcs) = 0. An application of Theorem 2.1 yields

IT ·M = 0M(pw)+1M(pcs)+1M(sem) = 1 = IT M0,

as required. The equation holds for all markings reachable in NM+S.

Idea (Theorem 2.1). The proof relies on the marking equation M = M0 +C · p(σ).
We multiply the invariant from the left and exploit the laws of transposition

IT · (C · p(σ)) = (CT · I)T · p(σ)

to swap the positions of I and C. The definition of structural invariants concludes
the proof.

14 2 Invariants

Proof. Let N = (S,T,W,M0) be a Petri net with connectivity matrixC∈Z|S|×|T | and
structural invariant I ∈ Z|S|. Assume marking M ∈ R(N) is reachable by M0[σ〉M
for some σ ∈ T ∗. The marking equation yields M = M0 +C · p(σ). We multiply the
transposed of I to both sides and obtain

IT ·M
{Marking equation } = IT · (M0 +C · p(σ))

{ Distributivity } = IT ·M0 + IT · (C · p(σ))

{ Associativity, transposition self inverse } = IT ·M0 +(IT ·CT T
) · p(σ)

{ Transposition law BT ·AT = (A ·B)T } = IT ·M0 +(CT · I)T · p(σ)

{ Definition structural invariant } = IT ·M0 +0T · p(σ).

The latter is IT ·M0 which concludes the proof. ut
Applied in contraposition, Theorem 2.1 yields a reachability check. If a marking
does not satisfy the equality stated above, it cannot be reachable.

Corollary 2.1 (Unreachability via structural invariants). Let N = (S,T,W,M0)
with structural invariant I ∈ Z|S| and M ∈ N|S|. If IT ·M 6= IT ·M0, then M /∈ R(N).

Structural invariants can be computed in polynomial time using Gauss elimination
with O(||N||3). Therefore, this test can be performed efficiently prior to heavier
reachability analyses. To obtain more expressive structural invariants, they can be
added up and scaled by a constant.

Lemma 2.3. If I1 and I2 are structural invariants of N, so are I1 + I2 and kI1, k ∈ Z.

Invariants also yield bounds for the places that are weighted strictly positive. The
lemma follows from Theorem 2.1 and only holds for non-negative invariants.

Lemma 2.4 (Place boundedness from structural invariants). Let N = (S,T,W)
with structural invariant I ∈ N|S|. Let s ∈ S with I(s) > 0. Then s is bounded under
any initial marking M0 ∈ N|S|.
As a consequence, a Petri net N = (S,T,W) that has a covering structural invariant
I ∈ N|S| with I(s)> 0 for all s ∈ S is bounded under any initial marking.

Corollary 2.2 (Structural boundedness from structural invariants). If N has a
covering structural invariant, it is structurally bounded.

Definition 2.4 (Transition invariant). Consider N = (S,T,W) with connectivity
matrix C ∈ Z|S|×|T |. A transition invariant J ∈ N|T | is a solution to C · x = 0.

Transition sequences with Parikh vector J do not change the marking. Vice versa,
if a transition sequence does not change the marking, then its Parikh vector is a
transition invariant.

Theorem 2.2 (Invariance of transition invariants). Consider transition sequence
M[σ〉M′ in a Petri net N = (S,T,W). Then M′ =M if and only if p(σ) is a transition
invariant of N.

Transition invariants again can be added up and scaled by a constant. Reachability
graphs of Petri nets without transition invariants are acyclic.

2.3 Traps and Siphons 15

2.3 Traps and Siphons

Petri nets are bipartite graphs. Up to now, we have used this fact only indirectly
when we defined the connectivity matrix. In this section, we explictily use the graph
structure to derive inequalities on the token count that are invariant under firings.
The corresponding notions of siphons and traps are classical in Petri net theory.
They describe regions of places in a Petri net that tokens can never leave or enter.

Traps and siphons can be defined for Petri nets with weighted arcs, but this causes
a formal overhead. We therefore assume that transitions are weighted either zero or
one. More formally, in this section we consider ordinary Petri nets N = (S,T,W)
where W : (S×T)∪ (T ×S)→{0,1}.

Definition 2.5 (Trap). A trap is a subset Q ⊆ S of places that satisfies Q• ⊆ •Q. A
trap is said to be marked under M ∈ N|S| if M(q)≥ 1 for some q ∈ Q.

Intuitively, whenever a transition intends to remove tokens from a place in the trap,
then the transition will also produce tokens in some place in the trap. The places
need not coincide. As a consequence, initially marked traps remain marked in all
reachable markings.

Lemma 2.5 (Trap property). Let Q be a trap of Petri net N = (S,T,W,M0) that is
marked under M0. Then ∑q∈Q M(q) ≥ 1 holds for all M ∈ R(N).

The inequality may be satisfied by sets of places that do not form a trap. Therefore,
the reverse of the implication does not hold. The statement may be interpreted as a
necessary condition for reachability.

Corollary 2.3. Let Q⊆ S be an initially marked trap of N and M ∈ N|S| a marking.
If ∑q∈Q M(q) = 0 then M is not reachable, M /∈ R(N).

It can be shown that the union of traps again forms a trap. As a consequence, we
can restrict ourselves to families of traps that generate the remaining traps by union.
On the one hand, this reduces the effort when computing traps. On the other hand,
smaller traps yield more precise inequalities in Lemma 2.5.

Definition 2.6 (Generating family of traps). Let {Q1, . . . ,Qn} be a family of traps
in a Petri net N. The family is said to be generating if every trap Q of N can be
obtained as union of traps in the family, Q=

⋃
j∈J Q j for some subset J⊆{1, . . . ,n}.

A trap is called minimal if it does not contain further traps.

A generating family certainly contains all minimal traps in a Petri net. But in turn,
the minimal traps do not necessarily form a generating family. Moreover, there are
Petri nets with a single family of generating traps that is exponential in the size of the
net. Therefore, to use traps in verification, we should represent them symbolically
in some formalism instead of computing them explicitly.

As symbolic formalism, we again target linear programming. We set up a system
of linear inequalities

16 2 Invariants

Y T ·CQ ≥ 0 (2.2)
Y ≥ 0

whose rational solutions characterize traps. For the technical development, we first
introduce a variable Y (s) for every place s ∈ S. By definition, traps Q ⊆ S satisfy
Q• ⊆ •Q. For every place s1 ∈ Q and every transition t ∈ s•1 some place s2 ∈ t•

belongs to Q. With place variables, we formulate the requirement equivalently as

Y (s1) ≤ ∑
s2∈t•

Y (s2).

Fix s1 ∈ S and t ∈ s•1. To rephrase the above inequality with matrix multiplication, let
Es1 denote the unit vector for dimension s1. Moreover, we set up the postset vector
Vt• ∈ {0,1}|S| with Vt•(s) = 1 iff s ∈ t•. The inequality is then equivalent to

ET
s1
·Y ≤ V T

t• ·Y ⇔ Y T · (Vt• −Es1) ≥ 0.

To check the inclusion Q•⊆ •Q on all places in a trap and all surrounding transitions,
we summarize the above vectors Vt• −Es1 in a matrix.

Definition 2.7 (Trap matrix). The trap matrix CQ ∈ Z|S|×|S||T | is defined by setting
CQ(−,(s, t)) :=Vt• −Es if t ∈ s• and CQ(−,(s, t)) := 0 otherwise.

In combination with the equivalences derived above, we obtain a linear algebraic
characterization of traps. For a concise statement, consider Q ⊆ S. The associated
vector is KQ ∈Q|S| with KQ(s) := 1 if s ∈ Q and KQ(s) := 0 otherwise. Vice versa,
every vector K ∈Q|S| describes the set QK := {s ∈ S | K(s)> 0}.

Proposition 2.2. Consider Petri net N. If Q ⊆ S is a trap, then KQ ∈ Q|S| satisfies
Inequality 2.2. In turn, if K ∈Q|S| satisfies Inequality 2.2, then QK ⊆ S is a trap.

The concept dual to traps are so-called siphons. They describe regions in a Petri net
that cannot receive tokens. Technically, every transition that acts productive on the
places in a siphon also consumes tokens from the siphon.

Definition 2.8 (Siphon). A siphon of Petri net N is a subset D ⊆ S of places that
satisfies •D⊆ D•. A siphon is empty under M ∈ N|S| if M(s) = 0 for all s ∈ D.

A siphon that is initially empty blocks all transitions that produce tokens on it.

Lemma 2.6 (Siphon property). Consider Petri net N = (S,T,W,M0) with siphon
D⊆ S that is empty under the initial marking M0 ∈ N|S|. Then ∑s∈D M(s) = 0 holds
for all M ∈ R(N).

Like for traps, a union of siphons again yields a siphon. Moreover, empty siphons
characterize deadlock situations in a Petri net. The statement only holds for Petri
nets where every transition depends on a place, i.e., in the following we assume that
for each t ∈ T there is s ∈ S with s ∈ •t.

Lemma 2.7 (Deadlocks and empty siphons). If M ∈ N|S| is a deadlock of N then
there is a siphon D⊆ S that is empty under M.

2.4 Verification by Linear Programming 17

Set D := {s ∈ S | M(s) = 0} to contain the places that are empty in M. Consider
t ∈ •D. Since t is dead, there is s ∈ •t with M(s) = 0. This means t ∈ D•.

2.4 Verification by Linear Programming

We develop a powerful constraint-based verification algorithm for Petri nets that
is based on the linear algebraic insights obtained so far. Instead of constructing
the Petri net’s state space, the algorithm sets up a system of inequalities whose
infeasibility proves correctness. As a consequence, the approach circumvents the
state space explosion problem and is rather fast. Moreover, it is not restricted to
finite state systems. On the downside, the algorithm is only sound but not complete.
If it finds the constraint system infeasible, it concludes correctness of the Petri net. In
turn, although the Petri net is correct the algorithm may find the constraint system
feasible. In this case it returns unknown. To begin with, we make the notion of
correctness precise.

Definition 2.9 (Property). A property is a function P : N|S| −→ B that assigns a
Boolean value to each marking. We write P(M) rather than P(M)= t and similarly
¬P(M) for P(M) = f . A property holds for a Petri net N if P(M) holds for
all M ∈ R(N). A property is co-linear if its violation can be expressed by a linear
inequality: ¬P(M) if and only if A ·M ≥ B for some A ∈ Qk×|S| and B ∈ Qk for
some k ∈ N.

Definition 2.10 (Linear, integer, mixed programming). A linear programming
problem is a set of linear inequalities A ·X ≤ B with A ∈ Qm×n and B ∈ Qm on a
set of variables X ∈ Qn. The inequalities are also called constraints. There may be
an additional objective function CT ·X with C ∈ Qn to be maximized. We denote a
linear programming problem by

Variables: X (potentially with type)
Maximize CT ·X subject to

A ·X ≤ B.

A solution to the problem is a vector K ∈Qn that satisfies A ·X ≤ B. The solution is
optimal if it maximizes CT ·X in the space of all solutions.

If the solution is required to be integer, K ∈Zn, then the problem is called integer
programming problem. If some variables are to receive integer values while others
can be evaluated rational, we have a mixed programming problem. A linear, integer,
or mixed programming problem is called feasible if it has a solution. Otherwise it is
called infeasible.

Linear programming is in P while mixed and integer programming are NP-complete.
We explain how integer programming helps checking whether a Petri net N satisfies
a property P . Assume this is not the case. Then there is a marking M ∈ R(N) that

18 2 Invariants

violates the property. Recall that the marking equation overapproximates the state
space. This means M satisfies M = M0 +C ·X for some X ∈ N|T |. By co-linearity,
violation ¬P(M) is expressed by A ·M ≥ B. To sum up, a reachable marking that
violates the property solves the following integer programming problem.

Definition 2.11 (Basic verification system). Consider Petri net N = (S,T,W,M0)
and a co-linear property P defined by A ·X ≥ B for some A ∈ Qk×|S| and B ∈ Qk

with k ∈ N. The basic verification system (BVS) associated to N and P is

Variables: X ,M integer
M = M0 +C ·X

M,X ≥ 0
A ·M ≥ B.

We argued that feasibility of BVS is necessary for a violation to the property.

Proposition 2.3. Consider a Petri net N and a property P . If the associated BVS is
infeasible, then P holds for N.

Basic verification systems are too weak for the analysis of concurrent programs that
communicate via shared variables. Programs typically rely on tests of the form

c0; if x = 0 then c1; . . . else . . .

to determine the flow of control. These tests are canonically modelled by loops
in Petri nets. There is a transition t leading from a place for command c0 to a
place for command c1. This transition has arcs from and to a place s that reflects
the valuation x = 0. In consequence, the connectivity matrix has entry C(s, t) =
W (t,s)−W (s, t) = 0. Therefore, the connectivity matrix cannot distinguish the test
from the absence of a test. As a result, Proposition 2.3 often is not applicable and a
proof for unreachability of c1 fails. Indeed, the BVS does not change for program
c0;c1 where the latter command is reachable.

To strengthen the verification approach, we refine the set of constraints in BVS.
We add inequalities that reflect the trap property: all initially marked traps have to
remain marked in the marking that solves the mixed programming problem. The
resulting enhanced verification system is sensitive to guards.

To incorporate traps, we construct for a given marking M a trap inequality. It
has a rational solution if and only if M satisfies the trap property. Note that it is
not obvious how to check a universal quantifier (all initially marked traps remain
marked in M) by means of feasibility (there is a solution to the trap inequality). The
idea is to state the reverse. We set up a constraint system that is feasible iff there is a
trap for which M violates the trap property. Then we use Farkas’ lemma to capture
by means of feasibility the negation of this statement: for all traps M satisfies the
trap property. We briefly explain the steps in our construction.

1. We exploit the linear algebraic characterization of traps to set up a system of
inequalities. This so-called primal system is feasible if and only if M violates the
trap property for some trap.

2.4 Verification by Linear Programming 19

2. By Farkas’ lemma we then construct a dual system of inequalities that is feasible
if and only if the primal system is infeasible. Together with the first statement,
the dual system is thus feasible if and only if M satisfies the trap property for all
traps.

3. In combination with the marking equation, M becomes variable which leads to
non-linearity of the resulting constraints. We manipulate the constraint system to
deal with this.

The primal system is a reformulation of the trap property.

Definition 2.12 (Primal system). Consider Petri net N = (S,T,W,M0) with trap
matrix CQ ∈ Z|S|×|S||T |. Let M ∈ N|S| be some marking. The primal system is

Variables: Y rational

Y T ·CQ ≥ 0
Y ≥ 0

Y T ·M0 > 0
Y T ·M = 0.

By the first two inequalities, Y forms a trap. The strict inequality then requires Y to
be initially marked, and the equality finds Y unmarked at M. As a result, M violates
the trap property for QY from Proposition 2.2.

Lemma 2.8. The primal system is feasible if and only if M violates the trap property.

For the second phase of our construction, we briefly recall Farkas’ lemma. Certain
systems of inequalities, so-called primal systems, have a dual system that enjoys the
following equivalence. The primal system is infeasible if and only if the dual system
is feasible.

Lemma 2.9 (Farkas 1894). One and only one of the following linear programming
problems is feasible:

Variables: X rational Variables: Y rational

A ·X ≤ B Y T ·A≥ 0
X ≥ 0 Y T ·B < 0

Y ≥ 0.

The system from Definition 2.12 is not quite in the form on the right hand side.
We apply several transformations to obtain an equivalent constraint system of the
required shape. Equivalent here means that the solutions do not change. To begin
with, note that M ∈ N|S| and thus M ≥ 0. Moreover, we require Y ≥ 0. Hence, we
have Y T ·M = 0 if and only if Y T ·M ≤ 0. Changing the signs inverts the inequality,
i.e., Y T ·M≤ 0 holds if and only if Y T ·(−M)≥ 0. We treat M0 similarly and rewrite
the system from Definition 2.12 to

20 2 Invariants

Variables: Y rational

Y T ·CQ ≥ 0
Y ≥ 0

Y T · (−M0)< 0
Y T · (−M)≥ 0.

A last step in constructing the desired shape is to extend CQ by a column for −M,
denoted by (CQ −M). This summarize the first and the last inequality. Indeed, we
have Y T ·CQ ≥ 0 and Y T · (−M)≥ 0 if and only if Y T · (CQ −M)≥ 0.

Variables: Y rational

Y T · (CQ −M)≥ 0
Y T · (−M0)< 0

Y ≥ 0.

To this system, we apply Farkas’ lemma.

Definition 2.13 (Dual system). Given Petri net N with trap matrix CQ ∈ Z|S|×|S||T |
and a marking M ∈ N|S|, the dual system is

Variables: X rational
(CQ −M) ·X ≤−M0

X ≥ 0.

Combining Lemma 2.8 with Farkas’ lemma immediately shows:

Lemma 2.10. The dual system is feasible if and only if M satisfies the trap property:
all initially marked traps remain marked at M.

Up to now, M was assumed constant. The goal of the enhanced verification system,
however, is to overapproximate all reachable markings that satisfy the trap property.
To this end, we combine the dual system with the marking equation. The problem
in this construction is in the product (−M) ·X that is non-linear, and hence out of
scope for linear programming techniques. The solution is again to manipulate the
constraint system. We turn to the technicalities of the third phase.

Since −M is added to the trap matrix CQ ∈ Z|S|×|S||T |, the dimension of X is
|S||T |+1. Hence, vector X is the composition (X ′ x′)T with X ′ ∈Q|S||T | and x′ ∈Q.
The product (CQ −M) ·X ≤ −M0 is thus equivalent to x′M ≥ M0 +CQ ·X ′. We
rewrite the dual system accordingly:

Variables: X ′,x′ rational
x′M ≥M0 +CQ ·X ′

X ′ ≥ 0
x′ ≥ 0.

2.4 Verification by Linear Programming 21

Since M ≥ 0 the system is solvable with x′ = 0 if and only if there is a solution with
x′ > 0. This allows us to divide the first and the second inequality by x′. Note also
that x′ > 0 if and only if 1

x′ > 0:

Variables: X ′,x′ rational

M ≥ 1
x′ M0 +CQ · (1

x′ X ′)
1
x′ X ′ ≥ 0

1
x′ > 0.

If we set 1
x′ to be the rational variable z and use Z for 1

x′ X ′, we obtain the desired
trap inequality.

Definition 2.14 (Trap inequality). Consider Petri net N = (S,T,W,M0) with trap
matrix CQ ∈ Z|S|×|S||T |. Let M ∈ N|S| be a vector. The trap inequality is

Variables: Z,z rational
M ≥ z M0 +CQ ·Z
Z ≥ 0
z > 0.

Proposition 2.4. Consider Petri net N and M ∈ N|S|. Marking M satisfies the trap
property if and only if the trap inequality is feasible.

We are now prepared to combine the trap inequality with the basic verification sys-
tem from Definition 2.11 to a mixed programming problem.

Definition 2.15 (Enhanced verification system). Let Petri net N have connectivity
matrix C ∈ Z|S|×|T | and trap matrix CQ ∈ Z|S|×|S||T |. Moreover, let P be a co-linear
property on N defined by A ·X ≥ B with A ∈Qk×|S| and B ∈Qk for some k ∈N. The
associated enhanced verification system (EVS) is

Variables: M,X integer Z,z rational
M = M0 +C ·X (2.3)

M,X ≥ 0

M ≥ z M0 +CQ ·Z (2.4)
Z ≥ 0
z > 0

A ·M ≥ B. (2.5)

Equality 2.3 is the marking equation. It states that M is reachable from M0 via Parikh
vector X . The trap inequality is given as 2.4. By Proposition 2.4 it holds for M iff
all initially marked traps remain marked in M. Therefore, the enhanced verification
system is a more precise approximation to the Petri net’s state space than BVS. By
definition of co-linearity, the last Inequality 2.5 captures a violation to the property.

22 2 Invariants

Since we overapproximate the state space, checking EVS for infeasibility proves
correctness. Phrased differently, the analysis is sound.

Theorem 2.3. Consider a Petri net N and a co-linear property P . If the associated
enhanced verification system is infeasible, then P holds for N.

Mixed programming only solves non-strict inequalities z≥ 0 and thus cannot handle
z > 0 in Inequality 2.4. To overcome this problem, the idea is to use the objective
function. We relax EVS to z≥ 0 and look for a solution that maximizes z. Then EVS
is infeasible if and only if the optimal solution is z = 0.

Chapter 3
Unfoldings

Abstract Partial order representations of Petri net state spaces.

When linear algebraic verification techniques fail, we have to analyse the Petri net’s
state space. We develop here a compact representation of these state spaces, called a
finite and complete unfolding prefix. We also provide suitable operations to evaluate
analysis problems like reachability of marking on such prefixes.

The key idea of unfoldings is to store markings as distributed objects, so-called
cuts. With this distribution, we can determine the effect of transitions locally, i.e.,
we only change the marking of the surrounding places. The difference to recha-
bility graphs is remarkable. There, a transition firing always yields an overall new
marking, even if the token count is changed only in one place.

From a computational complexity point of view, unfolding prefixes trade size
for computational hardness of analysis problems like reachability. Indeed, in terms
of size and hardness unfolding prefixes lie in between the original Petri net and
its reachability graph. The unfolding prefix is larger than the Petri net but more
compact than the reachability graph, often exponentially more succinct. As a result,
reachability becomes easier for unfoldings than for Petri nets: NP-complete in the
size of the unfolding in contrast to PSPACE-complete in the size of the Petri net. In
turn, the problem is NL-complete in the size of a given reachability graph.

Technically, unfolding prefixes are themselves Petri nets that have a simpler
structure than the original net. They are acyclic and forward branching, i.e., places
have a unique input transition. This ease in structure justifies NP-completeness. In
fact, on unfolding prefixes reachability queries can be answered by means of off-
the-shelf SAT-solvers.

The unfolding is also interesting from a semantical point of view. It preserves
more information about the behaviour of the original net than the reachability graph
does. It makes explicit causal dependencies between transitions, conflicts that arise

23

24 3 Unfoldings

from competitions about tokens, and finally the independence of transitions, also
known as concurrency. This information is lost in the reachability graph. Indeed,
from an unfolding prefix, one can recompute the reachability graph. The reverse
does not hold as long as we only take the graph structure into account.

One intuition to the definition of unfoldings stems from finite automata. One
can unwind a finite automaton into a computation tree as is done in Algorithm 1.1.
This unwinding can be stopped at any moment, yielding different trees. However,
if we continue the process with a fair selection of transitions, e.g., by choosing a
breadth first processing, then we obtain a unique usually infinite tree. Unfoldings
mimick this procedure. To unroll the Petri net, the algorithm first adds places for
each token in the input marking. Then it generates a copy of each transition that
is fired and adds a fresh place for every token that is produced. If the process is
continued as long as enabled transitions exist, the result is a unique structure similar
to the computation tree. It is called the unfolding of the Petri net. The unfolding is
typically infinite, stopping it earlier yields an unfolding prefix. The main contrubtion
of this section is an algorithm that determines a finite prefix of the unfolding that is
complete. This means the algorithm stops unrolling so that the resulting prefix is
finite but yet contains all information about the full unfolding.

3.1 Branching Processes

The following definition will only be applied to acyclic Petri nets.

Definition 3.1 (Causality, conflict, and concurrency relation). Let N = (S,T,W)
be a Petri net that we consider here as a graph (S∪T,W). Two vertices x,y ∈ S∪T
are in causal relation, denoted by x ≤ y, if there is a (potentially empty) path from
x to y. They are in conflict relation, denoted by x # y, if there are distinct transitions
t1, t2 ∈ T so that •t1 ∩ •t2 6= /0 and t1 ≤ x and t2 ≤ y. The vertices x and y are called
concurrent, denoted by x co y, if neither x≤ y nor y≤ x nor x # y.

The subclass of Petri nets used for unfolding is the following.

Definition 3.2 (Occurrence nets). An occurrence net is a Petri net O = (B,E,G)
with places B, transitions T , and weight function G : (B×E)∪ (E ×B)→ {0,1}
that satisfies the following constraints.

(O1) O is acyclic.
(O2) O is finitely preceeded: the set {y ∈ B∪E | y≤ x} is finite for all x ∈ B∪E.
(O3) O is forward branching: for all b ∈ B we have |•b|= 1.
(O4) O is free from self conflicts: for all y ∈ B∪E we do not have y # y.

We assume the existence of a unique ≤-minimal element e⊥ ∈ E. The ≤-minimal
places are denoted by Min(O).

In occurrence nets, places are typically called conditions and transitions are called
events. Note that by the requirement for acyclicity (B∪E,≤) is a partial order.

3.1 Branching Processes 25

Lemma 3.1. Consider an occurrence net O=(B,E,G). For two vertices x,y∈B∪E
one and only one of the following holds: x = y, x < y, y < x, x # y, or x co y.

We are interested in occurrence nets that result from unrolling the original Petri net.
We establish the relationship between the two by labelling the occurrence net with
the places and transitions of the original net.

Definition 3.3 (Folding homomorphism, branching process). Let O = (B,E,G)
be an occurrence net and N = (S,T,W,M0). A folding homomorphism from O to N
is a mapping h : B∪ (E \{e⊥}) → S∪T that satisfies the following constraints.

(F1) Conditions are labelled by places and events represent transitions: h(B)⊆ S
and h(E \{e⊥})⊆ T .

(F2) Transition environments are preserved: h(e•) = h(e)• and h(•e) = •h(e).
(F3) Minimal elements represent the initial marking: h(Min(O)) = M0.
(F4) No redundancy: for all e, f ∈ E with •e = • f and h(e) = h(f) we have e = f .

The pair (O,h) is a branching process of N.

The auxiliary event e⊥ ∈ E is not mapped. It helps us shorten formal statements
about unfoldings, but has no semantical meaning when relating an occurrence net
to the original Petri net.

Branching processes differ in how much they unfold the original Petri net. The
prefix relation captures this notion of unfolding more than in a formal way.

Definition 3.4 (Prefix relation). Consider two branching processes (O,h) with
O = (B,E,G) and (O′,h′) with O′ = (B′,E ′,G′). Then (O,h) is a prefix of (O′,h′),
denoted by (O,h)v (O′,h′), if O is a subnet of O′ and the following holds.

(P1) If b ∈ B and (e,b) ∈ G′ then e ∈ E.
(P2) If e ∈ E and (b,e) ∈ G′ or (e,b) ∈ G′ then b ∈ B.
(P3) We have h = h′∩ (B∪E).

By our requirement on a unique minimal element, we find e⊥ in both E and E ′. The
notion of subnet is defined by inclusion, B ⊆ B′, E ⊆ E ′, and G = G′ ∩ ((B×E)∪
(E×B)). Requirement (P1) states that the predecessors of conditions in O according
to O′ have to be in O. For events, (P2) requires that we preserve the full environment
of conditions in the pre- and in the postset. Finally, (P3) states that the labelling of
O is the labelling of O′ restricted to the conditions and events in O.

The unfolding is a branching process that unrolls the given Petri net as much as
possible — a procedure that usually does not terminate. The proof that this object is
unique is out of the scope of the techniques we discuss in this lecture.

Theorem 3.1 (Engelfriet 1991). Every Petri net N has an up to isomorphism (re-
naming of conditions and events) unique and v-maximal branching process. It is
called the unfolding of N and denoted by Unf (N).

The unfolding keeps the initial marking in terms of ≤-minimal conditions. It also
has a representative for each transition that occurs in a firing sequence. Therefore,
intuitively the reachable markings in the unfolding should coincide, via the folding

26 3 Unfoldings

homomorphism, with the reachable markings of the original Petri net. Since the un-
folding is an infinite but unmarked Petri net with a distinguished transition e⊥ ∈ E,
we have to first have to define the notion of reachability for Unf (N). We assume that
every minimal condition carries precisely one token. Transition e⊥ never executes.
All remaining transitions fire as it is defined for finite Petri nets.

Theorem 3.2 (Engelfriet 1991). Let Unf (N) = (O,h) with O = (B,E,G). We have
R(N) = h(R(Unf (N))). Moreover, for M1,M2 ∈ R(Unf (N)) and all e ∈ E we have
M1[e〉M2 if and only if h(M1)[h(e)〉h(M2).

3.2 Configurations and Cuts

The result stated above understands the unfolding as a Petri net. It relies on the
classical sequential semantics defined in terms of transition sequences as they are
represented in interleaving structures like the reachability graph. But this view does
not take the partial order of events into account. In an unfolding, the counterpart of
a transition sequence is called a configuration. A configuration is a set of events that
usually allows for different sequential executions. This means a single configuration
reflects multiple transition sequences in the unfolding and, with Theorem 3.2, also
in the Petri net. Configurations are at the heart of why unfolding-based approaches
to verification scale well with an increasing degree of concurrency, whereas reacha-
bility graph exploration suffers from the state space explosion problem.

Definition 3.5 (Configuration). A configuration of (O,h) with O = (B,E,G) is a
non-empty set C ⊆ E of events that is

C1 causally closed: if f ∈C and e≤ f then e ∈C and
C2 conflict free: for all e, f ∈C we do not have e # f .

By Cfin(O,h) we denote the set of all finite configurations of (O,h).

Transition sequences lead to markings. For configurations, the analogue is called a
cut of the branching process.

Definition 3.6 (Cut). Consider (O,h) with O= (B,E,G). A set B′⊆B of conditions
is concurrent if b1 co b2 for all b1,b2 ∈ B′. A cut is an ⊆-maximal concurrent set.

The relationship between cuts and markings is again given via folding.

Lemma 3.2 (and definition). Let (O,h) be a branching process of Petri net N and
let C ∈ Cfin(O,h). Then C• \ •C is a cut, denoted by Cut(C). The final marking of C
is Mark(C) := h(Cut(C)). A marking is said to be represented in (O,h) if there is a
configuration C ∈ Cfin(O,h) with M = Mark(C).

A transition sequence M0[σ〉M yields a finite configuration C in the unfolding that
represents the marking, M =Mark(C). In turn, every configuration can be linearized
to a transition sequence. As a result, final markings are reachable.

3.3 Finite and Complete Prefixes 27

Lemma 3.3. Every M ∈ R(N) is represented in Unf (N). Every marking represented
in a branching process is reachable.

Definition 3.7 (Extension). Given configuration C ∈ Cfin(O,h) and set of events E.
We denote by C⊕E the fact that C∪E is a configuration and C∩E = /0. We call
C⊕E the extension of C. Moreover, E is also called the suffix of C.

Lemma 3.4. If C (C′ then there is a non-empty suffix E of C so that C⊕E =C′.

3.3 Finite and Complete Prefixes

We study algorithmic aspects related to unfoldings. To this end, we first develop
a data structure for branching processes. Consider branching process (O,h) with
O=(B,E,G) of Petri net N =(S,T,W,M0). We represent (O,h) as a list {n1, . . . ,nk}
of nodes. The list contains both, conditions and events. More precisely, a condition
b ∈ B yields a record node b = (s,e). It contains the place s ∈ S that labels b, which
means h(b) = s. Moreover, e is the input event of b, •b = {e}. Events e ∈ E are
stored similarly as record nodes e = (t,X) with h(e) = t and •e = X ⊆ B. So again
the first entry is the label and the second entry is a set of pointers to the conditions
in the preset. Note that the list representation contains the weight function as well
as the labelling. This means we can use (O,h) and {n1, . . . ,nk} interchangably.

We describe the events that can be added to a branching process.

Definition 3.8 (Possible extensions). Let (O,h) with O = (B,E,G) be a branching
process of Petri net N. A pair (t,X) with t ∈ T and X ⊆ B is a possible extension
of (O,h) if h(X) = •t and (t,X) does not already belong to (O,h). We denote by
Pe(O,h) the set of possible extensions of (O,h).

Lemma 3.5. Let (O,h) = {n1, . . . ,nk} be a branching process of Petri net N. Let
t ∈ T have postset t• = {s1, . . . ,sn}. If e = (t,X) is a possible extension of (O,h)
then {n1, . . . ,nk,e,(s1,e), . . . ,(sn,e)} is a branching process of N.

The algorithm to compute the unfolding is given in Figure 3.1. The procedure is
initialized with the minimal conditions. It keeps adding possible extensions together
with their outputs as long as there are some. The unfolding computation terminates
if and only if N terminates, i.e., the net does not enable an infinite run. Moreover, for
correctness of the procedure we have to impose the following fairness requirement:
every event e ∈ pe is eventually chosen to extend the unfolding.

3.3.1 Constructing a finite and complete prefix

For algorithmic analyses, we require a finite object that allows for an exhaustive
analysis. We now construct a finite prefix (O,h) of the unfolding of N that is still

28 3 Unfoldings

Unf := {e⊥,(s1,e⊥), . . . ,(sn,e⊥)}
pe := Pe(Unf)

while pe 6= /0 do
add to Unf event e = (t,X) ∈ pe

add to Unf condition (s,e) for all s ∈ t•

pe := Pe(Unf)

end while

Fig. 3.1 Unfolding procedure.

complete: it contains as much information as Unf (N). Technically, the notion of
completeness that we rely on is the following.

Definition 3.9 (Complete Prefix). Let N = (S,T,W,M0) be a Petri net and (O,h)
one of its branching processes. We say (O,h) is complete or a complete prefix of
Unf (N) if for all M ∈ R(N) there is a configuration C ∈ Cfin(O,h) so that

• Mark(C) = M and
• for all t ∈ T with M[t〉 there is C⊕{e} ∈ Cfin(O,h) with h(e) = t.

The first requirement states that every marking M reachable in the Petri net is rep-
resented by a configuration C in the complete prefix. The second requirement asks
this configuration to also preserve the transitions. If t ∈ T is enabled in M, then a
corresponding event can be appended to the configuration without leaving the com-
plete prefix. Note that a marking may be represented by several configurations, but
only one of them needs to reflect the transition environment.

Note that the unfolding can be reconstructed from a complete prefix. Indeed, by
definition all markings together with their firings are present in this smaller object.
It can be shown that the preservation of reachable markings themselves is not suf-
ficient to obtain the unfolding, simply because some transitions may be forgotten if
there are several paths leading to a marking.

The key observation to the theory that we develop is the following. Since Petri
net N is assumed to be safe, it has finitely many reachable markings. This means,
the unfolding eventually starts repeating markings. Therefore, intuitively it should
contain a complete prefix that is yet finite. We give a procedure for computing such a
finite and complete unfolding prefix. We reuse the procedure in Figure 3.1 but iden-
tify events at which the computation can be stopped without loosing information.
These events are called cut-offs and their detection is at the heart of the unfolding
theory.

Chapter 4
Coverability

Abstract Decidability of coverability

We develop a decision procedure for the coverability problem. The problem takes
as input a Petri net N and a marking M ∈ NS. The question is whether there is an
M′ ∈ R(N) that dominates M, M′ ≥ M. If the state space of the Petri net is finite,
an immediate solution is to compute the reachable states and look for a covering
marking M′. If the state space is infinite, however, the problem is non-trivial. The
reachability graph cannot be used for the analysis as it is no longer finite. Moreover,
also an analysis by means of linear algebraic techniques may fail.

4.1 Coverability Graphs

The solution is to define a finite structure, the so-called coverability graph of a Petri
net, that an algorithm can analyze exhaustively. Coverability graph are similar to
reachability graphs in that they reflect the firing of transitions along markings. But
different from reachability graphs, coverability graphs may abstract away the precise
token count. They use entries ω in a marking to indicate that a place may carry
arbitrarily many tokens.

Technically, we first generalize the natural numbers N to Nω := N∪{ω}. With
the number of tokens in mind, the new element ω stands for unbounded. To extend
the operations < and + to Nω , we set

m < ω and ω +m := ω =: ω−m for all m ∈ N.

29

30 4 Coverability

We do not define the subtraction ω−ω and will not need it for the development in
this section.

Definition 4.1 (Generalized marking). Consider Petri net N = (S,T,W,M0). The
set of generalized markings is NS

ω . For every marking Mω ∈ NS
ω , we denote by

Ω(Mω) := {s ∈ S | Mω(s) = ω} the set of places marked ω . The operations on NS
ω

are taken componentwise, so also the following notions are defined:

Mω [t〉 if Mω ≥W (−, t)
Mω [t〉M′ω if Mω ≥W (−, t) and M′ω = Mω −W (−, t)+W (t,−).

Note that firing a transition does not remove ω-entries. This means, Mω(s) = ω and
Mω [t〉M′ω implies M′ω(s) = ω for all Mω ,M′ω ∈ NS

ω , s ∈ S, and t ∈ T .
The coverability graph is computed (and defined) by the algorithm in Figure 4.1.

It introduces ω whenever a path strictly increases the token count. To make the
outcome of the computation deterministic, we use a FIFO buffer for the work list
and an ordering on the transitions. Without this restriction, the resulting coverability
graph would depend on the processing order for markings and transitions.

Lemma 4.1 (Finiteness). For every Petri net N, Cov(N) is finite.

The proof bears similarities to the decision procedure for boundedness discussed in
Section 1.2. To turn coverability graphs into a decision procedure for coverability,
we need an equivalence of the following form. Marking M is coverable in N if and
only if there is Mω ∈ Cov(N) with M ≤Mω . The next lemmas provide the required
implications.

Lemma 4.2 (From N to Cov(N)). Consider Petri net N = (S,T,W,M0) and a tran-
sition sequence σ ∈ T ∗ with M0[σ〉M for some M ∈R(N). Then there is a σ -labelled
path M0

σ−→Mω in Cov(N) that leads to Mω ≥M.

Thus, if a marking M is coverable in N then there is a larger marking Mω ≥ M in
the coverability graph. The following lemma states the reverse. Larger markings in
the coverability graph indeed indicate coverability in N.

Lemma 4.3 (From Cov(N) to N). Consider Petri net N = (S,T,W,M0). For every
Mω ∈ Cov(N) and every k ∈ N there is a marking M ∈ R(N) with M(s) ≥ k for all
s ∈Ω(Mω) and M(s) = Mω(s) for all s ∈ S\Ω(Mω).

The lemma states that the number of tokens on ω-marked places can exceed any
bound k ∈N. The remaining places receive the exact token count as it is required by
the given marking Mω . The proof exploits the fact that sequences which introduce
ω-entries in the coverability graph can be repeated arbitrarily. Consider

M0
τ−→M1

ω

σ−→M2
ω with M1

ω �M2
ω .

By repeating σ , an arbitrary token count can be generated on the places s ∈ S with
M1

ω(s)< M2
ω(s). The proof is by induction on the length of the shortest path leading

to Mω . It requires some effort in case a new ω is introduced in the induction step.

4.1 Coverability Graphs 31

input : N = (S,T,W,M0)

begin
V := {M0} //Set of vertices in the coverability graph

L := M0 //Work list of vertices to be processed

E := /0 //Set of edges in the coverability graph

while L 6= /0 do

let L = M1
ω .L
′

L := L′

for all t = t1, . . . tn ∈ T with M1
ω [t〉 do //Process the enabled transitions in order

M2
ω := M̃2

ω where M1
ω [t〉M̃2

ω

for all Mω on a path from M0 to M1
ω that satisfy Mω � M̃2

ω do

M2
ω (s) := ω for all s ∈ S with Mω (s)< M̃2

ω (s)

end for all

if M2
ω /∈V then

V :=V ∪{M2
ω}

L := L.M2
ω

end if

E := E ∪{(M1
ω , t,M

2
ω)}

end for all
end while

end

output : Cov(N) := (V,E,M0) the coverability graph of N.

Fig. 4.1 Coverability graph computation.

Theorem 4.1 (Decision procedure for coverability and place boundedness). Given
Petri net N = (S,T,W,M0).

1. Marking M ∈NS is coverable if and only if there is Mω in Cov(N) with Mω ≥M.
2. Place s ∈ S is unbounded if and only if there is Mω in Cov(N) with Mω(s) = ω .

Part II
Network Protocols and Lossy Channel

Systems

Network protocols define the interaction among finite state components that com-
municate asynchronously by package transfer. We introduce a corresponding model
of lossy channel systems and investigate algorithms for the automatic verification
of network protocols. Decidability of the analysis follows from monotonicity of the
models’ behaviour with respect to an ordering on the configurations. We extend this
insight towards a theory of well structured transition systems.

Chapter 5
Introduction to Lossy Channel Systems

Abstract Lossy Channel Systems

Lossy channel systems (LCS) formalize network protocols like the alternating bit
protocol or more general sliding window protocols that are located at the data
link layer of the ISO OSI reference model. In recent developments, LCS have also
proven adequate for modelling programs running on relaxed memory models like
total store ordering used in x86 processors.

Technically, LCS are finite state programs that communicate via asynchronous
message transfer over unbounded FIFO channels. Without restrictions, such a model
of channel systems is Turing complete. Channels immediately reflect the tape of a
Turing machine. The restriction we impose is inspired by the following observation
about the application domain of our analysis. Network protocols are designed to
operate correctly in the presence of package loss. Therefore, a weaker model with
unreliable channels should be sufficient for their verification. Lossy channel systems
formalize unreliability by lossiness: channels may drop packages at any moment.
This weakness indeed yields decidability of the resulting model.

5.1 Syntax and Semantics

Definition 5.1 (Lossy Channel Systems). A lossy channel system (LCS) is a tuple
L = (Q,q0,C,M,→) where Q is a finite set of states with initial state q0 ∈Q. More-
over, C is a finite set of channels over which we transfer messages in the finite set
M. Transitions in→⊆ Q×OP×Q perform operations in OP :=C×{!,?}×M.

35

36 5 Introduction to Lossy Channel Systems

A transition (q1,op,q2) ∈ →, typically denoted by q1
op−→ q2 yields a change in the

control state from q1 to q2 while performing operation op. A send operation c!a in
OP appends message a to the current content of channel c. A receive operation c?a∈
OP removes message a from the head of channel c. Therefore, the two operations
indeed define a FIFO channel.

In our examples, we often represent LCS by several automata. This matches the
above formal definition by taking as set of states the Cartesian product of the states
in the single automata. The initial state is the tuple of initial states. Every transitions
represents the state change in a single automaton.

Like every automaton model, the semantics of LCS relies on a notion of state
at runtime. For LCS, they are called configurations and should be understood as
analogue of markings in Petri nets.

Definition 5.2 (Configuration). Let L = (Q,q0,C,M,→). A configuration of L is a
pair γ = (q,W) ∈Q×M∗C. It consists of a state q ∈Q and a function W ∈M∗C that
assigns to each channel c ∈C a finite word W (c) ∈M∗. The initial configuration of
L is γ0 := (q0,ε) where ε assigns the empty word (ε) to every channel.

Transitions change the channel content. We capture this by update operations on
vectors of words. Lossiness is formalized by an ordering on configurations. For the
definition of this ordering, we first compare words by Higman’s subword ordering. It
sets u�∗ v if u is a not necessarily contiguous subword of v. With a componentwise
definition, we lift the ordering to vectors of words, W1 �∗ W2. For configurations,
we pose the additional requirement that the states coincide.

Definition 5.3 (Updates and � on configurations). Updates take the form [c := x]
with c ∈C and x ∈M∗. They are applied to channel contents W ∈M∗C. The result
of this application is a new content W [c := x] ∈M∗C defined by W [c := x](c) := x
and W [c := x](c′) :=W (c′) for all c′ 6= c with c′ ∈C.

For the definition of the subword ordering �∗⊆M∗×M∗, let u = u1 . . .um and v =
v1 . . .vn in M∗. We have u�∗ v if there are indices 1≤ i1 < .. . < im ≤ n with u j = vi j

for all 1≤ j≤m. For W1,W2 ∈M∗C, we set W1�∗W2 if W1(c)�∗W2(c) for all c∈C.
Finally, for configurations (q1,W1),(q2,W2)∈Q×M∗C we have (q1,W1)� (q2,W2)
if q1 = q2 and W1 �∗W2.

The semantics of LCS is defined in terms of transitions between configurations.

Definition 5.4 (Transition relation between configurations). Consider the LCS
L = (Q,q0,C,M,→). It defines a transition relation→ ⊆ (Q×M∗C)× (Q×M∗C)
between configurations as follows:

(q1,W)→ (q2,W [c :=W (c).m]) if q1
c!m−−→ q2

(q1,W [c := m.W (c)])→ (q2,W) if q1
c?m−−→ q2

γ
′
1→ γ

′
2 if γ

′
1 � γ1→ γ2 � γ

′
2

for some configurations γ1,γ2 ∈ Q×M∗C.

5.1 Syntax and Semantics 37

For a lossy transition (q1,W ′1)→ (q2,W ′2) that is derived with the third condition, we
already have a transition (q1,W1)→ (q2,W2) with W ′1 �∗ W1 and W2 �∗ W ′2. Intu-
itively, the messages in W ′1 but outside W1 are lost immediately before the transition
and the messages in W2 but outside W ′2 are lost immediately afterwards.

Interestingly, for LCS the notions of reachability and coverability coincide. How-
ever, as refer to coverability in the context of well structured transition systems, we
define both notions.

Definition 5.5 (Reachability and Coverability). Let L = (Q,q0,C,M,→) be an
LCS and γ1,γ2 ∈Q×M∗C. We say γ2 is reachable from γ1 if γ1→∗ γ2. The set of all
configurations reachable from γ1 is R(γ1) := {γ ∈ Q×M∗C | γ1→∗ γ}. We denote
the reachable configurations of L by R(L) := R(γ0). Configuration γ2 is coverable
from γ1 if there is γ ∈ R(γ1) with γ � γ2.

Chapter 6
Well Structured Transition Systems

Abstract Well Structured Transition Systems

6.1 Well Quasi Orderings

In computer science, quasi orderings that are not partial orderings result from syn-
tactically different representations of semantically equivalent elements. To give an
example, let ≤ denote language inclusion. Then the regular expressions a+ b and
b+a can be ordered by a+b≤ b+a as well as b+a≤ a+b. The terms, however,
do not coincide.

Formally, a quasi ordering (qo) is a reflexive and transitive relation ≤ ⊆ A×A.
We also call the pair (A,≤) a quasi ordering. In a qo, we write a > b for a≥ b and
b � a. Note that a ≥ b and b ≥ a need not imply a = b. In this case, ≤ is called a
partial ordering. In the theory of well structured transition systems, so-called well
quasi orderings (wqos) play a key role. In a wqo, every infinite sequence contains
two comparable elements.

Definition 6.1 (Well quasi ordering). A qo (A,≤) is a well quasi ordering (wqo) if
for every infinite sequence (ai)i∈N in A there are indices i < j with ai ≤ a j.

We exploit the unavoidability of repetitions to establish termination of verification
algorithms. Indeed, classical termination proofs rely on well founded relations that
decrease with every transition. Recall that a quasi ordering (A,≤) is well founded
if it does not contain infinite sequences (ai)i∈N that strictly decrease, a0 > a1 > .. .
Wqos additionally impose the absence of antichains. An antichain is a set B⊆ A of
incomparable elements, a 6≤ b for all a,b ∈ B.

Theorem 6.1 (Characterization of wqos). Consider the qo (A,≤). The following
statements are equivalent:

39

40 6 Well Structured Transition Systems

1. (A,≤) is a wqo.
2. Every infinite sequence (ai)i∈N in A contains an infinite non-decreasing subse-

quence (aϕ(i))i∈N with aϕ(i) ≤ aϕ(i+1) for all i ∈ N.
3. There is no infinite strictly decreasing sequence and no infinite antichain in A.

Proof. (1)⇒ (2) Consider an infinite sequence (ai)i∈N in A. Take the subsequence
(and(i))i∈N of elements that are not dominated by successors, i.e., for all and(i) there
is no a j with nd(i) < j and and(i) ≤ a j. The sequence has to be finite by the well
quasi ordering assumption. Let n := nd(k) be the maximal index in this sequence.
Starting from n+ 1 one finds an infinite non-decreasing subsequence since every
element after an is dominated by (≤) some successor.

(2)⇒ (3) By definition.

(3)⇒ (1) Consider an infinite sequence (ai)i∈N. We show that there are i < j with
ai ≤ a j. The idea is to descend strictly decreasing sequences and gather the least
elements in an antichain. By the well foundedness assumption and the absence of
infinite antichains, the procedure terminates and finds two comparable elements.

Consider the first element a0. If there is a successor a j with a0 ≤ a j we are
done. Otherwise, we find the first successor aϕ(1) with a0 > aϕ(1). We repeat the
argumentation for aϕ(1). If there is a successor a j with aϕ(1) ≤ a j, we found two
comparable elements. Otherwise, we find the first successor aϕ(2) with

a0 > aϕ(1) > aϕ(2).

The search eventually terminates because there are no infinite strictly decreasing
sequences. Let aϕ(n0) be the element that has no successor a j with aϕ(n0) ≤ a j and
no successor a j with aϕ(n0) > a j. Add aϕ(n0) as first element to an antichain.

We proceed with aϕ(n0)+1. Again we search for aϕ(n1) that has no successor a j
with aϕ(n1) ≤ a j and no successor a j with aϕ(n1) > a j. By construction

aϕ(n0) 6≤ aϕ(n1) and aϕ(n0) 6> aϕ(n1).

Hence, the set {aϕ(n0),aϕ(n1)} is an antichain of size two. Repeating the procedure
indefinitely yields an infinite antichain. A contradiction to the assumption that no
infinite antichains exists. We have to find i < j with ai ≤ a j. ut

A reader familiar with Ramsey’s theorem will find a more elegant proof of the last
implication (3)⇒ (1), in fact even of the stronger statement (3)⇒ (2). Ramsey’s
theorem considers infinite complete graphs where the edges are labelled by finitely
many colors. It states that such a graph contains an infinite complete subgraph that
is labelled by a single color. To apply the theorem, note that an infinite sequence
(ai)i∈N induces the infinite complete graph where the elements ai are the vertices.
The edges are labelled by the relations {≤,>, incomparable}. Let i< j and consider
the edge between ai and a j. We label it by ≤ if ai ≤ a j. We label it by > if ai > a j.
Otherwise, we label it by incomparable. Ramsey’s theorem applies and yields an
infinite complete subgraph labelled by a single color. By the assumptions, the color

6.2 Upward and downward closed sets 41

cannot be > and not incomparable. Hence, we found an infinite non-decreasing
subsequence.

6.2 Upward and downward closed sets

In wqos, every set B contains finitely many minimal elements min(B). Minimal
elements are interesting as they represent, in a precise way, so-called upward closed
sets.

Definition 6.2 (Minimal elements). Let (A,≤) be a wqo and let B ⊆ A. A set of
minimal elements is a subset min(B) ⊆ B that contains for every b ∈ B an element
m ∈ min(B) with m≤ b and that is an antichain.

Lemma 6.1 (Existence and finiteness of minimal elements). Let (A,≤) be a wqo
and B⊆ A. There is a finite set of minimal elements min(B).

Proof. To the contrary, assume there is no finite set of minimal elements. We form
an infinite sequence (bi)i∈N starting with some b0 ∈B. As bi+1 we choose an element
that is no larger than any predecessor, b j 6≤ bi+1 for all 0 ≤ j ≤ i. Such an element
exists, otherwise we can construct a finite set of minimal elements from {b0, . . . ,bi}.
The resulting infinite sequence (bi)i∈N violates the wqo assumption. ut

Note that min(B) need not be unique as antisymmetry is missing. With an algorith-
mic point of view, the lemma can be understood as follows. Sets min(B) of minimal
elements are good candidates for finite representations of infinite sets. The sets that
can be captured precisely by their minimal elements are upward closed.

Definition 6.3 (Upward and downward closure). Let (A,≤) be a wqo. A set I ⊆ A
is upward closed if x ∈ I and a ≥ x for a ∈ A implies a ∈ I. The upward closure of
a set B ⊆ A is B ↑ := {a ∈ A | a ≥ b for some b ∈ B}. Similarly, a set D ⊆ A is
downward closed if x∈D and a≤ x for a∈ A implies a∈D. The downward closure
of B⊆ A is B↓ := {a ∈ A | a≤ b for some b ∈ B}.

Lemma 6.2 (Representation of upward closed sets by minimal elements). Let
(A,≤) be a wqo and consider an upward closed set I ⊆ A. Let min(I) be a finite set
of minimal elements. Then I = min(I)↑.

The decision procedure for coverability in wsts deals with increasing sequences of
upward closed sets. The wqo assumption guarantees that these sequences stabilize,
which in turn ensures termination of the algorithm.

Theorem 6.2 (Chains of upward closed sets stabilize). Consider a qo (A,≤). The
following statements are equivalent:

1. (A,≤) is a wqo.
2. For every infinite increasing sequence I0 ⊆ I1 ⊆ I2 ⊆ . . . of upward closed sets

I j ⊆ A there is a k ∈ N with Ik = Ik+1.

42 6 Well Structured Transition Systems

3. For every infinite increasing sequence I0 ⊆ I1 ⊆ I2 ⊆ . . . of upward closed sets
I j ⊆ A there is an l ∈ N with Il = Il+1 = Il+2 = . . .

Proof. (1)⇒ (2) Towards a contradiction, assume there is an infinite sequence
I0 (I1 (I2 (. . . Then there are elements a0 ∈ I1 \ I0, a1 ∈ I2 \ I1, a2 ∈ I3 \ I2, . . .
Since the sets I j are upward closed, we can conclude ai 6≤ a j for all i, j ∈ N with
i < j. The sequence (ai)i∈N violates the wqo assumption.

(2)⇒ (3) Again we proceed by contradiction and assume (3) does not hold. This
means there is an infinite sequence I0 ⊆ I1 ⊆ I2 ⊆ . . . so that for every k ∈ N there
is k1 with k < k1 and Ik (Ik1 . For k1 there is again a later k1 < k2 with Ik1 (Ik2 etc.
We single out this infinite strictly increasing subsequence.

Ik (Ik1 (Ik2 (. . .

By assumption (2), the sequence contains Ik j = Ik j+1 . A contradiction.

(3)⇒ (1) Consider sequence (ai)i∈N in A. We define a sequence of upward closed
sets: I0 := {a0}↑, I1 := {a0,a1}↑, etc. Since I0 ⊆ I1 ⊆ . . . there is a smallest l ∈ N
with Il = Il+1 = . . . This means there is j < l +1 with a j ≤ al+1. ut

6.3 Constructing well quasi orderings

The importance of well structured transition systems stems from the fact that many
sets are well quasi ordered. This in turn is based on the observation that wqos can be
composed into new ones. We present an algebraic toolkit to derive the wqos needed
in this lecture. The list is not complete. We skip Kruskal’s theorem on a well quasi
ordering on trees and also the graph minor theorem.

Every finite set is well quasi ordered by equality. Moreover, the natural numbers
are well quasi ordered by ≤.

Lemma 6.3. If A is finite, then (A,=) is a wqo. Moreover, (N,≤) is a wqo.

Well quasi orderings are stable under Cartesian products.

Lemma 6.4. Consider two wqos (A,≤A) and (B,≤B). Then (A×B,≤A×B) is a wqo
where (a1,b1)≤A×B (a2,b2) if a1 ≤A a2 and b1 ≤B b2.

Proof. Consider an infinite sequence (ai,bi)i∈N in A×B. As (ai)i∈N is an infinite
sequence in A and A is a wqo by the assumption, there is (Theorem 6.1) an infinite
non-decreasing subsequence (aϕ(i))i∈N with aϕ(i) ≤A aϕ(i+1) for all i ∈ N.

Consider the sequence (aϕ(i),bϕ(i))i∈N. As (bϕ(i))i∈N is an infinite sequence in
B, by the wqo assumption there are i < j with bϕ(i) ≤B bϕ(j). By the definition of
subsequences, i < j implies ϕ(i)< ϕ(j). So we found indices ϕ(i)< ϕ(j) with

aϕ(i) ≤A aϕ(j) and bϕ(i) ≤B bϕ(j).

We conclude (aϕ(i),bϕ(i))≤A×B (aϕ(j),bϕ(j)) as required. ut

6.4 Well Structured Transition Systems 43

Words can be understood as an unbounded version of Cartesian products. Higman
has shown that also words are well quasi ordered (by the subword relation).

Lemma 6.5 (Higman 1952). If (A,≤) is a wqo, so is (A∗,≤∗). Here, u ≤∗ v with
u = u1 . . .um and v = v1 . . .vn if there are 1≤ i1 < .. . < im ≤ n with u j ≤ vi j for all
1≤ j ≤ m.

Proof. To the contrary, assume there are infinite sequences that are bad, i.e., that
do not contain comparable elements. We rely on a combinatorial construction to
derive the contradiction. It forms an infinite bad sequence (ui)i∈N that is particularly
small as follows. Select the shortest word u0 that starts a bad sequence. Assume we
constructed the sequence u0, . . . ,un. We then append the shortest word un+1 so that
the result u0, . . . ,un+1 still forms a prefix of a bad sequence.

The infinite sequence (ui)i∈N is bad. Let ui = ai.vi with ai ∈ A and vi ∈ A∗. By the
well quasi ordering assumption on A and Theorem 6.1, sequence (ai)i∈N contains
an infinite non-decreasing subsequence (aϕ(i))i∈N. Consider now the sequence

u0, . . . ,uϕ(0)−1,vϕ(0),vϕ(1), . . .

Since vϕ(0) is strictly shorter than uϕ(0), the sequence has to be good (otherwise we
would have selected vϕ(0) instead of uϕ(0)). This means, there are two comparable
elements. They cannot be among u0, . . . ,uϕ(0)−1, otherwise the sequence (ui)i∈N
would have been good. Moreover, the ordering cannot be between ui and vϕ(j).
Otherwise, we had ui ≤∗ vϕ(j) ≤∗ uϕ(j) and so ui ≤∗ uϕ(j). Again a contradiction
to the assumption that (ui)i∈N is bad. Hence, we have vϕ(i) ≤∗ vϕ(j) with i < j.
By monotonicity, this means ϕ(i) < ϕ(j). But since also aϕ(i) ≤ aϕ(j), we derive
uϕ(i) = aϕ(i).vϕ(i) ≤∗ aϕ(j).vϕ(j) = uϕ(j). A contradiction. ut

6.4 Well Structured Transition Systems

Well structured transition systems are a framework for the automatic verification
of infinite state systems. The concept was found independently by Alain Finkel
(Cachan) and Parosh Abdulla (Uppsala) when they worked on generalizations of
decision procedures that were known for particular models. Finkel strived for an
extension of coverability graphs in order to decide termination and boundedness
problems. Abdulla was interested in coverability and simulation problems for lossy
channel systems.

Technically, wsts are (usually infinite) transition systems where the configura-
tions are equipped with a well quasi ordering. This wqo has to be compatible with
the transitions, i.e., larger configurations can imitate the transitions of smaller ones.
Imitation is formalized by so-called simulation relations.

Definition 6.4 (Well structured transition system (wsts), simulation relation).
A transition systems is a triple TS = (Γ ,γ0,→) with a (typically infinite) set of
configurations Γ , an initial configuration γ0 ∈ Γ , and a transition relation → ⊆

44 6 Well Structured Transition Systems

Γ ×Γ . The transition system is well structured if there is ≤ ⊆ Γ ×Γ that is a wqo
and a simulation relation. We also write TS = (Γ ,γ0,→,≤) for a wsts.

Recall that ≤ ⊆ Γ ×Γ is a simulation (relation) if for all γ1,γ2,γ3 ∈ Γ with
γ1→ γ2 and γ1 ≤ γ3 there is γ4 ∈ Γ with γ3→ γ4 and γ2 ≤ γ4.

With the ordering � ⊆ (Q×M∗C)× (Q×M∗C) from Definition 5.3, lossy channel
systems are indeed well structured.

Theorem 6.3 (Lcs are wsts). Consider the lcs L = (Q,q0,C,M,→). The transition
system (Q×M∗C,γ0,→,�) is well structured.

For the proof, it remains to be shown that � is a wqo and a simulation.

6.5 Abdulla’s Backwards Search

Our goal is to decide coverability in lossy channel systems. Recall that configuration
(q,W) ∈ Q×M∗C is coverable in L = (Q,q0,C,M,→) if there is a configuration
γ ∈ R(L) with γ � (q,W). With upward closed sets, the problem can be rephrased
as follows. Is the upward closed set {(q,W)}↑ reachable?

We present an algorithm that solves reachability of upward closed sets in a wsts.
Formally, the problem takes as input a wsts TS=(Γ ,γ0,→,≤) and an upward closed
set I ⊆ Γ . The question is whether I is reachable from γ0. More precisely, is there
an element γ ∈ I with γ0→∗ γ . We first discuss the general decision procedure for
wsts and then instantiate it to lossy channel systems.

Before we plunge into the details, we sketch the procedure and mention the key
arguments. The idea is to perform the reachability analysis backwards. We start with
the set I0 = I of interest. Then we compute the set of configurations I1 that reach I
in at most one step. We continue with the configurations I2 that lead to I in up to
two steps and so on. The procedure allows us to reformulate reachability as follows.
The set I is reachable form γ0 if and only if γ0 ∈

⋃
j≥0 I j.

The sets I j can be shown to be upward closed. Moreover, they form an infinite
chain I0 ⊆ I1 ⊆ I2 ⊆ . . . Therefore, Theorem 6.2 applies and states that the chain
stabilizes in some k ∈ N: Ik = Ik+1 = Ik+2 = . . . With reference to the infinite union
above, we get

⋃
j≥0 I j = Ik. This equation suggests the following procedure to decide

upward closed reachability:

• Generate the sequence of upward closed sets I0 ⊆ I1 ⊆ I2 ⊆ . . .
• Check for stabilization, Ik = Ik+1.
• If the sequence stabilized, check for membership γ0 ∈ Ik.

The problem is that the sets I j are infinite. This means neither equality Ik = Ik+1
nor membership γ0 ∈ Ik can be checked algorithmically without further assumptions
on the I j. The solution is to represent these sets symbolically by means of minimal
elements M j and exploit the equation I j = M j ↑. This allows us to store and update
only finite sets.

6.5 Abdulla’s Backwards Search 45

Overview: I is reachable from γ0 iff γ0 ∈ Ik with Ik = Ik+1 iff γ0 ≥ γ

with γ ∈Mk and Mk ↑= Mk+1 ↑

Part I: I is reachable from γ0 iff γ0 ∈ Ik with Ik = Ik+1

Consider a wsts (Γ ,γ0,→,≤) and an upward closed set I ⊆ Γ to be checked for
reachability. In the construction of the sequence I0 ⊆ I1 ⊆ I2 ⊆ . . . the following
observation is important. In wsts, upward closed sets are closed under computing
predecessors: if I is upward closed so is pre(I).1 This follows immediately from
the requirement that ≤ is a simulation. Interestingly, the fact that upward closure is
preserved under predecessors characterizes simulation relations.

Lemma 6.6 (pre(I) is upward closed). Consider a transition system (Γ ,γ0,→) and
a relation ≤ ⊆ Γ ×Γ . Then ≤ is a simulation if and only if pre(I) is upward closed
for every upward closed set I ⊆ Γ .

We define the sequence

I0 := I and I j+1 := I∪pre(I j) for all j ∈ N.

Denote by prel(I) the set obtained by l ∈ N applications of pre(−) to I:

prel(I) := pre(. . .pre(I))︸ ︷︷ ︸
l−times

. Then the equality I j =
j⋃

l=0

prel(I) (6.1)

holds and gives rise to the following lemma.

Lemma 6.7. Consider wsts (Γ ,γ0,→,≤), I ⊆ Γ upward closed, γ ∈ Γ , and n ∈ N.
Then I is reachable from γ in at most n steps if and only if γ ∈ In.

As a consequence, set I is reachable from the initial configuration γ0 if and only if
γ0 ∈ pre∗(I) where pre∗(I) :=

⋃
j∈N I j. The union is not really infinite. Equation 6.1

shows the inclusions I0 ⊆ I1 ⊆ I2 ⊆ . . . With Lemma 6.6, the sets I j are upward
closed for all j ∈N. Theorem 6.2 applies and yields a first index k ∈N that satisfies
Ik = Ik+1. By definition of the sets I j, we obtain Ik = Ik+1 = Ik+2 = . . .

Theorem 6.4. Consider a wsts (Γ ,γ,→,≤) and an upward closed set I ⊆ Γ . Then
I is reachable from γ0 if and only if γ0 ∈ pre∗(I) =

⋃
j∈N I j = Ik with Ik = Ik+1.

1 Here, pre(I) := {γ ∈ Γ | γ → γ ′ ∈ I} is the set of predecessors of I. Those configurations that
lead to I in a single step.

46 6 Well Structured Transition Systems

Part II: γ0 ∈ Ik with Ik = Ik+1 iff γ0 ≥ γ with γ ∈Mk and Mk ↑= Mk+1 ↑

It remains to decide equality Ik = Ik+1 and membership γ0 ∈ Ik. The trick is to define,
in accordance with the I j, a sequence of minimal elements:

M0 := min(I) and M j+1 := min(M0∪
⋃

γ∈M j

minpre(γ)) for all j ∈ N.

The definition relies on a function minpre(−) that returns a set of minimal elements
min(pre({γ} ↑)) for the predecessors of {γ} ↑. Computability of minpre(−) does
not follow from the requirements on wsts but has to be shown for every instantia-
tion of the framework. We say a wsts has computable minimal predecessors if the
set minpre(γ) is computable for every γ ∈ Γ . The M j are indeed sets of minimal
elements for the I j.

Lemma 6.8. I j = M j ↑ for all j ∈ N.

Proof. We proceed by induction where the base case I0 = min(I)↑= M0 ↑ follows
from Lemma 6.2. For the induction step, assume we already have I j = M j ↑ for
j ∈ N. We consider I j+1 and derive

I j+1 = I∪pre(I j)

{ Induction hypothesis }= I∪pre(
⋃

γ∈M j

{γ}↑)

{ Distributivity of pre(−) over ∪ }= I∪
⋃

γ∈M j

pre({γ}↑)

{ pre({γ}↑) upward closed }= M0 ↑ ∪
⋃

γ∈M j

min(pre({γ}↑))↑

{ Distributivity↑ over ∪ }=
(
M0∪

⋃
γ∈M j

min(pre({γ}↑))
)
↑

{ Definition minimal elements }= min(M0∪
⋃

γ∈M j

min(pre({γ}↑)))↑= M j+1 ↑

ut

Note that the definition of the M j does not rely on the upward closed sets I j. The
relationship is given only by Lemma 6.8. We now have

pre∗(I) =
⋃
j∈N

I j = Ik = Mk ↑

where k ∈ N is the first index with Ik = Ik+1 or equivalently Mk ↑= Mk+1 ↑. The
latter equality Mk ↑= Mk+1 ↑ is decidable provided the wqo ≤ is decidable: one just
compares the minimal elements.

Theorem 6.5 (Decidability of upward closed reachability, Abdulla 1996). Let
(Γ ,γ0,→,≤) be a wsts with computable minimal predecessors and decidable ≤.

6.5 Abdulla’s Backwards Search 47

Consider the upward closed set I ⊆ Γ given by its minimal elements min(I). Then it
is decidable whether I is reachable from γ0.

Proof. The algorithm computes the sequence of minimal elements as defined above.
When it finds Mk ↑= Mk+1 ↑, it terminates as now pre∗(I) = Mk ↑. By Theorem 6.4,
γ0 reaches I iff γ0 ≥ γ with γ ∈Mk. ut

To instantiate the algorithm to LCS, we need a suitable minpre(−) function. Let
L = (Q,q0,C,M,→). We take as minpre(q2,W2) := min(T), where T is the smallest
set so that

(q1,W1) ∈ T if q1
c!m−−→ q2 and W2 =W1[c :=W1.m]

(q1,W2) ∈ T if q1
c!m−−→ q2 and the last element of W2(c) 6= m (or W2(c) is empty)

(q1,W1) ∈ T if q1
c?m−−→ q2 and W1 =W2[c := m.W2(c)]

Lemma 6.9. Consider LCS L = (Q,q0,C,M,→) and configuration γ ∈ Q×M∗C.
Then minpre(γ) = min(pre({γ}↑)).

One may be skeptical about (q1,W2) ∈ T if q1
c!m−−→ q2 and the last element of W2(c)

is different from m. We have (q1,W2)→ (q2,W2[c :=W2(c).m])≥ (q2,W2). Hence,
(q1,W2) ∈ pre({(q2,W2)}↑).

There is no configuration (q1,W ′2) with W ′2 ≺∗W2 (in case last W2(c) 6= m). One
adds m in order to take the transition. The letter is lost to get W2(c). Since only a
single letter can be added, W2(c) cannot be constructed from W ′2(c)≺∗W2(c).

Chapter 7
Simple Regularity and Symbolic Forward
Analysis

Abstract Symbolic forward analysis of lossy channel systems

7.1 Simple Regular Expressions and Languages

Recall that the regular expressions over an alphabet M are defined by finite unions,
concatenation, and Kleene star of single letters:

re ::= /0 | ε | a | re1 + re2 | re1.re2 | re∗ where a ∈M.

Regular expressions re denote languages L (re)⊆M∗ in the standard way:

L (/0) := /0 L (re1 + re2) := L (re1)∪L (re2)

L (ε) := {ε} L (re1.re2) := L (re1).L (re2)

L (a) := {a} L (re∗) := L (re)∗ :=
⋃
j∈N

L (re) j

Here, L (re) j denotes j ∈ N concatenations of L (re) where we fix L (re)0 := ε .
Simple regular expressions are designed to represent languages that are downward
closed wrt. Higman’s subword ordering �∗. Therefore, every occurrence of a letter
also offers the choice of loss.

Definition 7.1 (Simple regular expression). Consider some underlying alphabet
M. Atomic expressions e allow for choices among letters and form the base case.
They are concatenated to products p. Simple regular expressions (sres) r are then
choices among products:

e ::= (a+ ε) | (a1 + . . .+am)
∗ p ::= ε | e.p r ::= /0 | p+ r

49

50 7 Simple Regularity and Symbolic Forward Analysis

where a,a1, . . . ,am ∈M. A language L ⊆M∗ is simple regular if there is a simple
regular expression r with L = L (r).

Haines showed that downward closed languages are regular. We first establish this
result and then sharpen it as follows. Downward closed languages are precisely the
languages represented by sres.

Theorem 7.1 (Haines ’69). Let L ⊆M∗ be any language. Then L ↓ is regular.

Proof. Since L ↓ is downward closed, the complement L ↓ is upward closed. Since
Higman’s ordering �∗ is a wqo, this upward closed language can be represented by
its (finitely many) minimal elements:

L ↓ = min(L ↓)↑ =
⋃

w∈min(L↓)

{w}↑ . (7.1)

Note that the upward closure of a word w = w1 . . .wn is the language

{w}↑ = {y ∈M∗ | w�∗ y} = L (M∗.w1.M∗ . . .M∗.wn.M∗)

where M∗ denotes the choice Σm∈Mm. This means {w}↑ is regular. Since min(L ↓)
is finite by Lemma 6.1 and since regular languages are closed under finite unions, we
conclude with Equation 7.1 that L ↓ is regular. Regular languages are also closed
under complementation, so L↓= L ↓ is regular. ut

The result is indeed surprising. If we define the language of a Turing machine to
contain all sequences of transitions that lead to a halting state, we get that L (TM)↓
is regular. This in turn means that the downward closure of languages cannot be
computable in general. In the example of Turing machines, we would obtain

TM halts iff L (TM)↓6= /0 iff ε ∈L (TM)↓ .

So there is no algorithm to compute a representation of L (TM)↓ (more precisely,
no representation which allows us to evaluate emptiness or membership of ε).

There are interesting classes of languages for which the downward closure is
computable. Van Leeuwen has shown in 1978 that the downward closure of context
free languages is effectively computable. For Petri nets, the problem remained open
until 2010 when it was solved positively by Habermehl, Wimmel, and the author.
Establishing such computability results is a beautiful theoretical challenge that finds
applications in decidability results for asynchronous hardware. Indeed, consider a
shared memory architecture with a writer and a reader. The reader always sees the
downward closure of the writers actions. If the reader process is slower than the
writer, it may miss intermediary instructions. It was Ahmed Bouajjani who realized
this applications of downward closed languages in modelling and verification.

Theorem 7.2 (Bouajjani ’98). Language L is downward closed if and only if it is
simple regular.

7.1 Simple Regular Expressions and Languages 51

Proof. For the if direction, recall that simple regularity means L = L (r) for some
sre r. Therefore, an induction along the structure of sres is sufficient that shows
L (r) is downward closed for all sres.

For the only if direction, we apply Haines’ theorem and obtain

L = L =
⋃

w∈min(L)

{w}↑ =
⋂

w∈min(L)

{w}↑. (7.2)

To find an sre for {w}↑, we take a detour and represent {w}↑ by a finite automaton.
This allows us to apply the standard construction for complementation, which hints
to the required expression. Let w = w1 . . .wn with M as underlying alphabet. The
language {w}↑ is accepted by

q0

M

A{w}↑

q1

M

.

qn

M

w1 w2 wn

The M labelled loops denote |M| loops, one for each letter in M. We determinize the
automaton with the powerset construction of Rabin and Scott. Switching then final
and non-final states yields an automaton for the complement language:

{q0}

M \{w1}

det(A{w}↑)

{q0,q1}

M \{w2}

.

{q0, . . . ,qn−1}

M \{wn}

{q0, . . . ,qn}

M

w1 w2 wn−1 wn

The automaton operations are known to reflect the operations on languages. Thus,
the language of det(A{w}↑) is as desired:

L (det(A{w}↑)) = L (det(A{w}↑)) = L (A{w}↑) = {w}↑.

The language is characterized by the sre

(M \{w1})∗.(w1 + ε).(M \{w2})∗.(w2 + ε) . . .(wn−1 + ε).(M \{wn})∗

According to Equation 7.2, we need an sre for the intersection
⋂

w∈min(L) {w}↑.
On automata, this intersection is reflected by a parallel composition

∏
w∈min(L)

det(A{w}↑).

The result is an, up to loops, acyclic automaton. We decompose it into its maximal
paths and reuse the above construction. ut

52 7 Simple Regularity and Symbolic Forward Analysis

7.2 Inclusion among simple regular languages

We intend to use sres to represent sets of configurations in a lossy channel system.
More precisely, we develop a concept of symbolic configurations (q,R) where R
is a function that assings to each channel c an sre R(c). Based on such symbolic
configurations, we again develop a fixed point algorithm of the form

I0 ⊆ I1 ⊆ I2 ⊆ . . . until Ik+1 = Ik for some k ∈ N.

As the sequence already is increasing, we only need to check Ik+1 ⊆ Ik. This
calls for an inclusion check L (r1) ⊆L (r2) among simple regular languages. The
following result is key to making this inclusion check efficient. It states that we only
need to compare products with products.

Lemma 7.1. Consider a product p and an sre r = p1 + . . .+ pk. If L (p) ⊆L (r)
then L (p)⊆L (pi) for some 1≤ i≤ k.

Proof. The proof approach is interesting. We devise a single word y ∈L (p) that
is demanding enough so as to ensure inclusion of the full language L (p). More
precisely, the word will guarantee that

y ∈L (pi) implies L (p)⊆L (pi)

for every product pi with 1≤ i≤ k. This proves the lemma as

y ∈ L (p) ⊆ L (r) =
k⋃

i=1

L (pi)

yields y ∈ L (pi) for some 1 ≤ i ≤ k. With the above implication, we conclude
L (p)⊆L (pi) for this pi. All that remains is to give the construction of y.

Let p = e1 . . .en and let j be the maximal number of atomic expressions in the
products in r = p1 + . . .+ pk. The goal is to enforce L (p) ⊆L (pi) if y ∈L (pi).
We set y = y1 . . .yn with

yi := a if ei = (a+ ε) yi := (a1 . . .am)
j+1 if ei = (a1 + . . .+am)

∗.

This means we have a word for every atomic expression. For a choice ei = (a+ ε)
we select yi = a to demand the occurrence of letter a. For ei = (a1 + . . .am)

∗ we
apply the pigeonhole principle. Let the longest product in r be e′1 . . .e

′
j. We choose

yi = (a1 . . .am)
j+1. This means at least two iterations of a1 . . .am have to be in the

language of a same expression, (a1 . . .am)
2 ∈L (e′l) for some 1≤ l≤ j. This implies

e′l = (. . .+ a1 + . . .+ am)
∗ and guarantees L (ei) ⊆ L (e′l). Inclusion of the full

product p = e1 . . .en iterates the argument for single expressions. ut

We now develop a recursive algorithm that checks inclusion among products in
linear time. If one of the products is the empty word, we have L (ε) ⊆L (p) for
every product p and L (p) 6⊆L (ε) for all p 6= ε . For atomic expressions, we have

7.3 Computing the Effect of Transitions 53

L (a+ ε)⊆L ((a1 + . . .+am)
∗) if a ∈ {a1, . . . ,am}

L ((a1 + . . .+am)
∗)⊆L ((b1 + . . .+bn)

∗) if {a1, . . . ,am} ⊆ {b1, . . . ,bn}.

It remains to set up the recursion for proper products e1.p1 and e2.p2. We return
L (e1.p1)⊆L (e2.p2) if one of the following holds:

L (e1) 6⊆L (e2) and L (e1.p1)⊆L (p2)

L (e1) = L (e2) = L (a+ ε) and L (p1)⊆L (p2)

L (e1)⊆L (e2) = L ((a1 + . . .+am)
∗) and L (p1)⊆L (e2.p2).

Lemma 7.2. Inclusion among products can be checked in linear time.

To check inclusion L (p1 + . . .+ pm)⊆L (p′1 + . . .+ p′n) among sres, we compare
each product pi with every product p′j until we find L (pi) ⊆ L (p′j). This local
check among products is sufficient according to Lemma 7.1.

Lemma 7.3. Inclusion among sres can be checked in quadratic time.

7.3 Computing the Effect of Transitions

The result of applying an operation like c!a to an sre r should again be an sre. We
show how to compute this sre. In the next section, we obtain a similar computability
result for the application of iterated sequences of operations.

We fix the channel c to which we apply the operations and write !a and ?a instead
of c!a and c?a. Let M be the alphabet of messages that are sent and received. We
define the effect of performing a send operation !a on L ⊆M∗ to be the language
L⊕!a := {y ∈ M∗ | y = x.a for some x ∈ L }. Similarly, the effect of receiving
from L is defined by L⊕?a := {y∈M∗ | x = a.y for some x∈L }. The languages
L we are concerned with are represented by sres r. The following lemma shows
how to compute an sre that represents L (r)⊕op.

Lemma 7.4. Consider an sre r and an operation op∈{!a,?a}. There is an sre r⊕op
with L (r⊕op) = L (r)⊕op. Moreover, r⊕op can be computed in linear time.

Proof. We first consider products. For send operations, we set p⊕!a := p.(a+ ε).
For receive operations, the base case is ε⊕?a := /0. In the induction step, we have

(e.p)⊕?a :=

e.p if e = (a1 + . . .+am)

∗ and a ∈ {a1, . . . ,am}
p if e = (a+ ε)

p⊕?a otherwise.

This means the operation is applied to the remaining product p provided letter a
cannot be served by the first atomic expression e.

54 7 Simple Regularity and Symbolic Forward Analysis

For an sre r = p1 + . . .+ pk we set r⊕op := (p1⊕op)+ . . .+(pk⊕op) to apply
the operation to all products. It is readily checked that language equality holds and
that r⊕op can be computed in time linear in the size of r. ut

7.4 Computing the Effect of Loops

Our goal is to accelerate the coverability analysis in lossy channel systems. The term
acceleration means we determine the effect of arbitrary iterations of control loops
in a single computation, rather than calculating the effect of every transition.

Technically, a control loop is a sequence of transitions that starts and ends in a
same state:

q0
op1−−→ q1

op2−−→ . . .
opn−−→ qn with q0 = qn.

We assume that all operations in ops = op1 . . .opn act on the same channel c.1 The
main contribution is an algorithm which, given an sre r and sequence ops, computes
a new sre r⊕ops∗. The latter reflects the effect of arbitrary iterations of ops on r.

The key insight is that the effect of loops stabilizes. For every sre r and sequence
ops, there is an n ∈ N that satisfies the following. The language obtained by at least
n iterations of ops on r is characterized by an sre r⊕ops≥n. As a consequence, the
effect of arbitrary iterations of ops on r can be captured by the sre

r⊕ops∗ := r+(r⊕ops)+ . . .+(r⊕opsn−1)+(r⊕ops≥n).

Theorem 7.3 (Bouajjani 1998). Consider product p and a sequence of operations
ops. There is an n ∈ N and a product p⊕ops≥n so that either L (p⊕opsn) = /0 or
L (p⊕ ops≥n) =

⋃
j≥n L (p⊕ ops j). The value of n is linear in the size of p and

p⊕ops≥n can be computed in quadratic time.

Before we turn to the proof, we define notions that help us shorten the presentation.
Consider a sequence ops of operations !a or ?a where a is in the alphabet M. We
denote by ops? the subword of receive operations. Similarly, ops! yields the subword
of send operations. We assume the symbol of operation to be removed. So for ops =
!a.?b.?c.!d we have ops? = b.c and ops! = a.d. We use M(ops?) and M(ops!) to
restrict alphabet M to the letters in ops? and ops!, respectively.

We extend Higman’s ordering into two directions. We use the growing subword
ordering x�∗grow y with x,y ∈M∗ to indicate that there is m ∈N so that xm+1 �∗ ym.
Not only does x �∗grow y imply x �∗ y. It indeed shows that y is large enough so as
to accommodate several instances of x. If both words are iterated m+1 times, then
xm+1 fits into only m iterations of y. The (m+1)st iteration of y is left untouched by
the subword ordering. Ordering �∗grow can be checked in quadratic time.

If we iterate a control loop, ops can be understood as a cycle. Indeed, when
the last operation opn in the control loop is reached, the word will continue with

1 If this is not the case, we first decompose ops into the subwords opsc for the single channels.

7.4 Computing the Effect of Loops 55

the first operation op1. The cyclic subword ordering x�∗cyc y requires that there is a
decomposition x= x1.x2 so that x2.x1�∗ y. Intuitively, the ordering rotates the cyclic
word by x1. Note that x �∗cyc y implies x �∗ y2. Moreover, �∗cyc can be checked in
quadratic time as well.

Proof. We distinguish four cases. In the first two, the control loop can be iterated an
unbounded number of times so that the channel content grows unboundedly. In the
third case, the loop can be iterated an unbounded number of times but the channel
content stabilizes. Finally, a deadlock may occur because a receive fails.

Case (1) L ((ops?)∗) ⊆ L (p) If ops? = ε we set n := 0 and p⊕ ops≥n :=
p.M(ops!)∗. If ops? 6= ε , there is a first atomic expression e = (a1 + . . .+ am)

∗ in
p= p1.e.p2 that satisfies M(ops?)⊆{a1, . . . ,am}. We set n := |p1| and p⊕ops≥n :=
e.p2.M(ops!)∗.

Case (2) L ((ops?)∗) 6⊆L (p) and ops?�∗grow ops! and p⊕ops 6= /0 We set n := |p|
and p⊕ops≥n := M(ops!)∗.

Case (3) L ((ops?)∗) 6⊆ L (p) and ops? 6�∗grow ops! and ops? �∗cyc ops! and p⊕
ops2 6= /0 We set n := |p|+1 and p⊕ops≥n := p⊕opsn.

Case (4) where (1)-(3) do not apply We set n := |p|+1 and have p⊕opsn = /0. ut

In Case (1), there is an atomic expression e = (a1 + . . .+ am)
∗ in product p =

p1.e.p2. It serves all receive operations in ops once p1 has been consumed. This
means ops can be iterated an arbitrary number of times. Sequence ops? is always
received from e and ops! is appended after p2. Let ops! = b1 . . .bn. Due to lossiness,
the downward closure of L ((ops!)∗) is

L ((ops!)∗)↓= (b1 + . . .+bn)
∗ = M(ops!)∗.

In the second case we do not have L ((ops?)∗) ⊆ L (p). Therefore, the original
channel content will be consumed after at most n = |p| iterations of the control loop.
But as ops?�∗grow ops! we have (ops?)m+1 �∗ (ops!)m for some m ∈N. This means
the channel content grows by ops! every m+ 1 iterations of the loop. So we can
have any number of ops! sequences at the end of the channel. The downward closure
is again M(ops!)∗. Condition p⊕ ops 6= /0 ensures the first iteration of the control
loop is executable. The remaining iterations can be performed since ops?�∗grow ops!
implies ops?�∗ ops!.

In the third case, the channel content is again lost after |p| iterations of the control
loop. Afterwards, the send operations in ops! serve the receive operations in ops?
in a way that forbids the channel content to grow. We require two iterations of ops
to be feasible on p to guarantee executability of arbitrary iterations. The reason is
that x �∗cyc y implies X �∗ y2 but does not imply x �∗ y. A counterexample to why
p⊕ops 6= /0 is not sufficient for feasibility of arbitrary iterations is the following:

p = (b+ ε).(a+ ε) ops =?b.?a.!a.!b.

Whe have p⊕ops = (a+ ε).(b+ ε) and p⊕ops2 = /0.

56 7 Simple Regularity and Symbolic Forward Analysis

If cases (1) to (3) fail, the loop can be iterated at most |p| times. Then the channel
is empty and the next iteration enters a deadlock as a receive fails.

7.5 A Symbolic Forward Algorithm for Coverability

Consider an lcs L = (Q,q0,C,M,→) and a set of configurations ΓF ⊆ Q×M∗C.
Harnessing the algorithms from Section 7.2 to 7.4, we now design a procedure that
checks reachability of ΓF from the initial configuration of L. Different from the
backwards search from Section 6.5, the new algorithm no longer stores minimal
elements to describe upward closed sets. The idea is to store symbolic configurations
(q,R) where function R assigns an sre R(c) to every channel c ∈ C. The symbolic
configuration denotes the set of (standard) configurations

L ((q,R)) := {(q,W) ∈ Q×M∗C | W (c) ∈L (R(c)) for all c ∈C}.

The overall verification algorithm is given in Figure 7.1. It maintains a set V
of symbolic configurations computed so far. When we calculate the effect of tran-
sitions and control loops, we find new symbolic configurations γ . We add γ to V
provided it denotes new standard configurations that are not represented by V so
far. When a configuration in ΓF is found, the algorithm returns reachable. When no
more symbolic configurations are found (V0 ⊆V1 ⊆ . . .⊆Vk =Vk+1), the procedure
returns unreachable. The algorithm expects a finite set loops of control loops to be
accelerated. A canonical choice for loops are the simple control loops that do not
repeat states.

The algorithm requires two comments. First, note that a symbolic configuration
γ may be added to V and L although it does not represent new configurations. This
happens if

L (γ)⊆
⋃

γ ′∈V

L (γ ′) but there is no single γ
′ ∈V so that L (γ)⊆L (γ ′).

We stick with the local comparison as it can be checked in polynomial time.
A second comment is that the algorithm is sound but incomplete. If it returns

reachable or unreachable the answer is correct. But the procedure may run forever.
More precisely, with a breadth-first processing of configurations the algorithm is a
semidecider for reachable instances: if ΓF is reachable, it will find a configuration
in ΓF and terminate. (Indeed the algorithm only finds reachable configurations.)
However, it may fail to terminate when ΓF is unreachable. We discuss the underlying
computability theoretic reasons in the following chapter.

7.5 A Symbolic Forward Algorithm for Coverability 57

input : L = (Q,q0,C,M,→), ΓF ⊆ Q×M∗C,

loops a finite set of control loops to be accelerated

begin
V := {γ0}
L := {γ0}
while L 6= /0 do

let γ1 = (q1,R1) ∈ L

L := L\{γ1}

for all transitions q1
c,op−−→ q2 do

γ := (q2,R1[c := R1(c)⊕op])

if L (γ) 6⊆L (γ ′) for all γ
′ ∈V then

V :=V ∪{γ}
L := L∪{γ}

end if
end for all

for all control loops q1
ops−−→ q1 with ops ∈ loops do

γ := (q1,R) where R(c) := R1(c)⊕ops∗c for all c ∈C

if L (γ) 6⊆L (γ ′) for all γ
′ ∈V then

V :=V ∪{γ}
L := L∪{γ}

end if
end for all
if L (V)∩L (ΓF) 6= /0 then

return reachable

end if
end while

return unreachable

Fig. 7.1 Symbolic forward algorithm for coverability in LCS.

Chapter 8
Undecidability Results for Lossy Channel
Systems

Abstract Undecidability and non-computability results for lossy channel systems.

We establish a fundamental undecidability result for lossy channel systems. As main
consequence, we derive incompleteness of the previous acceleration algorithm. The
problem we consider asks for whether a given control state in a lossy channel system
can be visited infinitely often. Consider an LCS L = (Q,q0,C,M,→) and a state
q ∈ Q. More formally, the recurrent state problem (RSP) asks for whether there is
an infinite sequence of configurations γ0→ γ1→ . . . with γi = (qi,Wi) so that qi = q
for infinitely many i ∈ N.

We show that RSP is undecidable. This is interesting for several reasons. First, the
infinite repetition of a designated state corresponds to the acceptance condition in
Büchi automata.1 Like finite automata serve as monitors for safety properties, Büchi
automata act as observers for liveness properties: is a desirable situation guaran-
teed to happen? Undecidability of RSP rules out decidability of liveness properties
for LCS. As a consequence, liveness properties are undecidable for general WSTS.
Surprisingly, liveness properties can be shown to be decidable for Petri nets. It is
an open research problem to find a natural subclass of WSTS that has a decidable
liveness problem. A good restriction to general WSTS should extend and at best
explain the positive result for Petri nets, and illustrate the strength of LCS.

As second consequence of this undecidability result for RSP, we prove that the
channel content is not computable for LCS. This shows Bouajjani’s acceleration
approach has to be incomplete.

We obtain undecidability by a reduction from the cyclic Post’s correspondence
problem (CPCP). It takes as input a finite alphabet M and a finite list of pairs

1 Syntactically, Büchi automata are finite state automata. Their semantics, however, is defined in
terms of infinite words.

59

60 8 Undecidability Results for Lossy Channel Systems

(x1,y1), . . . ,(xn,yn) with xi,yi ∈ M∗. The question is whether there is a finite and
non-empty sequence of indices i1, . . . , im ∈ {1, . . . ,n} so that

xi1 . . .xim =cyc yi1 . . .yim.

Here, x =cyc y if there are x′,x′′ ∈M∗ so that x = x′.x′′ and y = x′′.x′. Intuitively, x
and y are equal when considered as circles.

Theorem 8.1 (Ruohonen 1983). CPCP is undecidable.

We reduce CPCP to RSP in order to establish

Theorem 8.2 (Abdulla, Jonsson). RSP is undecidable.

Proof. Consider an instance of CPCP with alphabet M and list (x1,y1), . . . ,(xn,yn).
We construct an LCS L = (Q,q0,C,M,→) with a designated state q ∈ Q so that the
following equivalence holds: CPCP has a solution if and only if L has a transition
sequence γ0→ γ1→ . . . that visits q infinitely often. The construction, illustrated in
Figure 8.1, is as follows.

q0 q

c!m

d!m

1≤ i≤ n

change c from yi.z to z.xi

change d from xi.z′ to z′.yi

c!m

d!m

Fig. 8.1 Sketch of the lossy channel system in the encoding of CPCP. There are loops labelled by
c!m and d!m for every m ∈M, and similar for the transitions from q0 to q.

The LCS takes as messages the alphabet M of the CPCP instance. It has two
channels {c,d} =: C. In the initial state q0, the LCS guesses channel contents for
c and d via loops labelled by c!m and d!m for every m ∈M. The channel contents
are supposed to solve the CPCP instance. With a transition from q0 to the state
q of interest, the LCS stops guessing and starts validating the proposed solution.
To this end, it has a cycle for every pair (xi,yi) with 1 ≤ i ≤ n. Cycle i changes
the content of channel c from yi.z to z.xi for every z ∈ M∗. A similar change is
performed on d. It is immediate to implement the changes via sequences of receive
and send operations. We now argue that the CPCP instance has a solution iff L
admits a transition sequence that visits q infinitely often.

⇒ Assume that i1, . . . , im solves the CPCP instance. The words are

x := xi1 . . .xim y := yi1 . . .yim so that x =cyc y.

By definition of =cyc, we have x = x′.x′′ so that y = x′′.x′ for some x′,x′′ ∈M∗. We
construct a transition sequence that visits q infinitely often. In state q0, we send y.x′′

8 Undecidability Results for Lossy Channel Systems 61

to channel c and x.x′ to channel d. With this channel content, we move to q. The i1st
cycle transforms

y.x′′ = yi1.yi2 . . .yim.x′′ into yi2 . . .yim.x′′.xi1 for channel c
x.x′ = xi1.xi2 . . .xim.x′ into xi2 . . .xim.x′.yi1 for channel d.

Then we continue with the i2nd cycle in the expected way. Eventually, channel c
contains x′′.x and d holds x′.y. We now observe that

x′′.x = x′′.x′.x′′ = y.x′′

x′.y = x′.x′′.x′ = x.x′.

This means m-iterations of the cycles recreate the initial channel contents y.x′′ for c
and x.x′ for d. To visit q infinitely often, we repeat the m-iterations infinitely often.
Note that the transition sequence we chose does not loose messages.

⇐ For the reverse direction, one can show that if CPCP has no solution, then every
transition sequence that leads to q eventually deadlocks. ut

The above proof relies on two channels, and one may ask whether LCS with a single
channel have a decidable RSP. The answer is negative and sheds some light on the
expressiveness of LCS.

Lemma 8.1. RSP is undecidable even for LCS with one channel.

Idea. Consider the above LCS L with two channels c and d. We construct a new
LCS L′ with a single channel s. The new alphabet is C×M. This means the new
messages (c,m) and (d,m) keep track of the channel c or d that message m stems
from. The configurations γ = (q,(wc,wd)) of L are imitated in the new LCS by
configurations γ ′ = (q,w). So the state q coincides, but the content of γ ′ is a shuffle
w∈ (({c}×wc) ({d}×wd)) of the contents in both channels.2 A send action c!m
of L yields s!(c,m) in L′. Imitating a receive c?m of L is more delicate. The problem
is that, due to shuffling, L′ may not have (c,m) at the head of channel s. The rotation
construction from the exercises solves this problem. ut

Theorem 8.2 yields our main result. The channel content in LCS is not computable.
Therefore, the acceleration procedure from Chapter 7 has to be incomplete.

Theorem 8.3. For an LCS L = (Q,q0,C,M,→) with state q ∈ Q and channel c ∈C
there is no algorithm to compute an SRE that represents

W (q,c) := {w ∈M∗ | γ0→∗ (q,W) with W (c) = w}.

Note, however, that W (q,c) is simply regular by Theorem 7.2.

2 The shuffle operator is well known in formal language theory. Consider M as underlying alphabet.
The operator is defined inductively by w ε := w =: ε w for all w ∈ M∗ and a1.w1 a2.w2 :=
a1.(w1 a2.w2) ∪ a2.(a1.w1 w2) for all a1,a2 ∈M, w1,w2 ∈M∗.

62 8 Undecidability Results for Lossy Channel Systems

Proof. The result follows from a reduction of RSP. Consider as instance the LCS
L = (Q,q0,C,M,→) and state q ∈ Q. We construct a modified LCS L′ with a new
channel n ∈C so that the content of n reflects the repetition of q as follows. There
is a transition sequence γ0 → γ1 → . . . that visits q infinitely often iff W (q,c) is
infinite. Essentially, L′ keeps track of when q is entered by adding a message to the
new channel n. More precisely, L′ adds to L a new state q′. Every transition that
leads to q is redirected to q′. From q′, a single transition labelled n!x leads to q.
Here, x ∈ M is an arbitrary but fixed message. The remaining transitions of L are
left unchanged in L′. In particular there are no transitions that consume messages
from the new channel n. Figure 8.2 illustrates the construction.

We show that there is a run visiting q infinitely often if and only if W (q,n) is
infinite. The direction from left to right is immediate. For the reverse, one forms a
tree of all transition sequences that end in a configuration (q,W). Since language
W (q,n) is infinite, there are infinitely many transition sequences leading to q. Thus,
the tree is infinite. Moreover, the tree is finitely branching. König’s lemma applies
and yields an infinite path γ0→ γ1→ . . . in the tree. State q is visited infinitely often
on this path. To see this, assume there was a last configuration with state q. Then,
by construction, the path would end in this configuration. A contradiction.

. . .

q
c1!m1 ck!mk

. . .

q′

q

c1!m1 ck!mk

n!x

Fig. 8.2 Reduction from RSP to the computation of channel contents. The original transitions in L
are given to the left, the modification in L′ is depicted to the right.

We now derive the desired non-computability result for channel contents. If an
SRE was computable for W (q,n), then we could also decide finiteness of W (q,n)
using this SRE. With the previous reduction, this decides RSP. Hence, such an SRE
is not computable. ut

The proof shows more. No representation of W (q,n) is computable that allows us
to decide finiteness of the language.

Chapter 9
Expand, Enlarge, and Check

Abstract EEC

We are still looking for a forward algorithm that solves upward closed reachability
in WSTS in a complete way. The strong motivation for forward algorithms is in their
efficiency. Backwards algorithms often encounter search trees with high outdegree.
Forward algorithms are more deterministic. Moreover, verification techniques like
partial order reduction immediately apply to forward algorithms while their design
is difficult for backwards searches.

To circumvent the non-computability result from Theorem 8.3, we refrain from
computing the precise set of reachable configurations in a WSTS. We rather employ
two sequences of approximations

Under(TS,Γ0),Under(TS,Γ1), . . . and Over(TS,Γ0,L0),Over(TS,Γ1,L1), . . .

Sequence Under(TS,Γ0),Under(TS,Γ1), . . . provides more and more precise under-
approximations of the WSTS TS. They are used to decide the positive instances of
upward closed reachability: if the upward closed set is reachable from the initial
configuration, some underapproximation Under(TS,Γi) will report this. The second
sequence gives more and more precise overapproximations of the WSTS. They will
decide the negative instances. Since we have two semi-decision procedures, the
combination of both algorithms decides upward closed reachability.

The construction enjoys a beautiful analogy. Abdulla’s algorithm is a backwards
search that manipulates upward closed sets represented by minimal elements. EEC
in turn is a forward algorithm that manipulates downward closed sets. The following
section shows how to represent downward closed sets by limit elements.

63

64 9 Expand, Enlarge, and Check

9.1 Domains of Limits

Consider the WQO (C,≤). Upward closed sets I⊆C are finitely represented by their
minimal elements: min(I)↑= I. The representation is effective. Membership in and
inclusion among upward closed sets can be checked via ≤. What is a finite and
effective representation of downward closed sets? We propose to use limit elements
l /∈C. The idea is to reflect infinite non-decreasing sequences

c0 ≤ c1 ≤ c2 ≤ . . .

For example, the sequence (0,0),(0,1),(0,2), . . . in N2 is represented by (0,ω).
Similarly, the sequence of languages

L (a+ ε),L ((a+ ε).(b+ ε)),L ((a+ ε).(b+ ε).(a+ ε)), . . .

yields as limit the language L ((a+ b)∗). To be useful in a decision procedure for
upward closed reachability, limit elements should satisfy some constraints.

Definition 9.1 (Adequate domain of limits). Let (C,≤) be a WQO. A pair (L,r)
consisting of a set of limit elements L with L∩C = /0 and a representation function
r : L∪C→ P(C) is called an adequate domain of limits (ADL) for (C,≤) provided
the following conditions hold.

(L1) For l ∈ L, r(l) is downward closed. Moreoever, r(c) := {c}↓ f.a. c ∈C.
(L2) There is a top element > ∈ L with r(>) =C.
(L3) For any downward closed set D ⊆ C there is a finite set D′ ⊆ C ∪ L with

r(D′) = D. Condition (L3) is also called completeness.

The domain of limits has to be compatible with the transition relation in the WSTS.

Definition 9.2 (Effectiveness). A WSTS (Γ ,γ,→,≤) and an ADL (L,r) for (Γ ,≤)
are called effective if

(E1) For all d ∈ Γ ∪L, finite D⊆ Γ ∪L, inclusion suc(r(d))⊆ r(D) is decidable.
(E2) For all finite D1,D2 ⊆ Γ ∪L, inclusion r(D1)⊆ r(D2) is decidable.

We observed that Petri nets are WSTS. The limit elements are extended markings
in N|S|ω . That this domain is adequate and effective is not hard to check. For LCS,
the symbolic configurations from Chapter 7 form an ADL that can be shown to be
effective. Recall that symbolic configurations assign an SRE to every channel.

Consider WSTS TS = (Γ ,γ0,→,≤) and an upward closed set I ⊆ Γ . To solve
upward closed reachability means to decide R(TS)∩ I = /0. The following lemma
shows that downward closed sets are sufficient for this task.

Lemma 9.1. We have R(TS)∩ I = /0 if and only if R(TS)↓ ∩ I = /0.

Note that Definition 9.1 yields a finite representation for R(TS)↓. By (L3), there is a
finite set CS(TS)⊆Γ ∪L so that r(CS(TS)) = R(TS)↓. We call R(TS)↓ the covering
set of R(TS). The finite set CS(TS) is the coverability set of R(TS).

9.3 Overapproximation 65

Combined with Lemma 9.1 this finiteness brings us closer to a decision procedure
for coverability. Indeed, the term coverability set is chosen intentionally: the EEC
algorithm can be understood as an advanced version of coverability graphs. But
how to circumvent the non-computability of coverability sets for LCS? The trick is
to approximate CS(TS) rather than to compute it precisely.

9.2 Underapproximation

We construct an underapproximation of a transition system TS = (Γ ,γ0,→) wrt. a
finite subset of configurations Γ ′ ⊆ Γ . The idea is to reflect the transition sequences
that visit configurations in Γ ′, only.

Definition 9.3 (Underapproximation wrt. Γ ′). Let TS = (Γ ,γ0,→) and consider a
finite set Γ ′⊆Γ with γ0 ∈Γ ′. The underapproximation of TS wrt. Γ ′ is the transition
system Under(TS,Γ ′) := (Γ ′,γ0,→ ∩ (Γ ′×Γ ′)).

With Γ ′ large enough, this underapproximation decides the positive instances of
upward closed reachability. To begin with, we argue that the underapproximation
reports correctly on reachability. If it finds an upward closed set I ⊆ Γ reachable,
then the set is reachable in the original transition system.

Lemma 9.2 (Soundness). If R(Under(TS,Γ ′))∩ I 6= /0 then R(TS)∩ I 6= /0.

Moreover, if set I is reachable in TS then some underapproximation will detect this.

Lemma 9.3 (Completeness). If R(TS)∩ I 6= /0 then there is a finite set Γ ′ ⊆ Γ with
γ0 ∈ Γ ′ so that R(Under(TS,Γ ′))∩ I 6= /0.

9.3 Overapproximation

For the following development, we assume that the WSTS TS = (Γ ,γ0,→,≤) to be
approximated is deadlock free: for all γ1 ∈ Γ there is γ2 ∈ Γ so that γ1→ γ2. In the
case of LCS, deadlock freeness can always be achieved by adding a loop to each
state that sends to a fresh channel.

The underapproximation of TS is parameterized by a finite set of configurations
Γ ′ ⊆ Γ . The overapproximation Over(TS,Γ ′,L′) additionally relies on a finite set
of limit elements L′ from an ADL (L,r). Intuitively, transition sequences that stay
within Γ ′ are represented precisely by Over(TS,Γ ′,L′). When we encounter a con-
figuration outside Γ ′, we overapproximate it using limits from L′.

The problem is in the choice of limits. There may be two sets E1,E2 ⊆ Γ ′]L′

that overapproximate suc(r(d)) with d ∈Γ ′]L′. This means suc(r(d))⊆ r(E1) and
suc(r(d)) ⊆ r(E2). If the sets are incomparable, r(E1) 6⊆ r(E2) and r(E2) 6⊆ r(E1),
both overapproximation are reasonable. The trick is to avoid a choice but consider
all overapproximations. As a result, Over(TS,Γ ′,L′) will be an and-or graph rather
than a transition system.

66 9 Expand, Enlarge, and Check

9.3.1 And-Or Graphs

And-or graphs are bipartite graphs with an initial or-vertex.

Definition 9.4 (And-or graph). An and-or graph is a graph G = (VA]VO,vO,→)
with disjoint sets of and vertices VA, or vertices V0 with initial vertex vO ∈ VO, and
edges→ ⊆ (VA×VO)∪ (VO×VA). We assume that for every v1 ∈ VA]VO there is
v2 ∈VO]VA with v1→ v2.

For and-or graphs, the analogue of a transition sequence is an execution tree.

Definition 9.5 (Execution tree). Consider G = (VA]VO,vO,→). An execution tree
of G is an infinite tree T = (N,nr, ,λ) with node labelling λ : N → VA]VO that
satisfies the following compatibility requirements:

(i) λ (nr) = vO
(ii) For all n1 ∈ N with λ (n1) ∈ VO there is precisely one n2 ∈ N with n1 n2.

Moreover, the nodes satisfy λ (n1)→ λ (n2).
(iii) For all n1 ∈ N with λ (n1) ∈VA we have that

(a)for all v2 ∈ VO with λ (n1)→ v2 there is precisely one n2 ∈ N with n1 n2
and λ (n2) = v2.

(b)for all n2 ∈ N with n1 n2 there is v2 ∈VO with λ (n1)→ v2 and λ (n2) = v2.

We relate unreachability of upward closed sets in WSTS to the avoidability problem
in and-or graphs. The problem takes as input an and-or graph G = (VA]VO,vO,→)
and a set of vertices E ⊆VA]VO. The question is whether there is an execution tree
T = (N,nr, ,λ) so that λ (N)∩E = /0. In this case, we say E is avoidable in G.
The avoidability problem can be shown to be complete for polynomial time P.

9.3.2 Over(TS,Γ ′,L′)

Let TS = (Γ ,γ0,→,≤) be a WSTS with ADL (L,r) wrt. (Γ ,≤). Consider finite sets
Γ ′ ⊆ Γ with γ0 ∈ Γ ′ and L′ ⊆ L with > ∈ L′.

Definition 9.6 (Overapproximation wrt. Γ ′ and L′). The overapproximation of TS
wrt. Γ ′ and L′ is the and-or graph Over(TS,Γ ′,L′) := (VA]VO,vO,→) defined by

(A1) V0 := Γ ′]L′

(A2) VA := {E ⊆ Γ ′]L′ | E 6= /0 and 6 ∃ d1,d2 ∈ E : r(d1)⊆ r(d2)}
(A3) vO := γ0
(A4) For all v1 ∈VA and v2 ∈VO we have v1→ v2 iff v2 ∈ v1.
(A5) For all v1 ∈VO and v2 ∈VA we have v1→ v2 iff suc(r(v1))⊆ r(v2) and there

is no v ∈VA with suc(r(v1))⊆ r(v)(r(v2).

9.3 Overapproximation 67

By Condition (A1), or-nodes are configurations in Γ ′ or limits in L′. And-nodes,
defined by (A2), are sets of configurations and limit elements. Sets arise for two
reasons. First, due to non-determinism a configuration may have several successors.
Second, as discussed above it may be unclear which limit elements to choose for
the overapproximation of successors. By Condition (A5), we select the most precise
overapproximations of suc(r(v1)).

The definition of and-or graphs requires each vertex to have a successor. To see
that Over(TS,Γ ′,L′) obeys this constraint, consider an and-node. By definition, this
is a non-empty set E ⊆ Γ ′] L′. By Condition (A4), the transitions leaving and-
nodes just select an element from E. For an or-node, observe that {>} is an and-
node. It can be used to overapproximate suc(r(v)) 6= /0 for any or-node v ∈VO. Non-
emptiness holds by deadlock freedom.

To link unreachability of I ⊆ Γ to avoidability in Over(TS,Γ ′,L′), we define the
set of vertices VI ⊆VA]VO that represent elements in I:

VI := {v ∈VA]VO | r(v)∩ I 6= /0}.

To prove the overapproximation sound, we first show that it imitates the behaviour
of TS. Note that the following statements holds for any choice of Γ ′ and L′.

Lemma 9.4. Let γ0→ . . .→ γk in TS. Then in every execution tree T = (N,nr, ,λ)
of Over(TS,Γ ′,L′) there is a path nr n1 . . . n2k so that γi ∈ r(λ (n2i)).

So we use or-vertices λ (n2i) to reflect configurations.

Theorem 9.1 (Soundness). If VI is avoidable in Over(TS,Γ ′,L′) then R(TS)∩I = /0.

Proof. We proceed by contraposition and assume R(TS)∩ I 6= /0. Then there is a path
γ0→+ γk with γk ∈ I in TS. By Lemma 9.4, every execution tree T = (N,nr, ,λ)
of Over(TS,Γ ′,L′) contains a path nr + n2k with γi ∈ r(λ (n2i)). We conclude
r(λ (n2k))∩ I 6= /0 and so λ (N)∩VI 6= /0. ut

The overapproximation is actually complete. In case of unreachability, the sets Γ ′

and L′ can be chosen precise enough so as to avoid VI . Precise enough here means
that CS(TS) ⊆ Γ ′]L′. This is the key observation that distinguishes EEC from the
acceleration approach. It is sufficient to overapproximate the coverability set, it is
not necessary to compute it precisely.

Theorem 9.2 (Completeness). Let CS(TS) ⊆ Γ ′] L′. If R(TS)∩ I = /0 then VI is
avoidable in Over(TS,Γ ′,L′).

Proof. We compute an execution tree T = (N,nr, ,λ) so that all n ∈ N satisfy

r(λ (n))⊆ r(CS(TS)).

Since r(CS(TS)) = R(TS)↓ and since R(TS)↓ ∩ I = /0 if and only if R(TS)∩ I = /0,
we conclude r(λ (n))∩ I = /0. This means λ (N)∩VI = /0, tree T avoids VI .

We construct the tree by induction on the number of layers of or- and and-vertices.
In the base case, we start from the root with

68 9 Expand, Enlarge, and Check

r(λ (nr)) = r(vO) = r(γ0) = {γ0}↓ ⊆ r(CS(TS)).

We have to determine an and-vertex v ∈ VA with v0 → v so that r(v) ⊆ r(CS(TS)).
With such an and-vertex, we extend the execution tree by nr n so that λ (n) = v.

To find a suitable and-vertex, it is sufficient to show that

suc(r(γ0))⊆ r(CS(TS)).

Since and-vertices are most precise overapproximations, there is v∈VA with vO→ v
that satisfies r(v)⊆ CS(TS). In the worst case, we select CS(TS) itself.

To establish the inclusion, consider γ ∈ r(γ0) = {γ0} ↓ that takes a transition
γ → γ ′ for some γ ′ ∈ Γ . By definition of WSTS, ≤ is a simulation relation and
so γ0 can imitate the transition. There is γ ′′ ∈ Γ with γ0 → γ ′′ and γ ′′ ≥ γ ′. Since
γ ′′ ∈ r(CS(TS)) and since r(CS(TS)) is downward closed, we have γ ′ ∈ r(CS(TS)).

The induction step is along similar lines. ut

9.4 Overall Algorithm

EEC expects as input a WSTS (Γ ,γ0,→,≤) with an ADL (L,r) that are effective.
For the iterative construction of under- and overapproximations, we additionally
require Γ and L to be recursively enumerable. As a consequence of this, there is an
infinite sequence of finite sets of configurations

Γ0 ⊆ Γ1 ⊆ . . .

with γ0 ∈Γ0 that satisfies the following. For every γ ∈Γ there is i ∈N so that γ ∈Γi.
Likewise, there is an infinite sequencce of finite sets of limits

L0 ⊆ L1 ⊆ . . .

so that > ∈ L0 and for every l ∈ L there is i ∈ N so that l ∈ Li. Then for any finite
Γ ′]L′ ⊆ Γ]L there is j ∈ N so that

Γ
′]L′ ⊆ Γj]L j.

Theorem 9.3. EEC terminates and returns reachable if R(TS)∩ I 6= /0 and unreach-
able otherwise.

Proof. Provided→ is decidable, Under(TS,Γi) is computable due to finiteness of Γi.
With a decidable ≤, the test R(Under(TS,Γi))∩ I 6= /0 is also decidable. Similarly,
Over(TS,Γi,Li) and VI are computable due to effectiveness. Avoidability of VI can
then be checked in polynomial time.

9.4 Overall Algorithm 69

input :

Finite representation of WSTS TS = (Γ ,γ0,→,≤) with ADL (L,r) for (Γ ,≤) that are effective

Upward closed set I ⊆ Γ represented by min(I)

Infinite sequence Γ0 ⊆ Γ1 ⊆ . . . of finite subsets of Γ as discussed above

Infinite sequence L0 ⊆ L1 ⊆ . . . of finite subsets of L as discussed above

begin
i := 0

while true do
Compute Under(TS,Γi) //Expand

Compute Over(TS,Γi,Li) //Enlarge

if R(Under(TS,Γi))∩ I 6= /0 then //Check

return reachable

else if VI avoidable in Over(TS,Γi,Li) then
return unreachable

end if
i := i+1

end while
end

Fig. 9.1 Expand, Enlarge, and Check.

For correctness, let R(TS)∩ I 6= /0. Then VI is not avoidable in all Over(TS,Γi,Li)
by soundness of overapproximation (applied in contraposition). By completeness of
underapproximation, there is j ∈ N so that R(Under(TS,Γj))∩ I 6= /0. EEC returns
reachable.

Let R(TS)∩ I = /0. We have R(Under(TS,Γi))∩ I = /0 for all i ∈N by soundness
of underapproximation. But there is j ∈N with CS(TS)⊆ L j]Γj. By completeness
of overapproximation, VI is avoidable in Over(TS,Γj,L j). EEC returns unreachable
as desired. ut

Part III
Dynamic Networks and π-Calculus

Text.

Chapter 10
Introduction to π-Calculus

Abstract π-Calculus

The π-Calculus is a process algebra for modelling dynamic networks. The origins
of process algebras date back to the 1970s with Hoare’s Communicating Sequential
Processes (CSP) and Milner’s Calculus of Communicating Systems (CCS). Both
lines of research were devoted to the study of the semantics of concurrency — with
the following observation. Communication, sending and simultaneous receiving of
messages, is the fundamental computation mechanism in concurrent systems. More
complex mechanisms, e.g., semaphores, can be derived from communications.

Communications exchange messages over channels. To transmit its IP address
to a server located at some URL, a client uses the output action url〈ip〉. It sends
the message ip on the channel url. The input action url(x) of the server listens on
channel url and replaces variable x by the incoming message. The key idea is to let
message and channel have the same type: they are just names. Therefore, a message
that is received in one communication may serve as the channel in the following. We
extend the model of the server to S = url(x).x〈ses〉. The server receives a channel x
on url from the client. As a reply it sends a session ses on the received channel, i.e.,
to the client. We also extend the client to receive the session: C = url〈ip〉.ip(y).

Concurrent execution of client and server is reflected by parallel composition. In
the scenario, the parallel composition is C | S = url〈ip〉.ip(y) | url(x).x〈ses〉. Since a
communication of C and S forms a computation step, we derive the transition

url〈ip〉.ip(y) | url(x).x〈ses〉 → ip(y) | ip〈ses〉.

Note that the communication changes the link structure. While in C | S client
and server share channel url, they are connected by ip in the next step. The number
of entities in the system stays constant. To also model object creation, the parallel

73

74 10 Introduction to π-Calculus

composition can be nested under action prefixes. Therefore, the two characteristic
features of dynamic networks are well-reflected in π-Calculus.

We focus on the computational expressiveness of dynamic networks, i.e., we
study restrictions of π-Calculus that yield system classes with decidabile verification
problems. Interestingly, dynamic networks require a new correctness criterion. They
ask for proper connections among entities, different from the earlier systems where
we focussed on proper interaction. As we shall see, also linkage problems relate to
coverability.

The main insight is that, despite the unbounded number of components and links
that may be generated, dynamic networks often feature a strong similarity inside its
configurations. There often is a finite set of connection patterns that all components
make use of. We exploit this observation to derive finite representation of dynamic
networks. As we shall see, the requirement can also be weakened. We later consider
architectures where only certain dependency chains are bounded, similar to what is
the case in n-tier architectures.

10.1 Syntax

The basic elements of processes are names a,b,x,y in the infinite set of names N .
They are used as channels and messages. The previously introduced output and input
actions are prefixes

π ::= x〈y〉 | x(y) | τ.

The silent prefix τ performs an internal action.
Let ã abbreviate a finite sequence of names a1, . . . ,an. To define parameterized

recursion, we use process identifiers K,L. A process identifier represents a process
P via a recursive definition K(x̃) := P, where the elements in x̃ are pairwise distinct.
The term Kbãc is a call to the process identifier, which results in the process P with
the names x̃ replaced by ã. The remaining operators are as follows.

Symbol 0 is the stop process without behaviour. A prefixed process π.P offers π

for communication and behaves like P when π is consumed. The choice between
prefixed processes is represented by π.P+M. If π.P is chosen, the alternatives in M
are forgotten. In a parallel composition P | Q, the processes P and Q communicate
via pairs of send and receive prefixes. The restriction operator νa.P converts the
name a in P into a private name. It is different from all other names.

Definition 10.1. The set of all π-Calculus processes P is defined inductively by

M ::= 0 | π.P+M P ::= M | Kbãc | P1 | P2 | νa.P.

Every process relies on finitely many process identifiers K, each of which defined
by an equation K(x̃) := Q.

10.2 Names and Substitutions 75

We write π instead of π.0. A sequence of restrictions νa1 . . .νan.P is abbreviated
by ν ã.P with ã := a1, . . . ,an. To avoid brackets, we define that (1) prefix π and
restriction νa bind stronger than choice composition + and (2) choice composition
binds stronger than parallel composition | .

10.2 Names and Substitutions

We mentioned that a restricted name νa is different from all other names in the
process P ∈P under consideration. To ensure this, we define ν to bind the name a.
We then allow for renaming bound names by α-conversion. Similarly, in a prefixed
process a(y).Q the receive action a(y) binds the name y. Intuitively, y is a variable
which has not yet received a concrete value and therefore should be different from
all other names in P. We refer to the set of bound names by bn(P). A name that is
not bound is said to be free and we denote the set of free names in P by fn(P).

Of particular interest to the theory we develop are the restricted names that are
not covered by a prefix in the syntax tree. We call them active restricted names and
denote them by arn(P). In

νa.(a〈b〉.νc.a〈c〉 | a(x) | Kbbc)

the restriction νa is active while νc is not as it is covered by the prefix a〈b〉. Note
that active restricted names are bound, arn(P)⊆ bn(P). Active restrictions connect
the processes that use the name. In the example, νa connects a〈b〉.νc.a〈c〉 and a(x),
but not Kbbc. We formalise the idea of connecting processes by active restrictions
in Section 11.1. Formally, we say process P uses name a if a ∈ fn(P).

Since we will permit α-conversion of bound names, the following constraints (1)
and (2) can always be achieved.

We assume wlog. (1) that all bound names are different and (2) that bound
names and free names do not interfere. (3) Defining equations K(x̃) := P
should not contribute names. Therefore, we require that fn(P)⊆ x̃.

Technically, α-conversion of a bound name a to c means changing νa.P to νc.P′,
where every free occurrence of a in P is replaced by c in P′. For example, νa.a(x)
is α-converted to νc.c(x). To rename free names in a process, we use substitutions.

Definition 10.2 (σ : N →N). A substitution is a mapping from names to names,
σ : N → N . Let xσ denote the image of x under σ . If we give domain and
codomain, σ : A→ B with A,B ⊆ N , we demand xσ ∈ B if x ∈ A and xσ = x
otherwise. An explicitly defined substitution σ = {a1, . . . ,an/x1, . . . ,xn} maps xi to
ai, i.e., σ : {x1, . . . ,xn}→ {a1, . . . ,an} with xiσ = ai.

An application of a substitution σ : A→ B to a process P results in a new process
Pσ , where all free names in P are changed according to σ .

76 10 Introduction to π-Calculus

To ensure that substitution σ : A → B does not introduce new bindings in
process P ∈P , we assume that the names in σ do not interfere with the
bound names: (A∪B)∩bn(P) = /0.

We formalize the application of substitutions.

Definition 10.3 (Application of Substitutions). Consider σ : A→ B and P ∈P
with (A∪B)∩bn(P) = /0. The application of σ to P yields Pσ ∈P defined by

0σ := 0 (π.P+M)σ := (πσ).(Pσ)+(Mσ)

τσ := τ Kbãcσ := Kbãσc
x(y)σ := xσ(y) (P | Q)σ := Pσ | Qσ

x〈y〉σ := xσ〈yσ〉 (νa.P)σ := νa.(Pσ).

10.3 Structural Congruence

To give an operational semantics to a process algebra, the behaviour of every process
has to be defined. To keep the definition of the transition relation simple, Berry and
Boudol suggested to define only the transitions of representative terms and use a
second relation to link processes with representatives. By definition, a process then
behaves like its representative. Intuitively, the definition of the operational semantics
is factorized into the definition of a transition and a structural relation.

Berry and Boudol called the approach chemical abstract machine with the fol-
lowing idea. Processes are chemical molecules that change their structure. Changing
the structure heats molecules up or cools them down. Only heated molecules react
with one another, which changes their state.

The π-Calculus semantics that exploits the chemical abstract machine idea was
introduced by Milner. He called the relation to identify processes with representa-
tives structural congruence and the name is still in use. Many results in this part of
the lecture exploit invariance of the transition relation under structural rewriting.

Before we turn to the definition of structural congruence ≡ ⊆P×P , we recall
that a congruence relation is an equivalence which is compatible with the operators
of the algebra under study. That ≡ is an equivalence means we have

∀P ∈P : P≡ P (Reflexivity)
∀P,Q ∈P : P≡ Q implies Q≡ P (Symmetry)
∀P,Q,R ∈P : P≡ Q and Q≡ R implies P≡ R. (Transitivity)

That structural congruence is a congruence means it is preserved under composition,
using any of the operators:

10.4 Transition Relation 77

∀P,Q,M ∈P : ∀π : P≡ Q implies π.P+M ≡ π.Q+M

∀P,Q,R ∈P : P≡ Q implies P | R≡ Q | R
∀P,Q ∈P : ∀a ∈N : P≡ Q implies νa.P≡ νa.Q.

Definition 10.4 (Structural Congruence). Structural congruence ≡ ⊆P ×P is
the least congruence on processes which allows for α-converting bound names

νx.P≡ νy.(P{y/x}) a(x).P≡ a(y).(P{y/x}),

where in both cases {y}∩(fn(P)∪bn(P)) = /0. Moreover, + and | are commutative
and associative with 0 as neutral element,

M+0≡M M1 +M2 ≡M2 +M1

M1 +(M2 +M3)≡ (M1 +M2)+M3

P | 0≡ P P1 | P2 ≡ P2 | P1

P1 | (P2 | P3)≡ (P1 | P2) | P3,

and restriction is a commutative quantifier that is absorbed by 0 and whose scope
can be shrunk and extruded over processes not using the quantified name:

νx.νy.P≡ νy.νx.P νx.0≡ 0
νx.(P | Q)≡ P | (νx.Q), if x /∈ fn(P).

The latter law is called scope extrusion.

Structural congruence preserves the free names in a process.

Lemma 10.1 (Invariance of fn under ≡). P≡ Q implies fn(P) = fn(Q).

10.4 Transition Relation

To define the behaviour of π-Calculus processes, we employ the structural approach
to operational semantics. Plotkin argues that the states of a transition system, like
that of a program or that of a π-Calculus process, have a syntactic structure. They
are compositions of basic elements using a set of operators. He then proposes to
define transitions between these structured states by a proof system: a transition
exists iff it is provable in the proof system. In order to define the behaviour of every
state, the proof system uses induction on their structure. It comprises (1) axioms that
define the transitions of basic elements and (2) proof rules that define the transitions
of composed states from the transitions of the operands. The benefit of structural
operational semantics is their simplicity and elegance, combined with the ability to
establish properties of transitions by induction on the derivations.

Definition 10.5 (Transition Relation and System). The transition relation → ⊆
P×P is defined by the rules in Table 10.1. For a process P∈P , we define the set

78 10 Introduction to π-Calculus

of reachable processes to be R(P) := {Q∈P | P→∗ Q}. The transition system of P
factorizes along structural congruence, T (P) := (R(P)/≡,→, [P]) where [Q]→ [Q′]
iff Q→ Q′.

(Tau) τ.P+M→ P

(React) x(y).P+M | x〈z〉.Q+N→ P{z/y} | Q

(Const) Kbãc → P{ã/x̃}, if K(x̃) := P

(Par)
P→ P′

P | Q→ P′ | Q
(Res)

P→ P′

νa.P→ νa.P′

(Struct)
P→ P′

Q→ Q′
, if P≡ Q and P′ ≡ Q′.

Table 10.1 Rules defining the transition relation→⊆P×P .

Different from Plotkin’s classical approach where the proof system only relies on the
transition relation, Definition 10.5 makes use of the chemical abstract machine idea
(cf. Section 10.3). All rules except for (Struct) define the transitions of representative
processes. Rule (Struct) then postulates that a process can do all transitions of the
representative it is related to by structural congruence.

Chapter 11
A Petri Net Translation of π-Calculus

Abstract From π-Calculus to Petri nets

We develop a translation of π-Calculus processes into Petri nets. This allows us to
reuse the techniques and tools that have been developed for the analysis of Petri nets
for the verification of dynamic networks. The π-Calculus is Turing complete while
finite Petri nets are not. Therefore, the translation yields infinite Petri nets for some
processes. This means we relax the definition of Petri nets N = (S,T,W,M0) in that
S, T , or W may be infinite sets.

For process algebras, the investigation of automata-theoretic models has a long
standing tradition. The classic question was to find representations that reflect the
concurrency of processes. The translation considered here exploits the connections
induced by restricted names, instead. Rather than understanding a process as a set of
programs running concurrently, we understand it as a graph where the references to
restricted names connect processes. We call this translation a structural semantics to
distinguish it from classical concurrency semantics. The benefit of taking the view-
point of structure instead of concurrency are finite net representations for processes
with unboundedly many restricted names and unbounded parallelism. We outline
the intuition behind the translation.

The graph interpretation of a π-Calculus process P ∈P is a hypergraph G (P)
that makes the use of active restricted names explicit. A hypergraph is a graph where
several vertices may be connected to a single so-called hyperedge. The interpretation
of a process is obtained as follows. We draw a vertex labelled by Q for every process
Q = M with M 6= 0 and for every Q = Kbãc in P. We then add a hyperedge labelled
by a for every active restricted name νa. An arc is inserted between a vertex Q and
an edge a if the name is free in the process, a ∈ fn(Q). Due to process creation,
process destruction, and name passing this graph structure changes during system
execution. We illustrate the interpretation on an example.

79

80 11 A Petri Net Translation of π-Calculus

a〈a〉.νb.b(x)+ c〈c〉

a d

c(x).Kbac Kbdc

Fig. 11.1 Graph interpretation of a π-Calculus process

Example 11.1. Let P = νa.(a〈a〉.νb.b(x)+ c〈c〉 | c(x).Kbac | νd.Kbdc). The graph
interpretation G (P) is given in Figure 11.1. Note that the choice a〈a〉.νb.b(x)+c〈c〉
is represented by one vertex which is connected with a, although the alternative c〈c〉
does not contain a as a free name. Furthermore, there is no hyperedge c as the name
is free in the process.

In the example, process P is represented by two unconnected graphs. This means
dynamic networks consist of independent parts that only communicate over public
channels. The idea of the structural semantics is to represent each such graph by
a place in a Petri net. We then obtain the current process by putting tokens on the
places, one for each occurrence of the corresponding graph. Technically, we do not
work with graphs but transform every process into a normal form.

11.1 Restricted Form

The restricted form captures the intuition of unconnected graphs discussed above.
It serves the definition of the structural semantics and also helps in the definition of
the characteristic functions depth and breadth. The idea of the restricted form is to
minimize the scopes of active restricted names. This results in a process where the
topmost parallel components correspond to the unconnected graphs. We call them
fragments. The decomposition function that we define in Section 11.2 then counts
how often a fragment occurs in a process in restricted form. It acts as a marking in
the structural semantics.

Definition 11.1 (Fragments and Restricted Form). Fragments in the set Pfg are
defined inductively by

F ::= M | Kbãc | νa.(F1 | . . . | Fn),

where M 6= 0 and a∈ fn(Fi) for all 1≤ i≤ n. A process Prf = Πi∈IFi is in restricted
form. The set of all processes in restricted form is Prf .

In case the index set is empty, we define Prf = Πi∈ /0Fi to be 0. This means 0 ∈Prf .
Function fg

(
Prf
)

determines the set of fragments in a process in restricted form.

11.1 Restricted Form 81

For Πi∈IFi, we often refer (1) to the fragments Fi that contain some name a and
(2) to those that are structurally congruent with a given fragment F . To determine
these fragments, we define subsets Ia and IF of the index set I.

Definition 11.2 (Ia, IF). Consider process Πi∈IFi in Prf . For every name a ∈ N ,
we define the index set Ia ⊆ I by i ∈ Ia if and only if a ∈ fn(Fi). For every fragment
F ∈Pfg, we define IF ⊆ I by i ∈ IF if and only if F ≡ Fi.

To transform a process into restricted form via structural congruence, we employ
the recursive function rf : P →Prf . It uses the rule for scope extrusion to shrink
the scopes of restrictions and removes parallel compositions of stop processes 0.

Definition 11.3 (rf : P →Prf). The function rf in Table 11.1 computes for any
process P ∈P a process rf (P) in restricted form, i.e., rf (P) ∈Prf . We call rf (P)
the restricted form of P.

rf (M) := M rf (Kbãc) := Kbãc

rf (P | Q) :=

0, if rf (P) = 0 = rf (Q)

rf (P), if rf (P) 6= 0 = rf (Q)

rf (Q), if rf (P) = 0 6= rf (Q)

rf (P) | rf (Q), if rf (P) 6= 0 6= rf (Q)

rf (νa.P) :=

rf (P), if a /∈ fn(P)
νa.rf (P), if a ∈ fn(P) and (1)
νa.(Πi∈Ia Fi) |Πi∈I\Ia Fi, if a ∈ fn(P) and (2)

Table 11.1 Definition of function rf . With rf (P) = Πi∈I 6= /0Fi, condition (1) requires that Ia = I and
(2) states that Ia 6= I.

The following lemma states that rf (P) is in fact in restricted form and structurally
congruent with P.

Lemma 11.1. For process P ∈P we have rf (P) ∈Prf and rf (P)≡ P.

The restricted form is only invariant under structural congruence up to reordering
and rewriting of fragments. So P ≡ Q does not imply rf (P) = rf (Q) but it implies
rf (P)≡rf rf (Q). Relation ≡rf is defined as follows.

Definition 11.4 (Restricted Equivalence). The restricted equivalence relation ≡rf
⊆Prf ×Prf is the smallest equivalence on processes in restricted form that satisfies
commutativity and associativity of parallel compositions,

Prf
1 | P

rf
2 ≡rf Prf

2 | P
rf
1 Prf

1 | (P
rf
2 | P

rf
3)≡rf (P

rf
1 | P

rf
2) | Prf

3 ,

and that replaces fragments by structurally congruent ones,

82 11 A Petri Net Translation of π-Calculus

F | Prf ≡rf G | Prf ,

where F ≡ G and Prf is optional.

We illustrate the indicated relationship between P ≡ Q and rf (P) and rf (Q) on an
example.

Example 11.2 (Invariance of rf under ≡ up to ≡rf). Consider the processes

P = νa.(a〈a〉.νb.b(x)+ c〈c〉 | c(x).Kbac | νd.Kbdc)
≡ νa.(c(x).Kbac | a〈a〉.νb.b(x)+ c〈c〉 | νd.Kbdc) = Q.

We compare the restricted forms:

rf (P) = νa.(a〈a〉.νb.b(x)+ c〈c〉 | c(x).Kbac) | νd.Kbdc
≡rf νa.(c(x).Kbac | a〈a〉.νb.b(x)+ c〈c〉) | νd.Kbdc= rf (Q).

We have rf (P) 6= rf (Q) but rf (P)≡rf rf (Q).

Proposition 11.1 states invariance of the restricted form up to restricted equivalence,
P ≡ Q implies rf (P) ≡rf rf (Q). Even more, restricted equivalence characterizes
structural congruence, i.e., also rf (P)≡rf rf (Q) implies P≡ Q.

Proposition 11.1 (Characterisation of ≡ with ≡rf). For P,Q ∈P we have P≡ Q
if and only if rf (P)≡rf rf (Q).

Proof. To show the implication from right to left we observe that all rules making up
equivalence ≡rf also hold for structural congruence. Thus, rf (P)≡rf rf (Q) implies
rf (P) ≡ rf (Q). Combined with P ≡ rf (p) from Lemma 11.1, we get P ≡ Q by
transitivity of structural congruence. The reverse direction uses an induction on the
derivations of structural congruence. ut

11.2 Structural Semantics

We assign to every process P a Petri net N(P) as illustrated in Example 11.4. The
places of the net are the fragments of all reachable processes. More precisely, we
deal with classes of fragments under structural congruence.

We use two disjoint sets of transitions. Transitions of the first kind are pairs
([F], [Q]) of places [F] and processes [Q], with the condition that F → Q. These
transitions reflect communications inside fragments. The second set of transitions
contains pairs ([F1 | F2], [Q]) where [F1] and [F2] are places and F1 | F2→ Q. These
transitions represent communications between fragments using public channels.

There is an arc from place [G] to transition ([F], [Q]) provided G ≡ F . If G is
structurally congruent with F1 and F2, there is an arc weighted two from place [G]
to transition ([F1 | F2], [Q]). This models a communication of fragment F1 with the
structurally congruent fragment F2 on a public channel. If G is structurally congruent

11.2 Structural Semantics 83

with F1 or F2, there is an arc weighted one from place [G] to transition ([F1 |F2], [Q]).
In case F1 6≡ G 6≡ F2, there is no arc.

The number of arcs from ([F], [Q]) to place [G] is determined by the number of
occurrences of G in the decomposition of Q. Similarly, the initial marking of the net
is determined by the decomposition of the initial process P.

To capture the notion of process decomposition we define function dec(Prf). It
counts how many fragments of class [F] are present in Prf . For Prf = F | G | F ′
with F ≡ F ′ and F 6≡ G we have (dec(Prf))([F]) = 2, (dec(Prf))([G]) = 1, and
(dec(Prf))([H]) = 0 with F 6≡ H 6≡ G.

Definition 11.5 (dec : Prf → NPfg/≡). Consider Prf = Πi∈IFi. We assign to Prf the
function dec(Prf) : Pfg/≡→ N via (dec(Prf))([F]) := |IF |.

The support of dec(Prf) is always finite. This ensures process

Π[H]∈supp(dec(Prf))Π
(dec(Prf))([H])H

is defined. Intuitively, the term selects a representative for each fragment and then
rearranges the fragments so that the same representatives lie next to each other.

Example 11.3 (Elementary Equivalence). For process Prf = F | G | F ′ we choose F
as representative for F ≡ F ′ and let G 6≡ F represent itself. We then have

F | G | F ′ ≡rf Π
2F |Π 1G = Π

(dec(Prf))([F])F |Π (dec(Prf))([G])G.

This relationship holds in general.

Lemma 11.2 (Elementary Equivalence). For Prf ∈Prf we have

Prf ≡rf Π[H]∈supp(dec(Prf))Π
(dec(Prf))([H])H .

That dec is invariant under restricted equivalence ensures the structural semantics
is well-defined. That it even characterizes restricted equivalence is exploited in the
proof of Theorem 11.1.

Lemma 11.3. Prf ≡rf Qrf if and only if dec(Prf) = dec(Qrf).

We are now prepared to define the structural semantics.

Definition 11.6. The structural semantics translates process P into the Petri net
N(P) as defined in Table 11.2. We call N(P) the structural semantics of P.

Consider fragment F1 with F1 → Q. It yields a transition ([F1], [Q]). But F1 | F2
also leads to Q | F2 for every fragment F2. Thus, we additionally have transitions
([F1 | F2], [Q | F2]) for every reachable fragment [F2]. The situation is illustrated in
Figure 11.2. The additional transitions do not change the transition system and we
do not compute them. Excluding them by a side condition would complicate the
proof of Theorem 11.1.

84 11 A Petri Net Translation of π-Calculus

S := fg(rf (R(P)))/≡
T := {([F], [Q]) ∈ S×P/≡ | F → Q}
∪{([F1 | F2], [Q]) ∈P/≡×P/≡ | [F1], [F2] ∈ S and F1 | F2→ Q}

M0 := dec(rf (P)).

Consider place [G] ∈ S and two transitions ([F], [Q]),([F1 | F2], [Q]) ∈ T . The weight function W is
defined as follows:

W ([G],([F], [Q])) := (dec(F))([G])

W ([G],([F1 | F2], [Q])) := (dec(F1 | F2))([G])

W (([F], [Q]), [G]) := (dec(rf (Q)))([G])

W (([F1 | F2], [Q]), [G]) := (dec(rf (Q)))([G]).

Table 11.2 Definition of the structural semantics N(P) = (S,T,W,M0) of process P.

([F1], [Q]) ([F1 | F2], [Q | F2])

[F1] [F2]

Fig. 11.2 Illustration of the transitions ([F1], [Q]) and ([F1 | F2], [Q | F2]). The latter are depicted
dotted and can be avoided in the construction.

Example 11.4 (Structural Semantics). We illustrate the Petri net translation on an
example. Consider

P = Π
2a(x).x(y).y(z).a〈d〉+a〈b〉 | νh.b〈h〉.h〈b〉.(c(x) | c(x)).

The semantics N(P) is depicted in Figure 11.3. The reachable fragments are given
by the transition sequence

Π
2a(x).x(y).y(z).a〈d〉+a〈b〉 | νh.b〈h〉.h〈b〉.(c(x) | c(x))

→ b(y).y(z).a〈d〉 | νh.b〈h〉.h〈b〉.(c(x) | c(x))
→ νh.(h(z).a〈d〉 | h〈b〉.(c(x) | c(x)))
→ a〈d〉 | c(x) | c(x).

Since all processes are in restricted form, we can take their fragments as the set of
places. The transitions are as follows. Fragment F1 communicates with a structurally
congruent fragment, t1 = ([F1 | F1], [F2]). Fragment F3 passes the restricted name h
to F2, which results in fragment F4 = νh.(h(z).a〈d〉 | h〈b〉.(c(x) | c(x))). Transition
t2 =([F2 |F3], [F4]) models this communication. It demonstrates how the scope of re-

11.2 Structural Semantics 85

stricted names influences the Petri net semantics. A pair of processes is represented
by a single token on place [F4]. Fragment F4 lets its two processes communicate
on the restricted channel h, which yields Q = a〈d〉 | c(x) | c(x) = F6 | F5 | F5. By
definition, we get the transition t3 = ([F4], [Q]). The transition shows how fragments
consisting of several processes break up when restricted names are forgotten.

[F1]

t1

[F2]

t2 [F3][F4]

t3[F5]

[F6]

t4

2

2

F1 = a(x).x(y).y(z).a〈d〉+a〈b〉 F2 = b(y).y(z).a〈d〉

F3 = νh.b〈h〉.h〈b〉.(c(x) | c(x)) F4 = νh.(h(z).a〈d〉 | h〈b〉.(c(x) | c(x)))
F5 = c(x) F6 = a〈d〉

Fig. 11.3 The structural semantics N(P) of process P in Example 11.4. The meaning of transitions
is explained in the text.

The definition of the set of transitions does not take the overall process behaviour
into account. The Petri net may contain transitions that are never enabled. Transition
t4 illustrates this fact. The fragments F1 and F6 communicate to G = d(y).y(z).a〈d〉.
This results in t4 = ([F1 | F6], [G]). The transition is never executed since the reaction
is not possible in P. Since G is no reachable fragment, (dec(G))([F]) = 0 for all
places [F], so transition t4 has no places in its postset.

The example suggests the following rules of thumb for the structural semantics.

Remark 11.1. Passing restricted names merges fragments. If fragment F passes a
restricted name νa to fragment G, this may result in a new fragment νa.(F ′ |G′) and
we have a transition from the places [F] and [G] to place [νa.(F ′ | G′)]. Transition
t2 in Example 11.4 illustrates the behaviour.

Forgetting restricted names splits fragments. If fragment F forgets the restricted
name a when it evolves to F ′, fragment νa.(F | G) reacts to F ′ | νa.G. This results
in a transition with [νa.(F | G)] in its preset and [F ′] and [νa.G] in its postset.
Transition t3 in Example 11.4 serves as an example.

To ensure that our semantics is a suitable representation of π-Calculus processes,
we show that we can retrieve all information about a process and its transitions from
the semantics. To relate a marking in the Petri net N(P) and a process, we define
the function retrieve : R(N(P))→P/≡. It constructs a process from a marking by

86 11 A Petri Net Translation of π-Calculus

composing (1) the fragments that are marked in parallel (2) as often as required by
the marking. This mimics the construction in the elementary equivalence.

Definition 11.7. Given a process P ∈P , the function retrieve : R(N(P))→P/≡
associates with every marking reachable in the structural semantics, M ∈ R(N(P)),
a process class [Q] ∈P/≡ as follows:

retrieve(M) := [Π[H]∈supp(M)Π
M([H])H].

The support of M has to be finite to ensure retrieve(M) is a process. This holds since
every transition has a finite postset and the initial marking is finite.

The transition systems of P and N(P) are isomorphic. Furthermore, the states in
both transition systems correspond using the retrieve function. This relationship is
illustrated in Figure 11.4.

[F1 | F1 | F3] (2 0 1 0 0 0)

[F2 | F3] (0 1 1 0 0 0)

[F4] (0 0 0 1 0 0)

[F5 | F5 | F6] (0 0 0 0 2 1)

iso

Fig. 11.4 Illustration of the transition system isomorphism in Theorem 11.1 on process P from
Example 11.4. The transition system T (P) is depicted to the left, T (N(P)) is depicted to the right.
The isomorphism iso : R(P)/≡→ R(N(P)) is represented by dotted arrows.

Theorem 11.1. The transition systems of P ∈P and its structural semantics N(P)
are isomorphic. The isomorphism iso : R(P)/≡→ R(N(P)) maps [Q] to dec(rf (Q)).
A process is reconstructed from a marking by retrieve(iso([Q])) = [Q].

To prove the theorem one shows that retrieve is the inverse of iso and that iso is an
isomorphism between the transition systems, i.e., iso maps the initial process to the
initial marking, iso is bijective, and iso is a strong graph homomorphism. A strong
graph homomorphism requires that [P1]→ [P2] in the transition system of P if and
only if iso([P1])→ iso([P2]) in the transition system of N(P).

The definition of the structural semantics is declarative as it refers to the set of
all reachable fragments and adds transitions where appropriate. In the following
section, we comment on the implementation.

Chapter 12
Structural Stationarity

Abstract Finiteness of N(P)

We proposed a Petri net semantics of π-Calculus that highlights the connection
structure of processes. Since the π-Calculus is Turing complete but finite Petri nets
are not, such a semantics has to yield infinite nets for some processes. The goal
of this section is to understand the sources of infinity for the structural semantics.
Our interest in finiteness is based on the observation that all automated verification
methods for Petri nets rely on this constraint. Ultimately this research will lead us
to the borderline of decidability for dynamic networks.

For simplicity, call a process P∈P structurally stationary if its Petri net N(P) is
finite. We obtain two alternative characterizations of structural stationarity that refer
to the parallel composition and to the restriction operator, respectively. The first
characterization eases the proof of structural stationarity. The second one reveals
that infinity of the semantics has two sources: unbounded breadth and unbounded
depth. Unbounded breadth is caused by unbounded distribution of restricted names.
Unbounded depth is caused by unboundedly long chains of processes connected by
restricted names. In particular, unbounded name and unbounded process creation do
not necessarily imply infinite automata-theoretic representations.

12.1 Structural Stationarity and Finiteness

Intuitively, a process is structurally stationary if there is a finite number of fragments
in the system. Technically, there is a finite set of fragments so that the restricted form
of all reachable processes is a parallel composition of those fragments.

Definition 12.1. Process P ∈P is structurally stationary if

∃{F1, . . . ,Fn} ⊆Pfg : ∀Q ∈ R(P) : ∀F ∈ fg(rf (Q)) : ∃i ∈ [1,n] : F ≡ Fi.

The set of all structurally stationary processes is Pfg<∞.

87

88 12 Structural Stationarity

Lemma 12.1 states the equivalence between finiteness of the structural semantics
and structural stationarity mentioned in the introduction.

Lemma 12.1 (Finiteness). N(P) is finite if and only if P ∈Pfg<∞.

Proof. Finiteness of N(P) = (S,T,W,M0) is equivalent to finiteness of the set of
places S = fg(rf (R(P)))/≡. Finiteness of fg(rf (R(P)))/≡ is equivalent to structural
stationarity. ut

To prove structural stationarity is not easy. The difficult part is to come up with a
suitable set of fragments {F1, . . . ,Fn}. The characterization in Section 12.3 reduces
this task to finding a bound on the number of sequential processes in every reachable
fragment. To establish completeness of this characterization, i.e., to show structural
stationarity from boundedness, we in fact have to construct a finite set of fragments.
The benefit is that we do this construction once when proving Theorem 12.1. When
the characterization has been established, we simply apply it whenever we show
structural stationarity. The construction relies on the notion of derivatives.

12.2 Derivatives

The derivatives of a process P can be understood as a finite skeleton for all reachable
processes. More formally, we show that all reachable processes are created from
derivatives via parallel composition, restriction, and substitution. The corresponding
Proposition 12.1 is crucial in the proof of Theorem 12.1.

The derivatives are constructed by recursively removing all prefixes from P as if
they were consumed in communications. If a process identifier K is called, directly
in P or indirectly in one of its defining equations, we also add the derivatives of the
process defining K.

Definition 12.2. We rely on the auxiliary function der : P → P(P) defined by

der(0) := /0 der(Kbãc) := {Kbãc}
der(π.P+M) := {π.P+M}∪der(P)∪der(M) der(P | Q) := der(P)∪der(Q)

der(νa.P) := der(P).

The set of derivatives of P ∈P , denoted by derivatives(P), is the smallest set so
that (1) der(P) ⊆ derivatives(P) and (2) if Kbãc ∈ derivatives(P) and K(x̃) := Q
then also der(Q)⊆ derivatives(P).

There are two differences between the derivatives and the processes obtained by
transitions. Names y that are replaced by received names when an action b(y) is
consumed remain unchanged in the derivatives. Parameters x̃ that are instantiated to
ã in a call Kbãc are not replaced in the derivatives. Both shortcomings are corrected
by substitutions applied to the free names in the derivatives. Proposition 12.1 shows
that this yields all reachable processes.

12.3 First Characterization of Structural Stationarity 89

Proposition 12.1. Every process Q ∈ R(P) and every fragment F ∈ fg(rf (Q)) is
structurally congruent to a process ν ã.

(
Πi∈I Qiσi

)
where Qi ∈ derivatives(P) and

σi : fn(Qi)→ fn(P) ∪ ã.

The following example provides some intuition to this technical statement.

Example 12.1. Consider P = νb.a〈b〉.b(x) | a(y).Kba,yc with K(a,y) := y〈a〉. The
only transition sequence is

νb.a〈b〉.b(x) | a(y).Kba,yc → νb.(b(x) | Kba,bc)→ νb.(b(x) | b〈a〉)→ 0.

We compute the set of derivatives:

derivatives(P) = {a〈b〉.b(x),b(x),a(y).Kba,yc,Kba,yc,y〈a〉}.

The following congruences show that every reachable fragment can be constructed
from the derivatives as stated in Proposition 12.1:

νb.a〈b〉.b(x)≡ νb.((a〈b〉.b(x)){a,b/a,b})
a(y).Kba,yc ≡ (a(y).Kba,yc){a/a}

νb.(b(x) | Kba,bc)≡ νb.(b(x){b/b} | Kba,yc{a,b/a,y})
νb.(b(x) | b〈a〉)≡ νb.(b(x){b/b} | y〈a〉{b,a/y,a}).

In the proof of Theorem 12.1, finiteness of the set of derivatives is important.

Lemma 12.2. The set derivatives(P) is finite for all P ∈P .

12.3 First Characterization of Structural Stationarity

We characterize structural stationarity as mentioned above: structural stationarity is
equivalent to boundedness of all reachable fragments in the number of sequential
processes. The number of sequential processes in P ∈P is ||P||S ∈ N defined by
||0||S := 0 and (with M 6= 0):

||M||S := 1 ||P | Q||S := ||P||S + ||Q||S
||Kbãc||S := 1 ||νa.P||S := ||P||S.

The function is invariant under structural congruence: P≡ Q implies ||P||S = ||Q||S.
Bounding this number means we actually restrict the use of parallel composition. In
Section 12.4, we establish a second characterization of structural stationarity, which
restricts the use of operator ν instead. While the present characterization provides a
handle to proving structural stationarity, the second characterization explains which
processes fail to be structurally stationary.

Definition 12.3. A process P ∈P is bounded in the sequential processes if there is
a bound on the number of sequential processes in all reachable fragments:

90 12 Structural Stationarity

∃kS ∈ N : ∀Q ∈ R(P) : ∀F ∈ fg(rf (Q)) : ||F ||S ≤ kS.

The set of all processes that are bounded in the sequential processes is PS<∞.

Theorem 12.1. Pfg<∞ = PS<∞.

Proof. ⇒ If P ∈Pfg<∞ then all reachable processes are made up of finitely many
fragments F1, . . . ,Fn. Thus, the number of sequential processes in all reachable frag-
ments is bounded by max{||Fi||S | 1≤ i≤ n}.

⇐ Let P ∈PS<∞ where kS ∈ N is a bound on the number of sequential processes
in fragments. We construct a finite set of fragments FG that includes up to structural
congruence every reachable fragment. The set FG is defined as a union

FG :=
kS⋃

i=1

FGi.

The idea is that FGi only contains fragments with i ∈ N sequential processes. For
the construction of suitable such fragments, we rely on Proposition 12.1. It provides
processes ν ã.(Π i

j=1Q jσ
′
j) that are sufficient to represent every reachable fragment.

To ensure finiteness, we rename ã to distinguished names ũi that we define below.
We add the restricted form of ν ũi.(Π

i
j=1Q jσ j) to FGi provided it is a fragment:

FGi :=
{

rf (ν ũi.(Π
i
j=1Q jσ j)) | Q j ∈ derivatives(P), σ j : fn(Q j)→ fn(P)∪ ũi,

and rf (ν ũi.(Π
i
j=1Q jσ j)) is a fragment

}
.

We first show that FGi is finite for every i ∈N. The Q j are derivatives of P. This set
is finite by Lemma 12.2. The same finiteness means that the maximum maxFN :=
max{|fn(Q)| | Q ∈ derivatives(P)} exists. A parallel composition of i derivatives
thus restricts at most i ·maxFN names. Hence, the names ũi := u1, . . . ,ui·maxFN
are sufficient to reflect all restrictions. There are finitely many substitutions σ j :
fn(Q j)→ fn(P)∪ ũi between the finite sets fn(Q j) and fn(P)∪ ũi. This concludes
the proof of finiteness for FGi. Finiteness of FG follows immediately.

It remains to show that up to structural congruence every reachable fragment F is
included in FG. With Proposition 12.1, F is structurally congruent with a fragment
rf (ν ũ|I|.(Πi∈IQiσi)) in FG|I|. The inclusion FG|I| ⊆ FG then follows from

|I|= ||ν ũ|I|.(Πi∈IQiσi)||S = ||F ||S ≤ kS.

The second equality is due to the invariance of ||− ||S under structural congruence.
The inequality is the boundedness assumption. ut

We explain the construction of FG on an example.

Example 12.2 (FG). Reconsider P= νb.a〈b〉.b(x) | a(y).Kba,yc from Example 12.1
with K(a,y) := y〈a〉 . The number of sequential processes in all reachable fragments
is bounded by kS = 2. The set FG is therefore defined as FG = FG1 ∪FG2. The

12.4 Second Characterization of Structural Stationarity 91

maximal number of free names in derivatives is maxFN = 2. Thus, FG1 and FG2
contain fragments

rf (νu1,u2.(Qσ)) and rf (νu1, . . . ,u4.(Q1σ1 | Q2σ2)),

where Q ∈ derivatives(P) with σ : fn(Q) → {u1,u2,a} and Q j ∈ derivatives(P)
with σ j : fn(Q j)→ {u1, . . . ,u4,a}, for j = 1,2. As an example, consider process
Q = a〈b〉.b(x) ∈ derivatives(P). Applying the substitutions σ : {a,b}→ {u1,u2,a}
yields amongst others

νu1.((a〈b〉.b(x)){a,u1/a,b}) = νu1.a〈u1〉.u1(x) ∈ FG1.

The process is structurally congruent with the reachable fragment νb.a〈b〉.b(x).

Several known subclasses of π-Calculus are immediately shown to be structurally
stationary with Theorem 12.1. Furthermore, the proof of Theorem 12.2 underlines
its importance.

12.4 Second Characterization of Structural Stationarity

The characterization of structural stationarity we develop in this section refers to
the restriction operator. We observe that a bounded number of restricted names does
not imply structural stationarity. In fact, a process with only one restricted name
may not be structurally stationary. Consider νa.Kbac with K(x) := x〈x〉 | Kbxc. It
generates processes sending on the restricted channel a. The transition sequence

νa.Kbac → νa.(a〈a〉 | Kbac)→ νa.(a〈a〉 | a〈a〉 | Kbac)→ . . .

forms infinitely many fragments that are pairwise not structurally congruent. In the
graph interpretation in Figure 12.1 there is no bound on the number of vertices
connected with the hyperedge of name a, i.e., the degree of this edge is not bounded.

The degree of a hyperedge is the number of processes that share the name. To
imitate this value at process level, we define ||F || | the maximal number of fragments
under a restriction. For example ||νa.Kbac|| | = 1 and ||νa.(a〈a〉 | Kbac)|| | = 2. To
reflect the maximum of the edge degrees, we search for the widest representation FB
of a fragment F . Widest means that ||FB|| | is maximal in the congruence class.

Kbãc a → Kbãc a

a〈a〉

→ Kbãc a

a〈a〉

a〈a〉 → . . .

Fig. 12.1 Transition sequence illustrating unbounded breadth

92 12 Structural Stationarity

Definition 12.4. The maximal number of fragments under a restriction is defined
inductively by ||M|| | := 1, ||Kbãc|| | := 1, and

||νa.(F1 | . . . | Fn)|| | := max{n, ||F1|| | , . . . , ||Fn|| | }.

The breadth of fragment F is ||F ||B := max{||G|| | | G ≡ F}. Process P ∈P is
bounded in breadth, denoted by P∈PB<∞, if the breadth of all reachable fragments
is bounded:

∃kB ∈ N : ∀Q ∈ R(P) : ∀F ∈ fg(rf (Q)) : ||F ||B ≤ kB.

By definition, the breadth is invariant under structural congruence: F ≡ G implies
||F ||B = ||G||B. As it refers to all fragments in the congruence class, the notion is hard
to grasp. We provide an example that illustrates the definition.

Example 12.3 (Breadth). Consider νa.Lbacwith L(x) := νb.(x〈b〉 | x〈b〉 | Lbxc). The
only transition sequence is

νa.Lbac → νa.(νa1.(a〈a1〉 | a〈a1〉) | Lbac)
→ νa.(νa1.(a〈a1〉 | a〈a1〉) | νa2.(a〈a2〉 | a〈a2〉) | Lbac)→ . . .

After n ∈ N transitions we have the following fragment FD ≡ FB:

FD = νa.(Π n
i=1νai.(a〈ai〉 | a〈ai〉) | Lbac)

FB = νa1.(. . .(νan.(νa.(Π n
i=1(a〈ai〉 | a〈ai〉) | Lbac))) . . .).

We have ||FD|| | = n+1 and ||FB|| | = 2n+1. In FB the number of fragments under
a restriction is maximal in the congruence class of FD ≡ FB. So after n transitions
we have ||FD||B = ||FB||B = ||FB|| | = 2n+1. There is no bound on the breadth of the
reachable fragments, νa.Lbac /∈PB<∞.

a
Kbãc

→ a
b〈a〉

b
Kbbc

→ a
b〈a〉

b
c〈b〉

c
Kbcc

→ . . .

Fig. 12.2 Transition sequence illustrating unbounded depth

Bounding the breadth of fragments is not sufficient to show structural stationarity.
Consider νa.Kbac with K(x) := νb.(b〈x〉 | Kbbc). The process generates infinitely
many fragments that are pairwise not structurally congruent but have breadth two:

νa.Kbac → νa.(νb.(b〈a〉 | Kbbc))→ νa.(νb.(b〈a〉 | νc.(c〈b〉 | Kbcc)))→ . . .

In the graphs in Figure 12.2, the length of the simple paths is not bounded. Recall
that a path is simple if it does not repeat hyperedges. At process level, we mimic
this length by the nesting of restrictions ||F ||ν . In the example, ||νa.Kbac||ν = 1 and

12.4 Second Characterization of Structural Stationarity 93

||νa.(νb.(b〈a〉 |Kbbc))||ν = 2. To ensure the restrictions contribute to a simple path,
we consider the flattest representation FD of F where ||FD||ν is minimal.

Definition 12.5. The nesting of restrictions ||F ||ν is defined by ||M||ν := 0 where
M 6= 0, ||Kbãc||ν := 0, and

||νa.(F1 | . . . | Fn)||ν := 1+max{||F1||ν , . . . , ||Fn||ν}.

With this auxiliary function, the depth of F is ||F ||D :=min{||G||ν | G≡F}. Process
P ∈P is bounded in depth, P ∈PD<∞, if

∃kD ∈ N : ∀Q ∈ R(P) : ∀F ∈ fg(rf (Q)) : ||F ||D ≤ kD.

Also the depth of fragments is invariant under structural congruence, ||F ||D = ||G||D
for fragments F ≡ G. We continue with process νa.Lbac from Example 12.3.

Example 12.4 (Depth). After n ∈ N transitions we have FD ≡ FB:

FD = νa.(Π n
i=1νai.(a〈ai〉 | a〈ai〉) | Lbac)

FB = νa1.(. . .(νan.(νa.(Π n
i=1(a〈ai〉 | a〈ai〉) | Lbac))) . . .).

We have ||FD||ν = 2 and ||FB||ν = n+ 1.The nesting in FD is minimal in the class.
Thus, ||FB||D = ||FD||D = ||FD||ν = 2. So the depth of all fragments reachable from
νa.Lbac is bounded by two, νa.Lbac ∈PD<∞.

There are at most ||F || | fragments under a restriction. The nesting of restrictions is
at most ||F ||ν . Thus, the number of sequential processes in F is bounded as follows.

Lemma 12.3. ||F ||S ≤ ||F ||||F ||ν| .

Proof. We proceed by an induction on the structure of fragments. In the base case,
we have F = M 6= 0 and F = Kbãc. The desired inequality holds with

||F ||S = 1 = 10 = ||F ||||F ||ν| .

For the induction step, assume ||Fi||S ≤ ||Fi||||Fi||ν
| for all Fi with 1 ≤ i ≤ n. We then

have for F = νa.(F1 | . . . | Fn):

||F ||S
{ Def. ||F ||S }= Σ

n
i=1||Fi||S

{ Hypothesis } ≤ Σ
n
i=1||Fi||||Fi||ν

|

{ Def. max } ≤ Σ
n
i=1max{||Fi|| | | 1≤ i≤ n}max{||Fi||ν | 1≤i≤n}.

Abbreviate max| := max{||Fi|| | | 1≤ i≤ n} and maxν := max{||Fi||ν | 1≤ i≤ n}.
With this, the above term equals

94 12 Structural Stationarity

n ·maxmaxν

|

{ Def. max } ≤ max{n,max|} ·max{n,max|}maxν

= max{n,max|}1+maxν

{ Def. ||F ||ν and ||F || | }= ||F ||
||F ||ν
| .

ut

Together, boundedness in breadth and in depth yield structural stationarity — the
main result in this section. While the previous proof of structural stationarity from
boundedness in the sequential processes was direct and cumbersome, Theorem 12.1
now yields an elegant proof of Theorem 12.2: a process is structurally stationary if
and only if it is bounded in breadth and bounded in depth.

Theorem 12.2. Pfg<∞ = PB<∞∩PD<∞.

Proof. ⇒ If the process is structurally stationary, there is a finite set of fragments
{F1, . . . ,Fn} so that every reachable fragment is structurally congruent with an Fi.
Then the maxima max{||Fi||D | 1 ≤ i ≤ n} and max{||Fi||B | 1 ≤ i ≤ n} exist and
bound the depth and the breadth of all reachable fragments.

⇐ If we assume boundedness in breadth and depth there are kB and kD so that
for all Q ∈ R(P) and all F ∈ fg(rf (Q)) we have ||F ||B ≤ kB and ||F ||D ≤ kD. We
show that kkD

B is a bound on the number of sequential processes. Consider Q ∈ R(P)
and F ∈ fg(rf (Q)). We determine the flattest representation FD ≡ F that satisfies
||FD||ν = min{||G||ν | G≡ F}= ||F ||D. We now have

||F ||S
{ ||− ||S invariant under ≡ } = ||FD||S

{ Lemma 12.3 } ≤ ||FD||||FD||ν
|

{ ||FD|| | ≤ max{||G|| | | G≡ F}= ||F ||B } ≤ ||F ||||FD||ν
B

{ Observation ||FD||ν = ||F ||D } = ||F ||||F ||DB

{ kB and kD bounds on breadth and depth } ≤ kkD
B .

This proves P is bounded in the number of sequential processes. With Theorem 12.1,
P is structurally stationary. ut

Theorem 12.2 helps disproving structural stationarity. A process is not structurally
stationary if and only if it is not bounded in breadth or not bounded in depth. Thus,
there are two sources of infinity for the structural semantics.

For processes of bounded depth but unbounded breadth, termination can be
shown to be decidable by an instantiation of the WSTS framework. Processes of
bounded breadth but unbounded depth are Turing complete. This follows from an
encoding of counter machines that we present in the following chapter.

Chapter 13
Undecidability Results

Abstract Undecidability results for π-Calculus

There are several machine models with the ability to perform arithmetic operations
on data variables, which are known to be Turing complete. For the undecidability
proofs in this chapter, we use a model introduced by Minsky. Although Minsky
called his formalism a program machine that operates on registers, the model is
nowadays well-known under the name of (2-)counter machines acting on counter
variables. We exploit Turing completeness of counter machines to show Turing
completeness for processes of bounded breadth. As a consequence, we obtain un-
decidability of structural stationarity, boundedness in depth, and boundedness in
breadth. We then change the encoding to establish undecidability of reachability for
processes of depth one.

13.1 Counter Machines

A counter machine has two counters c1 and c2 that store arbitrarily large natural
numbers and a finite sequence of labelled instructions l : op. There are two kinds of
operations op. The first increments a counter, say c1, by one and then jumps to the
instruction labelled by l′:

c1 := c1 +1 goto l′ (13.1)

The second operation has the form

if c1 = 0 then goto l′; else c1 := c1−1; goto l′′; (13.2)

95

96 13 Undecidability Results

It checks counter c1 for being zero and—if this is the case—jumps to the instruction
labelled by l′. If the value of c1 is positive, the counter is decremented by one and
the machine jumps to l′′.

Definition 13.1. A counter machine is a triple CM = (c1,c2, instr) where c1,c2 are
counters and instr = l0 : op0; . . . , ln : opn; ln+1 : halt is a finite sequence of the labelled
instructions defined above. The sequence ends with operation halt to terminate the
execution.

To define the operational semantics of a counter machine CM, we define the notion
of a configuration. A configuration of CM is a triple cf = (v1,v2, l), where vi ∈ N
is the current value of counter ci with i = 1,2 and l ∈ {l0, . . . , ln+1} is the label of
the operation to be executed next. A run of CM is a finite or infinite sequence of
configurations

cf 0→ cf 1→ cf 2→ . . .

subject to the following constraints. Initially, the counter values are zero and l0 is the
next instruction to be executed, cf 0 = (0,0, l0). For every transition cf i→ cf i+1 with
cf i = (v1,v2, l) the values of the counters and the instruction are changed according
to the current operation op with l : op. In case op is an increment operation for the
first counter as defined in (13.1), we have cf i+1 = (v1 +1,v2, l′). This means value
v1 is incremented, v2 is not changed, and the current label is changed to l′. The
decrement operation on c1 in (13.2) depends on whether v1 = 0 holds. In this case,
we jump to l′ without modifying the counter values, cf i+1 = (v1,v2, l′). If the content
of c1 is positive, we decrement it and jump to l′′, which yields cf i+1 = (v1−1,v2, l′′).
Action halt does not yield a transition.

We say CM terminates if all its runs are finite. A configuration cf = (v1,v2, l) is
reachable in CM if there is a run cf 0→ . . .→ cf k = cf for some k∈N. Since counter
machines are Turing complete, termination and reachability are undecidable.

Theorem 13.1 (Minsky 1967). Counter machines are Turing complete. Hence, for
a counter machine CM it is undecidable whether (1) CM terminates and (2) whether
a given configuration cf is reachable in CM.

13.2 From Counter Machines to Bounded Breadth

The idea is to encode counters by lists. To fix the terminology, a list consists of
list elements, namely several list items and one list end. The number of list items
represents the value of the counter. Every list item and the list end has three channels
to communicate on—reflecting the three operations on counters. Channel i is used
for increment operations. Thus, a communication on i appends a list item to the list.
Communications on channel d decrement the counter value. A message on t is a
test for zero. We first explain the behaviour of a list item. To keep the definition
short, we abbreviate i,d, t by c̃. Similarly, the channels i′,d′, t ′ of the following list

13.2 From Counter Machines to Bounded Breadth 97

element are abbreviated by c̃′. Since we are only interested in the channels, we omit
parameters x in send and receive actions i〈x〉 and i(x):

LI(c̃, c̃′) := i.i′.LIbc̃, c̃′c+d.
(
d′.LIbc̃, c̃′c+ t ′.LEbc̃c

)
.

An increment operation received on channel i is passed to the following list element
with the send action i′. As a list item stands for a positive counter value, the test for
zero fails. A list item does not communicate on channel t. If a list item receives a
decrement, it contacts the following list element. Since it is unknown whether this
is a list item LI or a list end LE, the current list item tries to communicate on both
channels d′ and t ′. If the next element is a list item, it answers the decrement call. A
list end receives the t ′ message and, as a reaction, terminates. Now the current list
item is the last element and therefore calls the defining equation LEbc̃c.

A list end answers a test for zero and terminates. As it represents value zero, it
does not listen on the decrement channel. If the list end receives an increment, it
creates new control channels c̃′ = i′,d′, t ′ and a new list end process LEbc̃′c. The
former list end becomes a list item by calling the defining equation LIbc̃, c̃′c:

LE(c̃) := t + i.ν c̃′.(LIbc̃, c̃′c | LEbc̃′c).

Every instruction l : op of the counter machine translates into a process identifier
Kl whose defining process is determined by the operation op. For the increment
operation (13.1) on counter c1, we get

Kl(c̃1, c̃2) := i1.Kl′bc̃1, c̃2c.

The parameters c̃1 = i1,d1, t1 and c̃2 = i2,d2, t2 are the control channels of the lists
that represent the counters c1 and c2, respectively.

The encoding of the decrement operation in (13.2) contains a subtlety. If the test
for zero is successful, we delete the list end of counter c1 and have to create a new
one. This yields

Kl(c̃1, c̃2) := t1.ν c̃′1.
(
Kl′bc̃′1, c̃2c | LEbc̃′1c

)
+d1.Kl′′bc̃1, c̃2c.

The instruction l : halt is translated into Kl(c̃1, c̃2) := halt. The send action will be
helpful later to prove undecidability of boundedness in breadth.

To sum up, the counter machine CM is translated into the process

P(CM) := ν c̃1.ν c̃2.(LEbc̃1c | LEbc̃2c | Kl0bc̃1, c̃2c)

Example 13.1. Configuration (2,0, l) of a counter machine is represented by

ν c̃1.
[
ν c̃′1.

(
LIbc̃1, c̃′1c | ν c̃′′1 .(LIbc̃′1, c̃′′1c | LEbc̃′′1c)

)
| ν c̃2.

(
LEbc̃2c | Klbc̃1, c̃2c

)]
.

There are two list items in the list for c1 to represent counter value two. Similarly,
the list of counter c2 consists of a single list end. The label of the current instruction
can be deduced from the process identifier Kl.

98 13 Undecidability Results

Example 13.1 suggests a tight relationship between the configurations reachable in
a counter machine CM and the processes reachable in its encoding P(CM). We shall
only need that the encoding preserves termination.

Proposition 13.1. CM terminates if and only if P(CM) terminates.

The process representation of a counter machine is bounded in breadth by two.
We exploit this observation in the following section to establish undecidability of
boundedness in depth and breadth.

Lemma 13.1. For every counter machine CM we have P(CM) ∈PB<∞.

With proper synchronization mechanisms, the construction can be modified so that
the steps of the counter machine coincide with step sequences of the corresponding
process.

Remark 13.1. Processes of bounded breadth PB<∞ are Turing complete.

13.3 Undecidability of Structural Stationarity

To show undecidability of structural stationarity for processes of bounded breadth,
we reduce the termination problem for counter machines. This works as terminating
processes are structurally stationary or, in contraposition, non-structurally stationary
processes do not terminate. For structurally stationary processes we can use the
structural semantics to decide termination.

Proposition 13.2 (Undecidability of Structural Stationarity). For P∈PB<∞ it is
undecidable whether P ∈Pfg<∞ holds.

input : CM a counter machine

begin
compute P(CM)

if ¬isStructurallyStationary(P(CM)) then
return CM does not terminate

else
compute N(P(CM))

return terminates(N(P(CM)))

end

Fig. 13.1 Proof of undecidability of structural stationarity. The procedure checks whether a
counter machine terminates, assuming isStructurallyStationary(−) decides structural stationarity
for PB<∞. Procedure terminates(−) decides termination for Petri nets.

13.3 Undecidability of Structural Stationarity 99

Proof. Assume structural stationarity is decidable for processes of bounded breadth
using the procedure isStructurallyStationary(−). Figure 13.1 gives an algorithm that
then decides termination of a given counter machine CM as follows. We compute
the process P(CM) ∈PB<∞. If the process is not structurally stationary it does not
terminate. By Proposition 13.1, CM does not terminate.

If P(CM) is a structurally stationary process, the structural semantics N(P(CM))
is a finite Petri net by Lemma 12.1. For finite Petri nets, termination is decidable.
Moreover, the net terminates if and only if the counter machine does:

CM terminates
{ Proposition 13.1 } ⇔ P(CM) terminates
{ Theorem 11.1 } ⇔ N(P(CM)) terminates.

Since termination of counter machines is undecidable, the assumption that structural
stationarity is decidable for PB<∞ has to be false. ut

For a process of bounded breadth the condition of structural stationarity is equivalent
to boundedness in depth according to Theorem 12.2. Since structural stationarity is
undecidable, boundedness in depth is.

Corollary 13.1 (Undecidability of Boundedness in Depth). Consider P ∈PB<∞.
It is undecidable whether P ∈PD<∞ holds.

To conclude the section, we reduce termination of CM to deciding boundedness in
breadth. We again exploit the fact that our process representation P(CM) of counter
machines is bounded in breadth. The idea of the reduction is to compose P(CM) in
parallel with

halt.νa.KB=∞bac.

When this process consumes halt it generates fragments of unbounded breadth.
Consequently, CM terminates if and only if the parallel composition is not bounded
in breadth.

Lemma 13.2 (Undecidability of Boundedness in Breadth). For a process P ∈P
it is undecidable whether P ∈PB<∞ holds.

Proof. Consider the counter machine CM and the process

P(CM) | halt.νa.KB=∞bac

with KB=∞(a) := a〈a〉 | KB=∞bac. The counter machine terminates if and only if it
reaches its halt operation. This is the case if and only if process P(CM) sends halt.
Since P(CM) is bounded in breadth, reachability of halt is equivalent to unbound-
edness in breadth for P(CM) | halt.νa.KB=∞bac. ut

100 13 Undecidability Results

13.4 Undecidability of Reachability in Depth 1

To establish undecidability of reachability for processes of depth one, we reduce the
corresponding problem for counter machines. Since the resulting processes have to
be bounded in depth, we can no longer represent counter values by lists. Instead,
we use a different encoding that reflects counter values by parallel composition. For
example, c1 = 3 yields a | a | a.

The problem with this representation is that parallel compositions, very similar
to Petri nets, cannot faithfully model a test for zero:

l : if c1 = 0 then goto l′; else c1 := c1−1 goto l′′;

To overcome this problem, we use the following trick. We implement a test for zero
by a nondeterministic choice between a decrement and a test operation. If the test
was done incorrectly (we branch to l′ although c1 > 0), we reach an error process.
From an error process we can never get back to a counter machine configuration.
Technically, an error process leaves garbage νa.(a | a | a) that cannot be removed.
We turn to the construction.

We attach the processes a to a so-called process bunch PBba, ic1 ,dc1 , tc1c. To set
up this link, we simply restrict the name a. For counter value c1 = 3, this gives

νa.(PBba, ic1 ,dc1 , tc1c | a | a | a).

Due to the restriction, the process bunch PBba, ic1 ,dc1 , tc1c has exclusive access to
its processes a. It offers three operations to modify their numbers: ic1 , dc1 , and tc1 .
Communications on ic1 stand for increment and create a new process a. Similarly,
a message on dc1 decrements the process number by consuming a process a. A
test for zero on tc1 creates a new and empty process bunch for counter c1. The
old process bunch terminates. A term νa.(a | a | a) without process bunch is the
garbage that was mentioned above. The names ic1 , dc1 , and tc1 are free. Their index
c1 indicates that the process bunch models counter c1. We abbreviate the parameter
list by c̃x = icx ,dcx , tcx for x ∈ {1,2} and define

PB(a, c̃x) := ix.(PBba, c̃xc | a) + dx.a.PBba, c̃xc + tx.νb.PBbb, c̃xc.

The computational strength in this construction is in the process bunch deletion. This
changes the linkage of an arbitrary number of processes a with a single transition.

The translation of the labelled instructions is similar to the one in Section 13.2.
An increment operation l : c1 := c1 +1 goto l′ yields a process identifier

Kl(c̃1, c̃2) := ic1 .Kl′bc̃1, c̃2c.

The test for zero discussed above yields a nondeterministic choice

Kl(c̃1, c̃2) := tc1 .Kl′bc̃1, c̃2c + dc1 .Kl′′bc̃1, c̃2c.

13.4 Undecidability of Reachability in Depth 1 101

A process bunch may accept a decrement although it is empty. In this case, the
system deadlocks and reachability is preserved. A halt l : halt translates into
Kl(c̃1, c̃2) := halt. The full translation of counter machine CM is the process

P1(CM) := νa.PBba, c̃1c | νb.PBbb, c̃2c | Kl0bc̃1, c̃2c. (13.3)

Example 13.2. Consider counter machine CM = (c1,c2, instr) with

instr :
l0 : c1 := c1 +1 goto l1;
l1 : if c1 = 0 then goto l1; else c1 := c1−1 goto l2;
l2 : halt.

The machine sets c1 to one, the following check for zero fails, c1 is decremented,
and the machine stops. The associated process P1(CM) has the form in (13.3) with
the following defining equations:

Kl0(c̃1, c̃2) := ic1 .Kl1bc̃1, c̃2c
Kl1(c̃1, c̃2) := tc1 .Kl1bc̃1, c̃2c + dc1 .Kl2bc̃1, c̃2c
Kl2(c̃1, c̃2) := halt.

The reachable states of CM can be computed from the reachable processes of
P1(CM). More precisely, the counter machine CM reaches the state (v1,v2, l) if and
only if its encoding reaches the process

νa.(PBba, c̃1c |Π v1a) | νb.(PBbb, c̃2c |Π v2b) | Klbc̃1, c̃2c.

Combined with the observation that P1(CM) is always bounded in depth by one, we
arrive at the desired undecidability.

Theorem 13.2. Consider two processes P,Q ∈PD<∞ where the depth is bounded
by one. The problem whether [Q] ∈ R(P)/≡ is undecidable.

Theorem 13.2 implies undecidability of reachability for processes of bounded depth.
Termination, in turn, can be shown to be decidable for PD<∞. Since termination
is undecidable for counter machines, the above encoding P1(CM) cannot preserve
termination. Example 13.2 gives a counter machine CM that terminates but whose
process representation P1(CM) has an infinite run.

Since reachability is decidable for Petri nets, we conclude that there is no
reachability-preserving translation into Petri nets for any class of processes that
subsumes those of depth one.

