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Abstract

Program synthesis is a natural extension of program verification. Instead of verifying an
already written program, the synthesis algorithm automatically generates the program from
a program template and a specification. For recursive programs, we can model program
synthesis by a two-player context-free grammar game. The program template is represented
by a context-free grammar with ownership partition of the non-terminals. The non-terminals
represent program locations, if the synthesis is in control, the corresponding non-terminal
belongs to player prover, otherwise it belongs to the adversary player refuter. The specification
is given by the language of a finite automaton. Player prover aims to derive a terminal word
contained in the language of the automaton, refuter tries to prevent inclusion. The goal is to
determine whether prover has a winning strategy.
We present three methods to solve context-free games and prove their correctness. In the

summary approach [5], the plays of the context-free game are finitely represented by formula
summaries, computed by a Kleene iteration over a system of equations derived from the
grammar rules. In the saturation approach [1], we compute the pre*-image of the terminal
accepted by the automaton by saturating an alternating automaton. In the Guess & Check
approach [10], we reduce the context-free game to a reachability game on a finite graph by
replacing the derivations by a series of guess and checks. The winner is determined by a
attractor construction.
Finally, we present a detailed comparison of the three methods. We are mainly interested in

the intermediary solutions that the three methods compute during the fixed-point iterations
in their algorithms (Kleene iteration, saturation and attractor). We show that there is a
strong relation between the formula summaries, the transitions of the saturated automaton
and the nodes from the finite game that are contained in the attractor.
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1. Introduction

Due to the error-prone nature of programming, programmers make extensive use of program
verification to find errors in the code. However producing correct program code amounts
to iterating the steps of verifying the program and fixing the bugs that were found by the
verification. The idea of program synthesis is to avoid this iteration altogether by directly
producing correct program code. A synthesis algorithm takes as input a program template
and a specification. A program template can be understood as program code with missing
expressions. The synthesis algorithm tries to fill the gaps with program code s.t. the result-
ing program satisfies the specification. If no such completed program exists, the synthesis
algorithm should return false.
Formally, we state the program synthesis problem as follows. Given a program template

T and a specification φ, does there exist an instantiation T@i of T satisfying the specification
φ.
In this thesis, we consider recursive programs with read expressions. This means the pro-

gram template may read a value from an external source, for example the memory, and make
decisions based on this value. In Figure 1 in the left program, we are in such a situation. The
program reads a value and stores it in variable. Depending on the value of the variable, either
function H1() or H2() is called. The program synthesis has to react to both possibilities and
ensure that in either case the specification is satisfied. The program on the right-hand side of
Figure 1 depicts a situation where the synthesis is allowed to fill in code and thereby decide
which function is called.
Therefore the program template contains two types of non-determinism. On one hand, we

have the angelic non-determinism, which the synthesis can control (right program). On the
other hand there is the demonic non-determinism, which the synthesis can not control and
has to react to (left program).
We model the program synthesis as a two-player grammar game, called context-free game.

The first player is called refuter # and she is allowed to resolve the demonic non-determinism
in the program. The second player is called prover (�). She is allowed to control the angelic
non-determinism. Prover wins a play in the game if the program from the choices of the
players satisfies the specification. Prover wins the whole game if she has a strategy s.t. all
programs resulting from the synthesis satisfy φ, no matter what refuter does. This strategy
represents the instantiation T@i we try to determine in the synthesis problem.
The program template is represented by a context-free grammar G with ownership partition

of the non-terminals. The non-terminals H1, H2 represent calls of functions and the terminal
words w derivable from a non-terminal represent the possible traces of the function. The
right-hand side of a grammar rule describes the body of the function corresponding to the
left-hand side of the rule. If there are several rules with the same left-hand side F , the
function contains some kind of non-determinism. If F belongs to prover, there is an angelic
non-deterministic choice in the corresponding function. Therefore, in the example program
on the right of Figure 1, the non-terminal F would belong to prover. For the left program,
the non-terminal F would belong to refuter.
A play of the context-free game corresponds to a derivation process in the context-free

grammar G. The player owning the non-terminal is allowed to choose the grammar rule that
is applied in the derivation process. We only consider left-most derivation, which corresponds
to a sequential execution of the program. We can consider the context-free game as a game
on an infinite graph, where the positions are given by the sentential forms and the moves by
the left-derivation relation.
We represent the specification by the language L(A) of a finite automaton A. Prover wins

the context-free game G given by the grammar G and the automaton A if she either has a
strategy to derive a terminal word w ∈ L(A) or to enforce an infinite play. Otherwise, refuter
wins. As refuter only wins finite plays ending at words w 6∈ L(A), she plays a reachability
game.
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proc F()
x=read(source)
if (x==0)
H1()

else
H2()

F# →G H1 | H2

proc F()
if (???)
H1()

else
H2()

F� →G H1 | H2

Figure 1.: Demonic (left) and angelic (right) non-determinism in a program.

In this thesis, we first present three methods to solve the synthesis problem and then
conduct a detailed comparison of them. The three methods that we consider are the summary,
saturation and Guess & Check approach.
In the summary approach, we compute the effect of the functions in terms of their input-

output relation. In terms of our model, we compute for each non-terminal a finite represen-
tation of the derivable terminal words while taking the alternating structure of the game, i.e.
the choices of the players, into account. As there may be an infinite number of words derivable
from a non-terminal, we represent the effects of these words on the automaton A instead. By
effects we mean state changes induced by the word, thus there can be only finitely many. To
compute the summaries, we set up a system of equations closely reflecting the grammar rules
and compute its least solution by Kleene iteration. To determine the winner of the game,
we analyze the finite representation of the words derivable from the starting symbol S of the
grammar.
In the saturation approach, we compute the pre*-image of the sentential forms that appear

in derivation processes/plays of G. For the terminal words accepted by A, we compute a
finite representation of the sentential forms preceding them in plays under consideration of
the alternating structure. At the end, we verify whether the initial symbol S is among them.
We start with an automaton recognizing the terminal words accepted by L(A). Then, we add
further transitions to the automaton, i.e. we saturate the automaton, s.t. also the sentential
forms preceding the terminal words in the plays are accepted by the automaton. As an
automaton can only have a finite amount of transitions, the saturation of the automaton
terminates. If the starting symbol S is accepted by the saturated automaton, prover wins,
otherwise refuter wins.
In the Guess & Check approach, we reduce the context-free game to a game on a finite

graph. The positions are the sentential forms of the grammar, a position belongs to the
player owning the left-most non-terminal in the sentential form and moves correspond to
application of rules. As the positions of the game arena corresponds to the sentential forms,
it is usually infinite. In the Guess & Check approach, we change the course of the game to
be able to store only parts of the sentential forms in the positions of the game graph. At
a sentential form wXα in a play, refuter makes a prediction about the outcome of the play
from X. Prover has two possibilities at this point. Either, she does not trust the prediction
and asks to verify it. In this case, the derivation process from X is played out. If it ends
according to the prediction, refuter wins the whole game, otherwise prover wins. For this
part, we do not need w or α and can discard it. If prover chooses to trust the prediction,
the derivation process from X is skipped completely and the play continues from a sentential
form w′α picked by prover. Instead of the terminal words w and w′, we simply track the
induced state changes in A. This Guess & Check mechanic allows us to bound the size of the
sentential forms stored in each node. The result is a game on a finite graph, where prover wins
the original game if and only if she wins in the game on the finite graph. We can determine
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the winner of the finite game using the well-known attractor construction.
In the second part of the thesis, we compare the three methods. It is an interesting question

whether these three approaches, while solving the same problem, also have common design
principles or whether and how they differ. Furthermore, this allows us to gain insights into
the mechanics of the approaches. As all three approaches include some form of fixed-point
iteration (Kleene iteration for the summary approach, saturation of the automaton and at-
tractor construction for the Guess & Check approach), we are mostly interested in whether
the intermediary information computed in the iterations coincides in some way.
We show that there is indeed a strong relation between the representation of the derivable

words (summary method), the transitions of the saturated automaton (saturation method)
and the nodes from the finite game that are contained in the attractor (Guess & Check
approach).

Related work The summary approach has been presented by Holík, Meyer and Muskalla
in [5]. The saturation and the Guess & Check approach are adapted from the techniques of
Cachat [1] resp. Walukiewicz [10] that solve pushdown games.
A further result from [10] allows us to translate a context-free game to a model-checking

problem of a pushdown system against a µ-calculus formula. This reduction allows us to use
algorithms for model-checking to solve context-free games. In [7] for example, an automata-
theoretic approach to this model-checking problem is presented. In [6], Ong and Kobayashi
solve the problem whether a higher order recursion schemes, which are a generalization of
context-free grammars, is accepted by an alternating parity tree automaton. The alternation
in the automaton can be understood as a two-player game.
Finally, Muscholl et al [9] consider a type of grammar game where one player is allowed to

choose a non-terminal from the sentential forms in the derivation process and the other player
is allowed to pick the grammar rule. The authors focus on the complexity and decidability of
these games. Our context-free games are a special case of the games considered in [9].
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2. Context-free games

In this section, we formally define the context-free games modeling the synthesis problem. A
context-free game G = (G,A) is given by a context-free grammar G with ownership partition
of the non-terminals and a finite automaton A.

A context-free grammar is a tuple G = (N,T, S,→G), where N is the finite set of non-
terminals, T is the finite set of terminals, S ∈ N is the starting symbol and→G ⊆ N×(T∪N)∗

is the finite set of rules. We call the set of words S = (T ∪N)∗ the sentential forms of the
grammar.
In some sections, we need to address different parts of a sentential form vXα. Therefore,

we introduce the following notation. Let vXα be a sentential form with v ∈ T ∗, X ∈ N and
α ∈ S . We call v the terminal prefix, X the leftmost non-terminal and α the suffix of
the sentential form.
By ⇒ ⊆ S ∗ × S ∗ we denote the left derivation relation based on →G. It is defined

by wXα ⇒ wβα if X →G β for some terminal word w ∈ T ∗, non-terminal X and sentential
forms α, β ∈ S . By ⇒∗, we denote the reflexive and transitive closure of ⇒, which is defined
by α⇒∗ α and α⇒∗ β if there exists an α′ s.t. α⇒ α′ ⇒∗ β.
We call α ⇒∗ β a derivation process from α to β. We identify a derivation process π

by its intermediary sentential forms, i.e. π = α, α1, α2, . . . , αn, β. Note that there may be
several different derivation processes from α to β, as we do not require the grammar to be
unambiguous.
The language of a grammar G is given by L(G) = {w ∈ T ∗ | S ⇒∗ w}.

Example. Consider for example the following context-free grammar Gex.

S →G c | XY,
X →G a | aX,
Y →G b | c,

The language of Gex is L(Gex) =
(
c | (a∗(b | c))

)
.

A finite automaton is a tuple A = (T,Q, q0, QF ,−→), where T is the finite input alphabet,
Q is the finite set of states, q0 ∈ Q is the starting symbol, QF ⊆ Q is the set of final states
and −→⊆ Q × T × Q is the finite set of transitions or edges. Note that the input alphabet
coincides with the terminals from the grammar.
We lift the definition of −→ from terminals to words by q ε−→ q and q aw−−→ p if there exist a

state q′ s.t. q a−→ q′
w−→ q.

We call q w−→ p a run of w from q to p. If q = q0 and p ∈ QF , we call the run accepting.
We do not require the automaton A to be deterministic. Thus, there may be two (or more)
states p, p′ ∈ Q s.t. q w−→ p and q w−→ p′.
The language of a finite automaton A is given by L(A) = {w ∈ T ∗ | ∃ q0

w−→ qf ∈ QF }
Aex is an example of a finite automaton. Its language is given by L(Aex) =

(
(a2nb) |

(a2n+1c)
)
for n ≥ 0.

q0 q1

qF

a, c

a, b

b c

Figure 2.: Finite automaton Aex.
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As already mentioned in the introduction, we model the synthesis as a two-player inclu-
sion game. The grammar represents the program template. Therefore, we split the non-
terminals of the grammar between the two players.The non-terminals represent program loca-
tions, player prover (�) owns the locations where the synthesis should fill in code and player
refuter (#) owns the locations where the environment is in control.

Definition 1
A context-free game G = (G,A) is given by a context-free grammar G with ownership partition
of the non-terminals N = N# ∪· N� and a finite automaton A. A play π starting from
sentential form α is a left-derivation process starting from α where each player chooses the
rule for her non-terminals. We call a play maximal if it represents a derivation process from
α ∈ S to a terminal word w ∈ T ∗. A maximal play π is won by refuter if it ends in a terminal
word w ∈ L(A). All other plays are won by prover.

We write X ∈ � resp. X ∈ # to denote that X belongs to prover resp. refuter.
The reason why we assign infinite plays to prover is the following. The task of the synthesis

algorithm is to ensure that the resulting program satisfies the specification. However an
infinite play in the context-free game does not correspond to a valid program and can therefore
not dissatisfy the specification. In other words, refuter has to derive a counter-example, i.e.
a valid program for which the specification does not hold, in order to win.
We can represent all the plays in the game arena BG of context-free game G, a graph with

ownership partition of the nodes. The nodes represent sentential forms in the plays and the
edges the left-derivation relation. The graph is constructed inductively as follows. It has a
node labeled by S. For each node labeled by sentential form α, it has an edge to a node
labeled with β if α ⇒ β by a left derivation. Thus, the game arena contains only sentential
forms α that can be derived from S. A vertex is owned by the player owning the left-most
non-terminal in the sentential form.

Definition 2
The game arena of a context-free game G is given by BG = (VBG ,→BG), where the set of nodes
VBG = VBG,� ∪· VBG,# has an ownership partition for the players. The game arena has the
following properties.

• VBG = {α ∈ S | S ⇒∗ α}

• →BG= {(α, β) ∈ VBG × VBG | α⇒ β}

• VBG,� = {w ∈ VBG | w ∈ T
∗ and w ∈ L(A)} ∪ {wXα ∈ VBG | X ∈ �}

VBG,# = VBG,� \ VBG .

Thus, we can also see a context-free game as a (reachability) graph game on the game
arena. The positions are given by the sentential forms in the game arena and the moves by
the edges. A play in the graph game starting at node v is a path starting at v in the graph.
If the position belongs to player ? ∈ {�,#}, ? is allowed to choose the next move. The
starting position is the node with label S. Refuter wins if the play is maximal, i.e. the last
position has no outgoing edge, and the last position belongs to her. As only nodes labeled
with terminal words have no outgoing edges and only terminal words w 6∈ L(A) belong to
refuter, the winning condition matches the one from the grammar game. Any other play, in
particular infinite ones, are won by prover.
Note that in general, the game arena is infinite as there are usually infinitely many sentential

forms that are derivable from S.
By equipping the set of non-terminals N of Gex with the ownership partition N� = {S, Y }

and N# = {X}, we get the game arena BGex .
Note that in the example, the game arena BGex is actually a tree. This is the case because

the grammar Gex is unambiguous. But if the grammar is ambiguous, there exists a sentential
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S�

X#Y
c

aX#Y aY�

ab acaaY�aaX#Y

aab aac

...

Figure 3.: Game arena TGex induced by grammar Gex. The subscripts indicate the owner of
the nodes.

form α s.t. there are at least two derivation processes from S to α. Then, there would be two
paths from S to α in the game arena, meaning that it can not be a tree.
To solve the synthesis problem, we have to decide whether prover has a winning strategy

for the given context-free game.
Intuitively, a strategy s? tells player ? which grammar rule to apply when it is her turn or

in other words to which sentential form in the game graph she should move. In general, it
is a function that maps the play up to the current position to a successor (wrt. the edges of
the game arena) of the current position. A strategy is winning if the player wins every play
where he moves according to the strategy, no matter what the opponent does.

Definition 3
• A strategy for player ? ∈ {#,�} is a function s? : S ∗ 7→ S . It maps a sequence of
sentential forms α1, . . . , αn to a sentential form αn+1, where αn = wXα with X ∈ ?
and αn+1 = wβα with X →G β.

• We call a strategy s? positional if it only depends on the current position of the play, i.e.
it can be written as s? : S 7→ S .

• A play π = α1, α2, α3, . . . is conform to a strategy s?, if s?(α1, . . . , αi) = αi+1 resp.
s?(αi) = αi+1 if the strategy is positional, for all αi owned by ?.

• A strategy s? is winning for player ? if all plays that start with S and that are conform
to s? are winning for player ?.

We say that player ? can enforce the derivation of some set M of sentential forms from
α, if player ? has a strategy s? that ensures that each play starting from α and conform to s?
eventually reaches a sentential form contained in M .
In the context-free game Gex = (Gex,Aex), prover has a winning strategy. In the first move of

the play at position S, she has to choose rule S →G XY . Then, refuter can derive any number
of a’s from X. If refuter enforces an infinite play, prover wins by convention. Otherwise, she
can move again at position anY for some n ≥ 1. Depending on whether n is even or odd,
prover derives b resp. c from Y . Then, the resulting terminal word is contained in L(Aex) and
prover wins. Formally, the winning strategy is given by s�(S) = XY , s�(a2nY ) = a2nb and
s�(a2n+1Y ) = a2n+1c for n ∈ N.
As the automaton A represents the specification, checking whether refuter has a winning

strategy amounts to check whether the program template has an instantiation satisfying the
specification. Refuter only wins if she can enforce a valid instantiation which is a counter-
example for the inclusion. Prover however also wins if no valid instantiation is derived, i.e. the
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play is infinite. Thus, refuter actually has the harder task to manage and therefore we consider
the context-free games from her point of view. But as context-free games are determined [5],
refuter has a winning strategy if and only if prover has none. Thus, an algorithm which checks
whether refuter wins the context-free game also solves the synthesis problem.
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Part I.

The three methods
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3. Summary-based Approach

The idea of the summary-based approach is to represent the game arena by a positive Boolean
formula. This formula captures both the derived terminal words and the alternating structure
of the game arena, i.e. the influence of the players on the derived word. The alternating
structure is represented by the Boolean operators in the formula. The choices of prover are
modeled by the operator ∧ and the ones of refuter by ∨. The atomic propositions represent
the derivable words. As there are potentially infinitely such words, we represent them via
summaries, which capture the state changes induced by the words on the automaton A. As
there are only finitely many possible state changes, we get a finite set of atomic propositions.
In order to derive the winner of the context-free game, we assign truth values to the summaries
and thereby evaluate the formula. For a detailed presentation of the summary approach, refer
to [5].
The rest of this section is organized as follows. In the first part, we show how we can read

off this formula from the game arena and how the formula relates to the game. As the game
arena is usually infinite, we can not determine the formula this way. Thus, we will show in the
second part how we actually compute the formula, namely by solving a system of equations
for the least fixed-point.

3.1. From the game arena to formulas

In order to make this part more readable, we take Gex = (Gex,Aex) from Example 2 (with
ownership partitioning N� = {S, Y }, N# = {X}) resp. Figure 2 as a running example. We
use the example to show how we read off the formula.
We handle automaton Aex as if it was deterministic, although there do not exist transitions

for every symbol from every state. If a transition is missing, assume it leads to an error
state which has a self-loop for all symbols and is not accepting. For the sake of readability,
we omitted this error state. Although we chose a deterministic automaton for the running
example, the summary approach also works for non-deterministic automaton. Actually, this
is one of the main selling points of this approach. We comment on this below.
Note that prover wins this game. We have that

(
a(2n)b | a(2n+1)c

)
⊆ L(Aex) for some

n ∈ N0. To win, prover first chooses rule S → XY . Then refuter can derive an arbitrary
number of a’s from X. Depending on whether refuter chose an even or an odd number of a’s,
prover either derives a b or a c from Y . Then the automaton accepts the derived word and
prover wins.
Recall the game arena of Gex from Figure 3. We now show how we can transform this game

arena into a formula. The first problem that we have to tackle is that the graph is usually
infinite.
This in fact always happens if we have a loop in the grammar G i.e. for some non-terminal

X there exists a sequence of rules

X → α1X1β1

X1 → α2X2β2

. . .

Xn → αnXβn

where Xi are non-terminals and αi, βi (i = 1, . . . , n) sentential forms.
Our first observation at this point is that the labels of the inner nodes do not matter. We

are only interested in the terminal words that label the leaves. For the inner nodes, we only
need to know which of the players owns the positions. Therefore, we will replace the inner
nodes by symbols for prover resp. refuter. As we aim for a Boolean formula, we use ∧ for
prover and ∨ for refuter. We only need conjunction ∧ and disjunction ∨ to represent the
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choices of the players, we do not make use of the negation ¬. Thus, we will use positive
Boolean formulas to capture the game arena.

Definition 4
A positive Boolean formula F over domain DF is inductively defined by

F := p | G ∨G′ | G ∧G′

where G,G′ are formulas and p ∈ DF an atomic proposition.

Note that we left the set of atomic propositions DF unspecified for now. Throughout this
subsection, we will consider positive Boolean formulas with different atomic propositions and
always indicate which set we use as domain. At the end of the subsection, we fix a set of
atomic propositions.
By applying the first observation to our arena, we get the tree depicted in Figure 4.

∧

∨
c

∨ ∧

ab ac∧∨

aab aac

...

Figure 4.: Modified tree of plays.

Now, we can view the game arena as a syntax tree of a Boolean formula with atomic
propositions DF = T ∗. We can read off the formula by a top-down traversal of the tree. For
the running example, we get the following formula:

c ∧ ((ab ∧ ac) ∨ (aab ∧ aac) ∨ (aaab ∧ aaac) ∨ . . . )

This formula captures all the plays. At the beginning of the plays, prover can either choose
to derive a c or she can move to position XY . In the formula, this is represented by the
outermost ∧. The left clause containing only c stands for the first case, the second clause for
the other. Now it is refuters turn. She can derive an arbitrary number of a’s from X and
finally, prover ends the game by either appending an b or a c. Therefore, the formula contains
the clauses (anb ∧ anc) for n ≥ 1, separated by a ∨.
This formula is again infinite. Even worse, also the set of atomic propositions DF = T ∗ is

infinite. To tackle this problem, we observe that the actual terminal words are not important.
We only need to know whether automaton A accepts the derived word or not. For this task,
it is sufficient to know the state changes that our derived word w induces on the automaton.
By state changes we mean the set {(q, p) | q, p ∈ Q} where p is s.t. q w−→ p. We consider two
words w and v as equivalent if they induce the same state changes in A. The idea of state
changes and equivalence is formalized using the transition monoid of A.

3.1.1. The transition monoid

To obtain a finite set of atomic propositions, we introduce the equivalence relation ∼A fac-
torizing the set of atomic propositions T ∗ into a finite number of equivalence classes.
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Definition 5
Let A be a finite automaton. By ∼A, we denote the transition equivalence relation on words
w1, w2 ∈ T ∗, given by

w1 ∼A w2 ⇐⇒
(
∀q, q′ ∈ Q : q

w1−→ q′ ⇐⇒ q
w2−→ q′

)
.

Thus, all the words contained in the same equivalence class induce the same state changes
on A. The equivalence classes can be seen as the elements of the transition monoid of A.

Definition 6
Let A be a finite automaton. Then the transition monoid of A is given by

M (A) = (B(A) = P(Q×Q), ; , id)

The elements of the transition monoid are relations over states of A. We call them boxes and
denote them by τ, ρ. The relational composition ; is defined by

ρ; τ = {(q, p) | ∃q′ ∈ Q : (q, q′) ∈ ρ and (q′, p) ∈ τ}.

The element id = {(q, q) | q ∈ Q} is the identity element of the monoid, i.e.

id ; ρ = ρ; id = ρ.

We explained that the elements of the monoid correspond to the equivalence classes induced
by ∼A. The relations represented by a box are exactly the state changes induced by the words
in the equivalence class. We call the set of words contained in an equivalence class the language
of the box corresponding to this class.

Definition 7
The language of box ρ is given by

L(ρ) = {w ∈ T ∗ | (q, p) ∈ ρ ⇐⇒ q
w−→
∗
p}.

If w ∈ L(ρ), we say that ρ is the box of w. In general, we denote the box of a word w by ρw.

The name“box” for the elements of M (A) comes from their graphical representation as
boxes. Figure 5 pictures some of the boxes for our running example.

q0 q1

qF

a, c

a, b

b c

id = ρε ρa = ρaaa ρaa ρb = ρaab

ρc = ρaac ρab ρac

Figure 5.: Subset of the boxes of our running example. The upper dash on each side of the
boxes represents state q0, the middle dash q1 and the lower dash qF . The arrows
between the dashes mark the state changes. We only pictured the relevant boxes,
those of words that are actually derivable from Gex. The boxes of ρbb, ρcc, ρbc, ρcb
are left out.

Note that our automaton Aex is deterministic. Therefore, we only have (at most) one arrow
originating from each state. In case of a non-deterministic automaton, we would have several
arrows originating from a single dash. The methods presented below still apply and are not
influenced by the non-determinism.
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We can compute the boxes for words w = w1 . . . wn from the boxes of their individual letters
wi. To this end, we use the relational composition operator ; by ρw = ρw1 ; ρw2 ; . . . ; ρwn .

In terms of boxes, we can derive the box of the composed word by connecting the arrows
of ρwi with the ones of ρwi+1 . In our running example, we can get the box of ρab as follows.

ρa
;

ρb

=

ρab

The composition operator is associative, e.g.

(ρa; ρb); ρc = ρa; (ρb; ρc) = ρa; ρb; ρc.

This is an important property, as it allows us to compose multiple boxes at once instead of
gradually composing from left to right.

3.1.2. Back to the game arena

By Figure 5, we get that L(Aex) can be factorized into eleven equivalence classes/boxes . By
replacing each word w by its box ρw in the leafs of the game arena, we get a finite set of atomic
propositions DF = B(A) as desired. For the rest of the thesis, we fix the atomic propositions
DF of our formulas to be the set of boxes B(A). Figure 6 pictures the tree resulting from this
replacement.

∧

∨
ρc

∨ ∧

ρab ρac∧∨

ρaab ρaac

...

Figure 6.: Tree of plays resulting from replacing the terminals by their boxes.

Top-down traversal gives us the corresponding formula.

ρc ∧ ((ρab ∧ ρac) ∨ (ρaab ∧ ρaac) ∨ (ρaaab ∧ ρaaac) ∨ . . . )

The formulas may still be infinite (and in our case is), although the set of atomic propositions
is now finite. To solve this problem, note that up to logical equivalence these infinite formulas
represent functions 2M (A) → {0, 1}. But all such functions can also be represented by finite
formulas. For each of the infinite formulas, we can find a logically equivalent finite formula.
For our running example, we can use that ρab = ρa(2n+1)b, ρb = ρa(2n)b and ρac = ρa(2n+1)c,
ρc = ρa(2n)c. Then, get the following equivalent formula

ρb ∧ ((ρab ∧ ρac) ∨ (ρaab ∧ ρaac) ∨ (ρaaab ∧ ρaaac) ∨ . . . )
⇔ρb ∧ ((ρab ∧ ρac) ∨ (ρaab ∧ ρaac)).

It is not surprising that we can represent the whole tree of plays by a finite formula.
Intuitively, plays in an infinite branch have to be repetitive in terms of alternating structure
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and boxes of the derived words, as the infinite branches stem from a loop in the grammar.
Thus, after reaching a certain depth in the game arena, no new plays will appear.
In Gex for example, the (unique) plays ending in ab resp. aaab bear strong similarities. First,

the boxes of both words are the same. Second, the plays are very similar in their alternating
structure. In the beginning of the plays, prover had to choose rule S → XY , then refuter
had to derive the appropriate number of a’s (one or three) and finally prover had to derive a
b from Y . Thus, we can represent both plays by box ρab in the clause (ρab ∧ ρac).

Until now, we only took into account the possible plays. To derive the winner of the game,
we assign truth values to the boxes. We are interested in the state changes starting from q0
of the boxes.

Definition 8
We call a box rejecting if it does not contain any relation (q0, qF ) where q0 is the starting state
and qF ∈ QF is a final state. If the box does contains such a relation, we call it accepting.

As we play from the point of view of refuter, we assign value true to all rejecting boxes and
false to all others. If the formula evaluated to true, refuter wins the game, otherwise prover
does.
In our running example, we assign true to ρb, ρab, ρaac and false to ρc, ρac, ρaab. Then the

formula evaluates to false which confirms prover as the winner of Gex.

3.2. Representation of infinite plays

Before we show how to compute the formulas, we need to clarify how we represent infinite
plays. In our running example, the game arena contains the infinite play

S ⇒ XY ⇒ aY ⇒ aaY ⇒ aaaY ⇒ . . . .

As explained in Section 2, an infinite play is always winning for prover as refuter only wins if
she derives a counter-example to the inclusion in L(A). In Gex, it is technically possible for
refuter to enforce an infinite play. But as we would loose this play, we can safely ignore this
possibility and not capture this play in our formula.
Consider the following context-free game, given by G′ex and A′ex: Prover can either derive

S� → a | aS q a

any word w ∈ a+ or enforce an infinite play. The alphabet Σ′ = {a} only contains the terminal
a. The automaton A′ex does not have a final state and thus does not accept any word. The
transition monoid of automaton A′ex only contains the boxes id and ρa = ρan (n ≥ 1), which
are both rejecting.
If we represent the game arena by a formula as above, we get the formula which only

consists of the atomic proposition ρa. But evaluating this formula would lead to value true,
suggesting that refuter wins this game.
This means that we cannot always ignore the infinite plays. Until now, we represented the

game arena by a formula from the set of positive Boolean formulas over B(A). Our approach
is to augment this set by the unsatisfiable formula false and thereby represent infinite plays.

Definition 9
The set of formulas BFA used to represent the game arena is given by the positive Boolean
formulas over B(A) joined with the unsatisfiable formula false. We evaluate the formula false
on the syntactic level.

F ∨ false = false ∨ F = F F ∧ false = false ∧ F = false
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We evaluate false on the syntactic level to facilitate the definition of the relational compo-
sition (see below). By these evaluation rules, false will spread trough the formula if prover
can enforce an infinite play, resulting in the unsatisfiable formula false.
For our running example Gex, the addition of false to the formula does not make a differ-

ence, as expected.

ρb ∧ (false ∨ (ρab ∧ ρac) ∨ (ρaab ∧ ρaac) ∨ (ρaaab ∧ ρaaac) ∨ . . . )
= ρb ∧ ((ρab ∧ ρac) ∨ (ρaab ∧ ρaac) ∨ (ρaaab ∧ ρaaac) ∨ . . . )
⇔ ρb ∧ ((ρab ∧ ρac) ∨ (ρaab ∧ ρaac)).

But for G ′ex, the change leads to the following formula

ρa ∧ false = false

which is unsatisfiable as desired.
We will see in the next section that false will naturally arise from infinite plays while

computing the formulas.
This concludes the section about the intuition behind the formula and how it relates to the

tree of plays. It remains to show how we actually compute the formulas.

3.3. Computing the formulas

The task is to capture all the possible plays of the context-free game by a finite Boolean
formula or the unsatisfiable formula false. This includes both the derivable terminal words
and also the influence that the players have on the derivation. As explained in the previous
section, the terminal words (or rather their boxes) are represented by the atomic propositions
and the operators capture the choices of the players.
We emphasize the two-step approach of our method. First, we compute a formula which

only captures all possible plays, regardless whether they are winning for refuter or not. The
winner of the game is only determined in the second step, where we assign truth values to the
atomic propositions (the boxes) and evaluate the formula.
The key insight is that we can derive all possible plays from some sentential form XY on

from all possible plays starting from X resp. Y . Intuitively, a maximal play from XY is a
play from X to some terminal word v, followed by a play from Y to some word w, with v
prepended. This means that we can consider the plays from X resp. Y on their own and
compose them with each other afterwards instead of appending the plays starting from Y to
all the plays that started from X. Figure 7 depicts the difference between the two views.

XY

X

Y Y

. . .

X ; Y

X Yvs.

Figure 7.: The two views on plays from XY . We denote the composition operator by ;.

As we use formulas to represent the plays, we show how the composition of plays works on
formulas. Suppose therefore that we have the formulas G resp. F for the game arena starting
at X resp. Y . We essentially lift the composition operator ; of the transition monoid from
boxes to formulas over boxes. We compose every box from formula G with each box from F
while preserving the alternating structure of both formulas.
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S

X Y

c
X

a

a

Figure 8.: Parse tree of a play/derivation process from S to aac. At each non-terminal, a
grammar rule is applied. Thus, on each path ≤ 3 rules are applied.

Definition 10
The composition over BFA is defined by F ; false = false;F = false and for composite
formulas we have

(F1 ⊗ F2);G = F1;G ⊗ F2;G ρ; (G1 ⊗ G2) = ρ;G1 ⊗ ρ;G2

where F, F1, F2, G1, G2 are positive Boolean formulas and ⊗ ∈ {∨,∧}.
Using this insight and the fact that we are only interested in the possible plays (and not

yet who wins them), we can also investigate the parse tree instead of the tree of plays.
A parse tree of a derivation process in grammar G is a tree rooted at a node labeled by

S. Each inner node is labeled by a non-terminal of G and each leaf by a terminal. If a node
X in the tree has children α1, . . . , αn (αi ∈ T ∪N), then there exists rule X →G α1 . . . αn in
G. Thus, we apply a rule at each inner node.
A parse tree only represents a single derivation process. Consider for example the parse

tree of the derivation process from S to aac in Gex depicted in Figure 8. But as we consider a
context-free game where both players influence the derivation process, we cannot focus on a
particular process. Therefore, we modify the definition of the parse tree, such that it is able
to represent all parse trees at once i.e. all possible derivations in the grammar.
However, we need to make sure that the right-hand sides of different rules do not get mixed

up. To solve this issue, we introduce intermediary nodes that represent the composition of
the symbols on the right-hand side of a rule. From a node with label X, we have for each
rule of shape X →G α1 . . . αn an edge to a newly introduced node with label α1; . . . ;αn. The
children of this node are labeled by αi (i = 1, . . . , n) as in the regular parse tree. Furthermore,
we replace the terminal symbols at the leafs by the box of the symbol.

Definition 11
The augmented parse tree represents all possible plays/derivation processes in a context-free
game. The augmented parse tree has the following properties

• The root is labeled by S,

• the inner nodes are either labeled by a non-terminal X or by a composition α1; . . . ;αn
of symbols αi ∈ T ∪N ,

• the roots are labeled by boxes ρa of terminals a ∈ T ,

• there is an edge X −→ α1; . . . ;αn, if there exists a grammar rule X →G α1 . . . αn,

• there is an edge α1; . . . ;αn −→ αi, if αi ∈ N is a non-terminal and

• there is an edge α1; . . . ;αn −→ ραi , if αi ∈ T is a terminal.
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Note that there may be several nodes with the same label.
As we are dealing with context-free games, there are two types of nodes labeled with a non-

terminal. If the node is labeled with non-terminal X belonging to refuter, it is called ∨-node
and ∧-node otherwise.

If we apply this transformation to our running example, we get the tree on the right in
Figure 9. The ∨-nodes are depicted by a circle and the ∧-nodes by a square. On the left,
we show the tree of plays (with boxes instead of terminals) to emphasize the relation of both
trees as well as the differences.

S�

X#Y
ρc

aX#Y aY�

ρab ρacaaYaaXY

ρaab ρaac

...

S

X;Y
ρc

X Y

ρb ρcρa a;X

Xρa

a;Xρa
...

Figure 9.: Game arena (left) in comparison to the extended parse tree (right).

The possible derivation processes starting from X are colored in red and the ones starting
from Y in blue. In the game arena, we see that the plays from Y on are appended to the
plays starting at X. In the parse tree, the plays are executed in parallel and joined by the
composition operator.
We could now read off the formula from the parse tree in a similar fashion than for the

tree of plays. We view the ∨-nodes resp. ∧-nodes as the operator ∨ resp. ∧ and the (new)
intermediary nodes as the composition operator. For our running example, this leads to the
following formula, which is as expected.

ρc ∧ (ρa ∨ ρa; (ρa ∨ ρa; (. . . ))); (ρb ∧ ρc)
⇔ρc ∧ (ρa ∨ ρaa); (ρb ∧ ρc)
⇔ρc ∧ ((ρab ∧ ρac) ∨ (ρaab ∧ ρaac))

But this method is still impracticable as the parse tree contains infinite paths if the tree of
plays does.
Our next observation is that in a parse tree all subtrees whose roots have the same label

are equal. In the parse tree of Gex for example, all subtrees rooted at a node with label X
are completely similar. As the infinite paths are caused by loops in the grammar, we replace
the infinite paths by appropriate loops in the parse tree. For our running example, we get the
(finite) graph depicted in Figure 10.
Formally, this graph is defined as follows for any context-free game given by context-free

grammar G and finite automaton A. We call the graph circuit graph.

Definition 12
The circuit graph is given by (V� ∪ V# ∪ Vgate ∪ Vbox, Erule ∪ Erhs) where

• V� = {X | X ∈ N�}
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S

X;Y
ρc

X Y

ρb
ρa a;X

Figure 10.: Circuit graph of the running example.

• V# = {X | X ∈ N#}

• Vgate = {α1; . . . ;αn | α1 . . . αn is the rhs of some rule in G with n ≥ 2}

• Vbox = {ρa | a ∈ T}

• Erule = {(α1; . . . ;αn, X) | X →G α1 . . . αn is a rule in G with n ≥ 2}
∪{(α,X) | X →G α is a rule in G with α ∈ N}
∪{(ρα, X) | X →G α is a rule in G with α ∈ T}

• Erhs = {(αi, α1; . . . ;αn) | αi ∈ V� ∪ V# and α1; . . . ;αn ∈ Vgates}
∪{(ραi , α1; . . . ;αn) | ραi ∈ Vbox and α1; . . . ;αn ∈ Vgates}.

The nodes in V� resp. V# represent the non-terminals owned by the respective players
and the nodes in Vbox the (boxes of) the terminal words. The nodes in Vgate stand for the
right-hand sides of the grammar rules. The interpretation of the edges is the same as for the
augmented parse tree.
The circuit graph is actually very similar to the augmented parse tree. The main difference

is that the circuit graph contains at most one node for each possible label. In the augmented
parse tree this was not the case. There may be several nodes with the same label. Suppose
we build the augmented parse tree top-down starting from the root and want to add an edge
l1 −→ l2 (l1, l2 are labels) from some already existing node v1 with label l1 in the parse tree.
Then, we always add a new node v2 with label l2 to the tree, no matter whether a node with
the same label is already contained in the tree. For the circuit graph, we reuse the node with
label l2 if such a node already exists in the tree. Thus, the resulting graph has one vertex for
each non-terminal, one for each (box of) a terminal and one for each right-hand side of a rule
and is thereby finite.
In the infinite trees, we could traverse the infinite paths top-down until no more ”new” plays

appeared. As we replaced infinite paths by loops, we instead need to iterate the loop until no
new plays are found. Thus, we employ a fixed-point iteration on the graph to get the formulas.
We interpret the graph as a circuit. The nodes of V� and V# are used to store intermediate
values and are initialized with false. The nodes in V� combine their input values by an ∧,
the ones from V# by a ∨ and store the resulting formula. The nodes of Vgates are viewed as
gates, that return the composition of their input. The nodes of Vbox always store the value
that they are labeled with and are not updated. They deliver the input to the circuit.
This interpretation as a circuit also explains why we flipped the direction of the edges. In

the extended parse tree, the nodes labeled by X represent this exact same non-terminal X
and its children are labeled by the right-hand sides γ of the grammar rules X →G γ. The
formulas are read off the tree by a top-down traversal. Moving downwards in the tree from
X to one of its children γ corresponds to applying grammar rule X →G γ. In the circuit, we
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view the nodes labeled by X as a variable. Variable X holds the information about the plays
starting from X. Such a play starts with a rule X →G γ and continues as a play from γ.
The plays from γ can be computed from the composition of the plays from γ1, . . . , γn. The
composition is executed by the gate γ1; . . . ; γn succeeding node X. The nodes γ1, . . . , γn send
their current value trough the composition gate to node X, which combines all his inputs by
either ∨ or ∧ and stores the resulting value. In every iteration, each node sends its value
along the outgoing edges and stores the input from the incoming edges until a fixed-point is
reached. The recalculation of the value of variable X corresponds to the application of all
rules with left-hand side X. Note that the order in which the values are recalculated does not
matter up to logical equivalence.
By initializing the value of each node labeled by a non-terminal X by false, we handle the

plays starting from X as infinite at first. If prover can enforce an infinite play from X, the
value false is never replaced. Otherwise, the value is replaced by a formula at some point.
In the running example, refuter can enforce the finite play π = X, a from X and indeed the

value of node X is replaced by ρa ∨ ρa; false = ρa in the first iteration.
To be precise, in the k-th iteration, the value of X captures all plays where at most k

rules are applied in each branch of the corresponding parse tree (at each inner node a rule
is applied). For example, in the parse tree of the play from S to aac, less than 3 rules are
applied in each of its branches. (Figure 8).
Inductively, we can verify this claim as follows. Before the first iteration, the values of all

nodes labeled with a non-terminal X are equal to false and the nodes labeled by a box ρa store
the value coinciding with their label. Indeed, only plays starting from a terminal have at most
0 rules applied in each branch of their parse tree. Suppose now that this property holds in the
k-th iteration for all variables. In the k + 1-th iteration, variable X stores the composition
of the values of variables γ1, . . . , γn if there exists a grammar rule X →G γ1, . . . , γn. In other
words, X captures all plays π that can be assembled from plays πi stored in the variables γi.
Thus, for all plays π from X, there exists a parse tree where at most k+1 rules are applied in
each branch. This tree can be assembled from the parse trees of the plays πi that compose π.
The resulting parse tree has root X and we attach the parse trees of the composing plays πi.
From the induction hypothesis we know that they have have at most k rules applied in each
branch. Then, as we apply rule X →G γ1, . . . , γn at the root, it follows that in the parse tree
of π has at most k + 1 rules are applied in each branch. In Figure 8 for example, the parse
tree for the play from S to aac can be assembled from the parse trees of the plays from X to
aa and from Y to c which themselves have at most 2 rules applied in each branch.
Instead of conducting the fixed-point iteration on the circuit, we translate it into a system

of equations. As the circuit closely reflects the rules of the grammar, we actually do not need
to take the detour through the parse tree and the circuit. Instead, we can directly derive the
system from the formulas.

Definition 13
The system of equations induced by the grammar G and the automaton A has the following
properties.

• We have a variable ∆X for each non-terminal X ∈ N .

• We have a variable ∆a for each terminal a ∈ T which is defined by ∆a := ρa. We regard
the value of the variable as fixed, as it is not altered during the fixed-point iteration.

• For each non-terminal X, we have one defining equation.

∆X := ⊗
X→α1...αn

∆α1 ; . . . ; ∆αn, where ⊗ =

{
∨ if X ∈ #

∧ if X ∈ �
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For our running example, we have the following system of equations.

∆S = ∆c ∧∆X ; ∆Y = ρb ∧∆X ; ∆Y

∆X = ∆a ∨∆a; ∆X = ρa ∨ ρa; ∆X

∆Y = ∆b ∧∆c = ρb ∧ ρc

The correspondence to the circuit graph depicted in Figure 10 is immediate.
As we want to use formulas in a fixed-point iteration, we need to define a partial ordering

on them. Because we take refuters point of view in the game, a formula F should be bigger
than another F ′ if F ′ makes it easier for refuter to win. Deciding whether refuter wins means
evaluating the formula by assigning true to all rejecting boxes and false to all accepting ones.
Therefore F ′ is bigger than F if F ⇒ F ′. Unfortunately, implication ⇒ is not antisymmetric
on our domain BFA. Therefore, we take BFA modulo logical equivalence instead. We can
understand each formula as a representative of its equivalence class and extend⇒ to the new
domain BFA/⇔ by applying it to representatives of the equivalence classes. The operations
∨, ∧ and ; are also lifted to the new domain by applying them to arbitrary representatives.
The well-definedness of the operations on the new domain follows from the transitivity of the
implication ⇒ and the monotonicity of the operations wrt. ⇒. The Boolean operators are
clearly monotonic, for the proof that the composition operator ; is monotonic, refer to Lemma
6 in [5]. The least element of the partial ordering is false. This gives us the desired partial
ordering.
We aim for the least solution of our system of equations wrt. component wise ⇒. Due to

the monotonicity of the operations, we can understand the right-hand side of each equation
as a monotonic function fX : (BFA/⇔)N 7→ BFA/⇔. The argument of fX is a vector of
formulas, one for each non-terminal, and the output is obtained by plugging the values of the
argument into the right-hand side of the equation for X. Combining the functions for each
non-terminal gives us the monotonic update function f : (BFA/⇔)N 7→ (BFA/⇔)N . Thus,
according to [3], there exists a unique least solution for the equation f(∆) = ∆ and we can
compute the solution by a Kleene-iteration:

⊥, f(⊥), f(f(⊥)), f(f(f(⊥))) . . .

where ⊥ = (false)N is the N -dimensional vector containing false in every component.
As BFA/⇔ with partial order ⇒ is a finite bottomed partial order, this sequence stabilizes

into the desired fixed-point solution of f .
We denote the intermediate solutions of the i-th iteration by σ(i)X for each non-terminal and

the least fixed-point solution will be denoted by σX . The solutions σ(k)X actually correspond
to the values of the variable X in the corresponding circuit in the k-th iteration. Thus, σ(k)X

captures the plays starting from X that have at most k rules applied in each branch of their
parse tree.
For our running example, the Kleene-iteration produces the following solutions.

i σ
(i)
S σ

(i)
X σ

(i)
X

0 false false false

1 false ρa ρb ∧ ρc
2 ρc ∧ ρab ∧ ρac ρa ∨ ρaa ρb ∧ ρc
3 ρc ∧ ((ρa ∨ ρaa); (ρb ∧ ρc)) ρa ∨ ρaa ∨ ρaaa ρb ∧ ρc
⇔ ρc ∧ ((ρab ∧ ρac) ∨ (ρaab ∧ ρaac)) ⇔ ρa ∨ ρaa

4 ρc ∧ ((ρab ∧ ρac) ∨ (ρaab ∧ ρaac)) ρa ∨ ρaa ρb ∧ ρc

As expected, we get a formula σ(4)S = σS = ρc∧ ((ρab∧ρac)∨ (ρaab∧ρaac)) that is equivalent
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(in our case even equal) to the one that we read off the game arena.
The correctness of the summary approach is proven in [5] (Theorem 22 and 29). The proof

determines winning strategies for prover resp. refuter from the solutions σ(k)X in conjunctive
normal form.

3.4. Disjunctive Normal Form

In the previous sections, we discussed that the formulas σX capture both the derived terminal
words and the influence of the players on the derivation processes starting from non-terminal
X. It is actually possible to flatten down the choices of the players in the game to two
successive choices, one per player. After each player made her choice, the (box of the) derived
terminal word is determined. Therefore, we transform the formula σX into disjunctive
normal form (DNF). A formula is in DNF if it is of shape

n∨
i

Ki, where Ki =

m∧
j

ρij

for atomic propositions ρij ∈ B(A). We call the subformulas Ki the clauses of the formula.
Let us consider the formula capturing the plays from S in Gex again.

ρc∧((ρab∧ρac)∨(ρaab∧ρaac))

The green ∧ in the formula represents the choice of prover whether to apply rule S →G c
or rule S →G XY . The red ∨ captures refuters choice whether to derive an even or an odd
number of a’s. Finally, the orange ∧ represents again provers choice, where he can choose
whether to derive terminal b or c from Y .
If we transform the formula into DNF, we have to multiply out the operators. This naturally

leads to the flattened decisions of the players. The choice of refuter corresponds to picking a
clause from the formula. She is able to enforce the derivation of some terminal word w s.t. ρw
is contained in the clause. However, in general she cannot choose a particular box from the
clause. This decision belongs to prover who is allowed to pick a box from the chosen clause.
The choice of prover then fixes the derived terminal word. By transforming the formula above
into DNF, we get the following formula.

(ρc∧ρab∧ρac)∨(ρc∧ρaab∧ρaac)

The left clause corresponds to refuter deriving an odd number of a’s from X and the right
clause to the derivation of an even number provided that prover picks rule S →G XY in the
first turn of the play. Suppose refuter picked the left clause. If prover chooses the first atomic
proposition, this compares to prover picking rule S →G c in the first turn. If she picks one
of the other propositions, say ρab, this is conform to her first deriving XY from S and then
appending b to the odd number of a’s derived by refuter.
We will see that the other approaches to solve context-free games use a similar flattening

of the choices of the players.

3.5. Overview of the summarization method

We conclude the section by a brief overview of the summarization method. Let G be a context-
free game given by a context-free grammar and a finite automaton. To decide the winner of
G , we employ the following steps.

1. Compute the box of each terminal a ∈ T from A.

2. Set up the system of equations as described in Definition 13.
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3. Employ a Kleene iteration until the least fixed-point of the system of equations is
reached.

4. Evaluate the formula σS of the starting symbol S by assigning true to all rejecting boxes
and false to all accepting boxes. If σS = true, refuter wins, otherwise prover does.
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4. Saturation-based Approach

The idea of the saturation-based approach is to saturate an automaton by adding transitions
to augment the accepted language. In our setting, we start by an automaton A which
accepts L(A) = T ∗ \ L(A) (recall that we play from refuters point of view). The goal of the
saturation is to construct an automaton by adding transitions s.t. also accept the sentential
forms contained in the attractor Attr# = Attr#(L(A),⇒) are accepted.
Informally, the idea behind the attractor attr?(M, r) for a starting set M ⊆ S and a

transitive relation r ⊆ S ×S is the following. The attractor iteratively collects sentential
forms α from which player ? can enforce a path α = α0, α1, . . . , αn = β from α to sentential
form β ∈ M where (αi, αi+1) ∈ r for i = 0, . . . , n. If r is the left-derivation relation for
example, a path corresponds to a derivation process. We start with set M0 = M in the
0-iteration, as player ? can enforce a path of length 0 to a sentential form contained in M
from any α ∈ M . Consider now any sentential form α ∈ S . If α belongs to ? and there is
a tuple (α, β) ∈ r for β ∈ M . Then player ? can enforce a path from α to a sentential form
in M by using exactly this tuple. If α belongs to the other player, ? is not allowed to choose
the next position and can only enforce a visit to M if it holds for all edges (α, β) ∈ r that
β ∈ M . We collect all the sentential forms α for which one of the above cases holds in set
M1. Note that in particular M0 ⊆M . In the next iteration, we collect sentential forms in the
same manner, but this time with M1 as base instead on M0 = M . In iteration i+ 1, we use
set Mi as base to construct Mi+1.

Definition 14
Formally, the attractor Attr#(M, r) for player refuter, for a starting set M ⊆ S and a
transitive relation r ⊆ S ×S is defined as follows.

Attr#(M, r)0 = M

Attr#(M, r)i+1 = Attr#(M, r)i

∪ {wXα ∈ S ∗ | X ∈ # and ∃ (wXα, β) ∈ r with β ∈ Attr#(M, r)i}
∪ {wXα ∈ S ∗ | X ∈ � and ∀ (wXα, β) ∈ r have β ∈ Attr#(M, r)i}

Attr#(M, r) =
⋃
i∈N

Attr#(M, r)i.

Note that the attractor Attr# = Attr#(L(A),⇒) may contain sentential forms that do not
appear in the game arena. The reason is that the attractor conducts a bottom-up search for
the sentential forms from which refuter can enforce the derivation of a word w ∈ L(A). Some
words w ∈ L(A) may already not be derivable from S in G or the attractor may include
a sentential form α that is not derivable from S. For example if the grammar has rules
S# →G aX, X# →G b | c and b, c ∈ L(A), then we have X ∈ Attr# although no node with
label X is contained in the game arena.

But as we want to derive the winner of the context-free game G , we are only interested in
those labels. Consider thus the attractor Attr#(L,→BG), which is restricted to the sentential
forms appearing in the game arena. The initial set L contains the nodes in the game arena
BG that are labeled with a terminal word, which are contained in L(A), i.e. L = {w ∈ T ∗ |
S ⇒∗ w and w ∈ L(A)}. Relation →BG contains all edges from the game arena.

Refuter wins the context-free game G if and only if S ∈ Attr#(L,→BG) where S is the
starting symbol. Fortunately, it is easy to show by induction that if a sentential form α
appears in the game arena and is contained in Attr#, then it is also part of Attr#(L,→BG) and
vice versa. Therefore, we can decide the context-free game G from the saturated automaton
A . Refuter wins G if and only if A accepts the starting symbol S.
This approach was presented in [1] in order to solve pushdown game systems (PGS). A

PGS is given by a pushdown system (PDS) P and an alternating P-automaton.
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The game is played on the configuration graph of the PDS. The player who owns the state is
allowed to pick the transition rule to be applied. Refuter wins if the play on the configuration
graph ends in a configuration that is not accepted by the alternating P-automaton. An
alternating P-automaton can be understood as a finite automaton reading configurations.
Otherwise prover wins.
Due to the similarities to context-free games, we can adapt this approach to our context. We

take our grammar G as left-hand side of the inclusion instead of the PDS. For the right-hand
side, we first determinize A into automaton Adet. Then we transform Adet into an alternating
Adet-automaton which works similarly as the P-automaton and initially accepts L(A). The
reader may wonder at this point whether we could directly saturate a finite automaton recog-
nizing L(A) or whether we could use a non-deterministic automaton to built the alternating
automaton. The answer is negative, it is both necessary to have a deterministic automaton
and to use the corresponding alternating automaton. We explain why this is important af-
ter the formal definition of the alternating Adet-automaton A and the introduction of the
saturation rule.
An alternating Adet-automaton A has the same set of states Qdet as the finite automaton

Adet and also reads terminal words. However the transitions are not of shape q a−→ p for states
q, p ∈ Qdet and terminal a, but of shape q a−→ F , where F is a positive Boolean formula over
the set of states Qdet. Thus, F is of shape F =

∨n
i=1Ki, for clauses Ki =

∧m
j=1 pij . In our

setting we represent the disjunctions as non-determinism and conjunctions by macrostates
(sets of states of Adet), i.e. instead of transition q

a−→ F , we have transitions q a−→
⋃m
j=1 pij

for i = 1, dots, n. Intuitively, if we take a transitions q a−→
⋃m
j=1 pij , this means that we

simultaneously move to all states pi,1, . . . , pim. The usage of an alternating automaton allows
us to represent the choices of the players in different ways. Provers choices are represented
by macrostates and the ones of refuter by non-determinism.

Definition 15
Let A be the finite automaton given by the context-free game and Adet = (T,Qdet, qdetI , Qdet

F ,→det
) be a deterministic automaton recognizing the same language. Then an alternating Adet-
automaton A is given by the tuple (T ∪N,Q,→A , qI ,QF ), where

• T ∪N is the input alphabet,

• Q = Qdet is the set of states,

• the set of transitions is of the form →A⊆ Q × T ∪ N × 2Q. We initialize →A by the
following transitions: p→A {q} if p

a−−→det q.

• qI = qdetI is the initial state.

• QF = Q \Qdet
F is the set of final states.

• Automaton A accepts a sentential form α if there exists a run qI
α−−−→
∗
A P with P ⊆ QF .

Here →∗A represents the reflexive and transitive closure of →A . It is defined by

q
ε−−→
∗
A {q} and

q
γα−−−→

∗
A

n⋃
i=1

Pi, if q
γ−−→A {p1, . . . , pn} and p1

α−−−→
∗
A Pi for i = 1, . . . , n

The alternating automaton initially (before the saturation) accepts L(A). Every word
w ∈ A has an unique run C in Adet from qI = qdet

I to some state q 6∈ Qdet
F . Then w has

an accepting run qI
w−−−→
∗
A {q} ⊆ QF as we took over all the transitions p a−→ q from C as

transitions p a−−→A {q} in A .
The saturation rules by which we add transitions to A are as follows.
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Definition 16
Let p ∈ Q and X →G α1 | · · · | αn be all rules in G with left-hand side X.

1. If X ∈ # and q αi−−−→
∗
A P for some i ∈ {1, . . . , n}, we add transition q X−−−→A P .

2. If X ∈ � and q αi−−−→
∗
A Pi for some i = 1, . . . , n, we add transition q X−−−→A

⋃n
i=1 Pi.

We apply these rules iteratively, starting with the alternating automaton A = A0 contain-
ing only transitions for terminals and generate a sequence A = A0,A1,A2, . . . of alternating
automata. In each iteration, we add transitions to Ai to generate Ai+1 by considering each
possible pair (q,X) for state q ∈ Qdet and X ∈ N . Let X →G α1 | · · · | αn be all rules with
left-hand side X. Then we add all transitions that we can generate from state q and rules
X →G α1 | · · · | αn using the first saturation rule if X ∈ # and using the second saturation
rule if X ∈ �. We call one iteration a saturation step and the whole iterations the satura-
tion process. The saturation process ends after a finite number of steps as there exists only
a finite number of possible transitions that an alternating automaton can have. We denote
the final automaton in the sequence by Aattr. As the name suggests, this automaton accepts
Attr#. We prove this at the end of the section.
The intuition behind the rules is the following.
We start the saturation process with automaton A0 which only contains transitions for the

terminals. By construction, the state changes in A0 reflect the ones in Adet. The goal of
the saturation is that final automaton Aattr accepts the sentential forms contained in Attr#.

Thus, it makes sense to have transition q0
X−−−→A Q if refuter can enforce the derivation of

some w ∈ T ∗ s.t. q0
w−→ p ∈ Q in Adet in a play starting from X. We say that refuter can

enforce state changes Q from state q0 and non-terminal X. In particular, if Q ⊆ QF then
refuter can enforce the derivation of a word which is not contained L(A) and thus X ∈ Attr#.

Suppose now for example that X ∈ # and X →G γ1γ2 is a grammar rule with γ1, γ2 ∈ S .
Then, refuter can enforce the derivation of the same terminal words in a play from X as in
a play from γ1γ2. The words derivable from γ1γ2 are of a particular shape wv, where w is
derivable from γ1 and v from γ2. Thus, if refuter can enforce state changes Q1 from q0 and
γ1, we need the state changes Qp that she can enforce from each p ∈ Q1 and γ2. Finally, we
get that refuter can enforce state changes

⋃
p∈Q1

Qp from q0 and γ1γ2.
The discussion implies that we can not only add transitions with left-hand side q0. In

general, we want to have a transition q Y−−−→A Q′ if refuter can enforce state changes Q′ from
q and Y . Let us suppose for now that A already contains transitions q0

γ1−−−→A Q1 and
p

γ2−−−→A Qp for p ∈ Q1. By the definition of runs −−→∗A in the alternating automaton, we
get q0

γ1γ2−−−−→
∗
A

⋃
p∈Q1

Qp.

q0
γ1−−−→A Q1


p1

γ2−−−→A Qp1
...

pn
γ2−−−→A Qpn

 

q0
γ1γ2−−−−→

∗
A Q =

⋃
p∈Q1

Qp

Thus, we add transition q0
X−−−→A Q to A if q0

α1α2−−−−−→
∗
A Q as given by the first saturation

rule.
In the case, where X belongs to prover, we need to take all rules X → α (α ∈ S ∗) with

left-hand side X into account. Suppose that refuter can enforce state changes Qα from q0 and
α i.e. we have q0

α−−−→
∗
A Qα. Then refuter can only guarantee that the word w derived from
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X induces state change q0
w−→ p ∈

⋃
X→αQα as prover is allowed to pick the first rule. In this

case, the second saturation rule dictates to add transition q0
X−−−→A

⋃
X→αQα as desired.

In the final automaton Aattr, the plays starting from non-terminal X are represented by all
transitions with left-hand side q0 which are labeled by X.

q0
X−−−→A Q1

...

q0
X−−−→A Qn.

For all the words w derivable in a play from X holds that q0
w−→ q ∈

⋃n
i=1Qi in Adet.

Concerning the alternating structure of the plays, refuter can guarantee that some terminal
word w is derived with q0

w−→ p ∈ Qi for any i = 1, . . . , n. However, she can not narrow it
down to a particular state p ∈ Qi. This last choice belongs to prover. We encountered a
similar flattening of the game to DNF-formulas σX in the summary approach.

4.1. Example

To promote a better understanding of the saturation approach, we demonstrate the satura-
tion process on an example Gex. It is given by the context-free grammar Gex and the finite
automaton Aex depicted in Figure 11.

S� → XY

X� → a | b
Y# → a | b

Gex : q0Aex :

q1

q2

qE

qF

a

b

a, b

a, b

a, b

a, b

S�Arena:

X�Y

aY# bY#

aa ab ba bb

Figure 11.: Example Gex.

The nodes with labels inM1 = {aa, ab, aY } in the game arena are contained in the attractor
Attr#, while the labels in M2 = {ba, bb, bY,XY, S} are not. We will see that after the
saturation process, the sentential forms inM1 will be recognized by Aattr, whereas the ones in
M2 are not accepted. The following table depicts which transitions are added in each iteration
and from which of the two saturation rules they stem. For some of the added transitions,
we explain in more detail how they were created. The initial transitions of the alternating
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automaton A0 are given by

q0
a−−→A {q1} q0

b−−→A {q2}

q1
x−−→A {qE} q1

x−−→A {qE}

qF
x−−→A {qE} qE

x−−→A {qE}

where x ∈ {a, b}.

rule 1 rule 2

A1 q0
Y−−−→A {q1} q0

Y−−−→A {q2} q0
X−−−→A {q1, q2}

q1
Y−−−→A {qE} q1

X−−−→A {qE}
q2

Y−−−→A {qF } q2
X−−−→A {qF }

qF
Y−−−→A {qE} qF

X−−−→A {qE}
qE

Y−−−→A {qE} qE
X−−−→A {qE}

A2 q0
S−−−→A {qF , qE}

q1
S−−−→A {qE}

q2
S−−−→A {qE}

qF
S−−−→A {qE}

qE
S−−−→A {qE}

Let us examine some of the new transitions more closely and explain exactly how they were
added to A .

• q1
Y−−−→A {qE} in A1

This transition was added due by the first saturation rule due to the path q1
a−−→
∗
A {qE}

(or equally q1
b−−→
∗
A {qE})in A0.

• q0
X−−−→A {q1, q2} in A1

Here, we used the first saturation rule and the paths q1
a−−→
∗
A {q1}, q1

b−−→
∗
A {q2}

in A0. By the newly added transition, sentential form X is accepted. Note that X is
contained in Attr#, but not in Attr#().

• q0
S−−−→A {qE , qF } in A1

This time, we used the second saturation rule with path q0
X−−−→

∗
A {qE , qF }, which

consists of the transitions q0
X−−−→A {q1, q2}, q1

Y−−−→A {qE} and q2
Y−−−→A {qF }.

Note that the new transition is also a rejecting path for S. Thus S is not accepted by
Aattr = A2 as desired.

4.2. Finite automaton and determinism

We address the two questions whose answers were postponed above.
The first question was whether we can saturate a finite automaton recognizing L(A) instead

of an alternating one. The issue when using a finite automaton is that we cannot encode the
choices of prover and refuter differently in the saturated automaton. By saturating an alter-
nating automaton, we can represent refuters choices in the automaton by non-determinism
and provers by transitions to sets of states. If we have rules X → α1 | · · · | αn and paths
q

αi−−−→
∗
A Pi, then we add transitions q X−−−→

∗
A Pi for each i = 1, . . . , n if X belongs to refuter.

If X belongs to prover however, we only add transition q X−−−→
∗
A

⋃n
i=1 Pi.
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In a finite automaton, we cannot use sets of states to represent the choices of prover and
would have to use the same saturation rule for both cases. We can easily construct an example
(Figure 12), where the saturated automaton does not accept the attractor Attr#(L(A)). The
grammar of the context-free game only consists of rule X� → a | b and the automaton A
accepting L(A) is depicted on the upper right. The saturation is finished after only one step
and the resulting automaton is A1.

X� → a | bG :

q0A : q1
a

b

⇓

q0A1 : q1
a,X

a,X

Figure 12.: Saturation does not work with finite automata.

The automaton A1 accepts the starting symbol X, although it is clearly not contained in
the attractor. Thus the answer to the first question is negative.
The second question is whether we can create the alternating automaton from a non-

deterministic finite automaton. This would be very beneficial for the runtime complexity
as determinizing an automaton entails a guaranteed exponential blow-up of the complexity.
Unfortunately, this step cannot be avoided as the following counter-example shows (Figure 13).

S# →G aX

X# →G b | c
G : q0A :

q1

q2

qE

qF

a

a

b

c

c

b

S#

aX#

ab ac

Arena:

Figure 13.: Saturation does not work with non-deterministic automata.

All the derivable words are accepted by the automaton A. Thus, S is not contained in
the attractor Attr#. We construct the alternating A-automaton as in Definition 15. We
handle the non-determinism as provers choice i.e. if q a−→ pi for i = 1, . . . , n are all the edges
starting from state q with label a in A, then we have transition q a−−→A {p1, . . . , pn} in A .
Intuitively, it makes sense to let prover resolve the non-determinism because if there exists an
accepting path for a word in the automaton A, then the word should be accepted. As prover
aims for acceptance of the derived word, she always picks the accepting path. Refuter on the
other hand would rather select the non-accepting paths and thereby falsify the outcome of
the game. But the following saturation process shows that the resulting automaton does not
always recognize the attractor Attr#.
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added rules
A0 q0

a−−→A {q1, q2} (non-determinism)
q1

b−−→A {qE} q1
c−−→A {qF }

q2
b−−→A {qF } q2

c−−→A {qE}
A1 q1

X−−−→A {qF }, q1
X−−−→A qE}

q2
S−−−→A {qF }, q2

X−−−→A qE}
A2 q0

S−−−→A {qF , qE}
q0

S−−−→A {qF }, q0
S−−−→A qE}

In A2, we created transitions q0
S−−−→A {qE , qF }, q0

S−−−→
∗
A {qF } and q0

S−−−→
∗
A {qE} in

A by the first saturation rule. The last transition q0
S−−−→A {qE} is an accepting run for S

given that the final states of A are exactly the non-accepting ones in A. Thus, the resulting
automaton suggests that S is contained in Attr#.
The problem is that by letting prover resolve the non-determinism, we give refuter the

opportunity to react to provers choice. If prover resolves the non-determinism to q1, refuter
chooses transition q1

X−−−→A qE corresponding to rule X →G b and if prover chooses q2,
refuter reacts by picking transition q2

X−−−→A qE corresponding to X →G c.
This issue is related to the difference between bisimulation equivalence and language in-

clusion. By asking prover to resolve the non-determinism of A, she actually has to prove a
stronger claim than language inclusion L(G) ⊆ L(A). Prover will only win if the automaton
A can simulate each branching behavior of the game arena by an accepting path. If there
exists such a simulation, language inclusion also holds. But the converse does not hold. Even
if L(G) ⊆ L(A), the automaton A may not be able to simulate the behavior of the game
arena by an accepting path. This is the case in our example.
In the first step, the game arena moves from sentential form S to aX. Prover can either

simulate this behavior in A by moving to q1 or q2. In case prover picked q1 (q2), the game
arena can move to ab (ac). Then, prover can only simulate this behavior by moving to qE
which is non-accepting state. Thus, not all behaviors of the game arena can be simulated by
an accepting run in A, although language inclusion holds.
We avoid this situation by determinizing automaton A.

4.3. Correctness of the saturation approach

This section is dedicated to prove the correctness of the presented approach. More precisely,
we prove the following theorem.

Theorem 1
Let G be a context-free game given by context-free grammar G and finite automaton A. Let
furthermore be Adet be a deterministic automaton recognizing L(A) and A the corresponding
alternating Adet-automaton. Then, Aattr accepts exactly the sentential forms in Attr#.

There is a similar theorem (Theorem 1.3.1) in [2] for pushdown game systems. The proofs
of both theorems is nearly identical. But for the sake of completeness, we state the adapted
proof here.

Proof. Let A1,A2, . . . ,Am = Aattr be the intermediary alternating automata created during
the saturation process. We assume that we added only one transition in each step, i.e.
Ai+1 = Ai ∪ {p

A−−−→A P} for some non-terminal A, state q ∈ Q and set of states P ∈ 2Q.
Note that this assumption does not match with the definition of our saturation process. We
add all possible transitions for each pair (q,X) of a state q ∈ Q and a non-terminal X in
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one saturation step. But the alternating automaton Aattr reached at the fixed-point of the
saturation process is the same for both definitions. Adding only one transition in each iteration
simplifies the proof, therefore we use the alternative definition of the saturation process.
For this proof, we need to examine intermediary points of runs. From the last bullet in

Definition 15 it is clear that the intermediary points have to be set of states. Thus, we
generalize −−→A to sets of states P on the left-hand side.

P
ε−−→A P

P
γ−−→A

⋃
q∈P

Pq, if q
γ−−→A Pq for each q ∈ P where γ ∈ S .

Then we can write each run q α−−−→
∗
A S as

q
α1−−−→A S1

α2−−−→A S2
α2−−−→A . . .

αn−−−→A Sn = S

for some Si ∈ 2Q (i = 1, . . . , n). Similarly, we can generalize −−→∗A to sets of states on the
left-hand side.

P
ε−−→
∗
A P

P
α−−−→
∗
A

⋃
q∈P

Pq, if q
α−−−→
∗
A Pq for each q ∈ P where α ∈ S ∗.

We now show the claim in two steps by Lemma 1 and Lemma 3.

• Attri# ⊆ L(Aattr) for i ∈ N

• L(Ai) ⊆ Attr# for i = 0, . . . ,m

The, the claim of the theorem follows as Attr# =
⋃
i≥0 Attr

i
# and L(Aattr) =

⋃
i≥0 L(Ai).

Step 1:

Lemma 1
Attri# ⊆ L(Aattr) for i ∈ N

Proof. We prove the claim by induction over i.

Base case i = 0:
We initialize the alternating automaton A s.t. it recognizes exactly L(A). Then, we have

that

Attr0# = L(A) = A ⊆ L(Aattr).

By adding transitions, we only augment the language recognized by the alternating automa-
ton. Therefore, the last inclusion holds.

Induction step i→ i+ 1:
Assume it already holds that Attri# ⊆ L(Aattr). We consider some sentential form

wXα ∈ Attri+1
# \ Attri# and show that wXα ∈ L(Aattr).

We need to distinguish two cases.

• X ∈ #
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Then, there must exist a rule X → β in G s.t. wXα ⇒G wβα with wβα ∈ Attri#. By
the induction hypothesis, this means that Aattr accepts wβα. Therefore, there must be
an accepting path for wβα in Aattr:

qI
w−−−→
∗
A S1

β−−−→
∗
A S2

α−−−→
∗
A S ⊆ QF

From S1
β−−−→
∗
A S2 we get by definition of −−→∗A that there exist a set of states Sq

for each q ∈ S1 s.t. q β−−−→
∗
A Sq and S2 =

⋃
q∈S1

Sq. But then, we know by the first

saturation rule that Aattr contains transitions q
X−−−→A Sq for each q ∈ S1. Using these

transitions, we can construct the following accepting path in Aattr.

qI
w−−−→
∗
A S1

X−−−→A S2
α−−−→
∗
A S ⊆ QF

Thus, wXα ∈ L(Aattr).

• X ∈ � Let X → β1 | · · · | βn be all the rules with left-hand side X. If wXα ∈ Attri+1
# ,

then wβ1α for all i ∈ {1, . . . , n} must be contained in Attri+1
# . Then, we have accepting

paths

qI
w−−−→
∗
A S1

βi−−−→
∗
A S

(i)
2

α−−−→
∗
A S(i) ⊆ QF .

As in the first case, we can derive from S1
βi−−−→

∗
A S

(i)
2 that there exist set of states

S
(i)
q ∈ 2Q s.t. q βi−−−→

∗
A S

(i)
q and S(i)

2 =
⋃
q∈S1

S
(i)
q fir i = 1, . . . , n. Applying the second

saturation rule adds transitions q X−−−→
∗
A

⋃n
i=1 S

(i)
q to A . This creates accepting path

qI
w−−−→
∗
A S1

X−−−→
∗
A

⋃
q∈S1

n⋃
i=1

S(i)
q

α−−−→
∗
A

n⋃
i=1

S(i) ⊆ QF .

for wXα and thus wXα ∈ L(Aattr) as desired.

Step 2:

Before we prove that L(Ai) ⊆ Attr# for i = 0, . . . ,m, we show the following helping lemma.

Lemma 2
If refuter can enforce the derivation of some set M = {β1, . . . , βn} of sentential forms from
sentential form α, then α ∈ Attr#(M,⇒).

Proof. If refuter can enforce the derivation of M from α, then she has a strategy s# s.t. any
play conform to s# starting in α ends in M .

Towards a contradiction, we assume that α 6∈ Attr#(M,⇒). We inductively construct a
play π starting in α conform to s# s.t. no position of π is contained in the attractor. This in
particular means that the play can not end in a sentential form contained in M .

Base case: We have α 6∈ Attr#(M,⇒) by assumption.

Induction step: Let αi be the last position of the play πi that we constructed so far. By
the induction hypothesis, αi 6∈ Attr#(M,⇒). We show that we can prolong πi by a sentential
form αi+1 s.t. the move is conform to s# and αi+1 6∈ Attr#(M,⇒). We need to distinguish
two cases.
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• αi ∈ #
As αi 6∈ Attr#(M,⇒), none of its successors wrt. ⇒ is contained in the attractor. We
choose αi+1 = s#(α1, . . . , αi).

• αi ∈ �
As αi 6∈ Attr#(M,⇒), at least one of its successors wrt. ⇒ is not contained in the attrac-
tor. We choose an arbitrary one of the successors that is not contained in Attr#(M,⇒)
as αi+1.

With the helping lemma at hand, we can prove Lemma 3

Lemma 3
L(Ai) ⊆ Attr# for i = 0, . . . ,m

Proof. We actually prove a stronger claim here. We show that if there is a run q α−−−→
∗
A S for

any q ∈ Q, S ⊆ Q, then refuter can enforce the derivation of a terminal word w starting from
α which is contained in M = {w ∈ T ∗ | ∃p ∈ S s.t. q w−→ p in Adet}. If we take α ∈ L(Ai), we
get that q = qI and S ⊆ QF . Then, it follows that w ∈M ⊆ L(A). By the helping Lemma 2,
we also have that α ∈ Attr#.
As M ⊆ L(A), we also have that α ∈ Attr#(M,⇒) ⊆ Attr#.
We prove the claim above by induction over i.

Base case i = 0: Suppose we have a path q α−−−→
∗
A S for some q ∈ Q and α ∈ S ∗. As all

the transitions in A0 correspond to edges in Adet, α must be a terminal word and S consists
of only one state, say S = {p}. The claim thus follows trivially.

Induction step i → i + 1: As declared above, Ai+1 was created from Ai by adding one
transition. Let the newly added transition be t = p0

X−−−→A
i+1

S0. By −−→A
i+1

, we denote the

transitions of Ai+1. Suppose now we have a run q α−−−→A
i+1

S.

We conduct an induction over the number of times j the new transition is used in the run.
If j = 0, the new transition t is never used in the run q α−−−→A

i+1
S and we get the claim by

the induction hypothesis on i.
Suppose now that t is used j + 1 times.
Then, we can decompose the run q α−−−→

∗
A

i+1
S into the following parts. Let α = α1Xα2.

q
α1−−−→

∗
A

i
S1

X−−−→A
i+1

S2
α2−−−→

∗
A

i+1
S ⊆ QF (0.1)

∈

p0
X−−−→A
i+1

⊆

S0

In this run, the new transition T is used for the first time in S1
X−−−→A
i+1

S2. We have that

p0 ∈ S1 and S0 ⊆ S2.
We examine the parts of this run separately, apply the induction hypothesis to each one

and combine the information at the end of the proof.

1. q α1−−−→
∗
A

i
S1

This run does not use the new transition t. Thus, we can apply the induction hypothesis
and get that refuter can enforce the derivation of some terminal w1, starting from α1,
where w1 ∈ {w ∈ T ∗ | ∃p ∈ S1 s.t. q w−→ p in Adet}
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2. S1 \ {p0}
X−−−→A
i

S′2
α2−−−→

∗
A

i+1
S′.

We consider the second part of the run in (0.1) where we cut out the new transition t
from S1

X−−−→A
i+1

S2. Thus, we have that S′2 ⊆ S2 and S′ ⊆ S and the new transition t

is used at most j times.

For each of the states p in S1 \ {p0}, we have a run p X−−−→A
i

S′′2
α2−−−→

∗
A

i+1
S′′ for some

S′′2 ⊆ S′2 ⊆ S2 and S′′ ⊆ S′ ⊆ S. In each of these runs, the new transition is used at
most j times as well. Using the induction hypothesis, we get that refuter can enforce
the derivation of some terminal w2 from Xα2 s.t. w2 ∈ {w ∈ T ∗ | ∃p ∈ S′′ ⊆ S s.t. q w−→
p in Adet}

3. p0
X−−−→A
i+1

S0.

It remains to examine the new transition t. From the run in (0.1), we get that S0 ⊆ S2.
Transition t been included in −−→A

i+1
by either the first or the second saturation rule. We

distinguish the two cases.

a) X ∈ #
The new transition was added by the first saturation rule from some grammar rule
X → β and transition p0

β−−−→
∗
A

i
P0. Let us consider the following run.

p0
β−−−→
∗
A

i
P0

α2−−−→
∗
A

i+1
U0

As P0 ⊆ S2, we also have that U0 ⊆ S. In this run, we use t at most j times.
Applying the induction hypothesis gives us that refuter can enforce the derivation
of some x0 from βα2 s.t. x0 ∈ {w ∈ T ∗ | ∃p ∈ U0 ⊆ S s.t. q w−→ p in Adet}.

b) X ∈ �
The new transition was included by the second saturation rule from the grammar
rules X → β1 | · · · | βn with right-hand side X and corresponding transitions

p0
βi−−−→

∗
A

i
S
(i)
0 , where S0 =

⋃n
i=1 S

(i)
0 . As in the previous case, we get for the runs

p0
βi−−−→

∗
A

i
P0

α2−−−→
∗
A

i+1
Ui

that Ui ⊆ S for i = 1, . . . , n and that they use the new transition t at most j times.
We apply the induction hypothesis to get that refuter can enforce the derivation
of some terminal word xi from βiα2 s.t. xi ∈ {w ∈ T ∗ | ∃p ∈ Ui ⊆ S s.t. q w−→
p in Adet}.

Now, we combine the previous statements to prove the claim.
From 1., we get that refuter can enforce the derivation of some w1 from α1 s.t. q

w1−→ p1 ∈ S1
in Adet. There are two possible cases.

• p1 6= p0
In this case, we can use 2.: Refuter can enforce the derivation of some w2 from Xα2

s.t. p1
w2−→ p2 ∈ S in Adet. Recombining the facts gives us that prover can enforce the

derivation of some w1w2 from α1Xα2 by first deriving w1Xα2 from α1Xα2 and then
w1w2 from w1Xα2. Here, we use the following trivial observation.
Observation 1. If player ? ∈ {#,�} can enforce the derivation of some w from sen-
tential form α, then she can also enforce the derivation of

– vw from vα and
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– wβ from αβ.

This proves the claim as we have that q w1−→ p1
w2−→ p2 ∈ S.

• p1 = p0
We use 3.a) if X belongs to refuter resp. 3.b) if X belongs to prover.

– X ∈ #
Using 3.a), we get that refuter can enforce the derivation of some x0 from β where
β is the right-hand side of some grammar rule X → β s.t. p0

x0−→ p3 ∈ S in Adet.
But the, prover can also enforce some w1x0 from α1Xα2 by first deriving w1Xα1,
then applying rule X → β and finally deriving w1x0 from w1βα2. Then, the claim
follows from q

w1−→ p0
x0−→ p3 ∈ S.

– X ∈ �
By 1., we got that refuter can enforce some w1Xα1 from α1Xα2. As X ∈ �, she is
allowed to derive any w1βiα2 from w1Xα2. From 3.b) we get that for any of these
w1βiα2, refuter can enforce the derivation of some xi s.t. p0

xi−→ p4 ∈ S in Adet.
Thus, refuter can enforce some w1xi from α1Xα2 and it holds that q w1−→ p0

xi−→
p3 ∈ S. Thus, the claim follows.

4.4. Overview of the saturation method

To end the section about the saturation approach, we present a brief overview of the algorithm
to solve context-free games. Let G be a context-free game given by the context-free grammar
G and the finite automaton A. We employ the following steps.

1. Determinize the finite automaton A into Adet.

2. Construct the alternating Adet-automaton A as in Definition 15.

3. Saturate the automaton A into Aattr by the two saturation rules until no more transi-
tions can be added.

4. Check whether the starting symbol S of the grammar is accepted by Aattr. If this is the
case, refuter wins G , otherwise prover wins.
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5. Guess & Check Approach

The idea of the Guess & Check approach is to reduce the inclusion game to a reachability game
on a finite graph, which we call GC game. This finite graph and the game are closely related
to the game arena with the corresponding reachability game, but we restrict the information
(sentential forms) stored in each node to make the graph finite. The information is sufficient
to simulate a play from G in the GC game and to preserve the winner of the inclusion game
i.e. :

• Refuter has a winning strategy in the original game if and only if refuter has a winning
strategy in the finite game.

• A winning strategy in the original game can be converted to a winning strategy for the
GC game and vice versa.

This approach was proposed in [10] for pushdown game systems. Due to the similarities of
pushdown game systems (PGS) and context-free games, we can use the method in our context
after a few modifications.
The rest of this section is dedicated to the formal definition of the GC game and the

reduction i.e. the conversion of winning strategies from one game to the other. But before
diving into the definitions and proofs, we provide some intuition about the GC game.

5.1. The idea behind the GC game

The challenge is to reduce the (possibly) infinite game arena to the finite graph on which the
GC game is played. This means that it is not possible to store the whole sentential form in
the nodes. We have to adress the following two problems:
On one hand, we may not have a bound on the length of the terminal prefix of the sentential

forms. Fortunately, this problem can be solved by simply storing the state change that
the terminal prefix induces on A from q0 on instead of the prefix itself. We emphasize the
importance of the singular in the previous sentence. As in the saturation approach, we need
to have a deterministic automaton on the right-hand side of the inclusion for the Guess &
Check approach. The reason is actually the same as for the saturation approach, but we will
get into details after the formal definition of the GC game.
On the other hand, the fact that we also may not have a bound on the length of the suffix

of the sentential form is a problem. For example, this occurs if the grammar contains a rule
of shape X →G XX. Thus, we can also not store the whole suffix in the node. This problem
is more involved, but we can make use of the following consideration.
Suppose that we are at position wXα. Then, the portion of the play starting from wXα to

the first position of shape ww′α, called subplay in the following, does not depend on α. The
suffix α becomes important only from position ww′α. Actually, the only information needed
from the portion wXα to ww′α of the play is the terminal word v′ that has been derived.
We use this insight to change the evolution of the plays. At a sentential form wXα, refuter

proposes a set of terminal words that may be derived from X in form of the state changes
that they induce on A from qw on. State qw is the unique target state of the run from A on w
from q0 on. As the other player also influences the derivation process of X, prover usually can
not narrow down the derived terminal word to a particular one. Thus he needs to propose a
set of possible outcomes of the derivation process. To avoid an unfair advantage for refuter
(she may propose any set of states at the moment), we give prover the possibility to challenge
and verify the prediction.
If prover challenges the prediction the proposition is verified by playing out the subplay

i.e. the owner of X applies a rule X →G β and we play until a position of shape ww′α is
reached. If the state changes induced by w′ are contained in the proposition, refuter wins the
whole inclusion game. Otherwise, prover is declared winner. We argued above that we do
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not need the suffix α for this part of the play. Furthermore, if prover chooses to challenge the
proposition, the whole game ends after a terminal word has been derived from X. Thus, in
this case, we can discard the suffix α.

If prover accepts the proposition, she picks a terminal word w′ in form of its state change
from the set and the play carries on from ww′α. The derivation process of X is skipped
completely and in particular no grammar rule is applied to X.
The idea behind the propositions and challenges is the following. As in the summary

approach, we can flatten the choices in the subplays to two subsequent choices, one for each
player. The propositions reflect refuters influence in the subplays, as she can choose to include
or exclude certain states from his prediction. Prover on her side fixes her choices in the subplay
by picking a state from the prediction. Figure 14 depicts an example of a subplay and discusses
different predictions.

X�

aZ# bZ#

ac ad bc bd

Figure 14.: Example of a derivation for non-terminal X. Note the following facts:
(1) Prediction P = {ac, ad} would be losing for refuter (#) if challenged, as prover
owns X and can choose X ⇒ b.
(2) By choosing P = {ac, bc}, refuter chooses rule Z ⇒ c.
(3) If prover picks ac from P , she chooses rule X ⇒ aZ.

The idea to use predictions changes the course of the game. Plays do not only derive words,
but also verify predictions. The initial proposition is the set of all states that are not final.
Thus, the plays verify whether refuter can enforce the derivation (from S on) of a terminal
word that induces a state change to a non-final state in A, i.e. to a word that is not accepted
by A.
This approach ensures that we never need to store more symbols for the sentential forms

than the length of the largest right-hand side of any grammar rule. Every time a rule is
about to be applied at a sentential form wXα, which only happens if prover challenges the
prediction of refuter, the suffix α is discarded. If prover accepts the prediction, no rule is
applied and the leftmost non-terminal X is deleted.
Figure 15 depicts how the two ideas from above lead to a finite graph. Vertex Check(Xα,P0, qw)

Check(Xα,P0, qw)

Claim(Xα,P, P0, qw)Claim(Xα,P ′, P0, qw)

. . .

Verify(X,P, qw)

Check(β1, P, qw) Check(βn, P, qw)

Check(α, P0, qww′′)Check(α, P0, qww′)

. . .

. . .

Figure 15.: Overview of the structure of the finite graph for the GC game.

represents sentential form wXα with prediction P0. The terminal prefix w is represented in
form of the state change qw it induces on A from q0 on. The node Check(Xα,P0, qw) belongs
to refuter. In the succeeding claim-nodes, the prediction for the subplay starting at wXα is
made and there is such a node for each possible set of states P . The claim-nodes in turn
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belong to prover. Prover has two possibilities. She may move to the verify-node to challenge
the prediction P . In this case, the owner of X has to pick a rule from X →G β1 | · · · | βn
and the play continues by verifying the new prediction P . Alternatively, prover may accept
the prediction. Then, she can pick a state qww′ from P , the subplay is skipped and the play
continues with the old prediction P0.
With the formal definition of the GC game, we concretize the above discussions into a finite

graph. Finally, we show how to convert a winning strategy for the original game to one for
the GC game and vice versa. This also proves that the winners coincide on both games and
thus that the inclusion game can be solved by solving the GC game.

5.2. The GC game

In this section, we define the graph on which the game is played. The game graph of the GC
game be given by GGC= (V, E , v0), where V = V©∪̇V� is the set of positions (divided between
the players � and #), E ∈ V × V is the set of transitions and v0 is the initial position.
The GC game is a reachability game on graph GGC. Analogously to the graph game

corresponding to the context-free game, refuter wins a play if it is maximal (the last position
has no outgoing edge) and the last position is contained in some set VF that we specify below.
Prover wins all other plays. Refuter wins the game if she has a strategy to enforce a play that
is winning for her.

5.2.1. Positions of the GC game

We start by introducing the types of positions and their respective owners. We use the follow-
ing notation. Sentential forms are represented by γ, γ′, P, P ′ represent predictions and q, p
represent states of A. Recall that we need a deterministic automaton on the right-hand side of
the inclusion. If the automaton A given by the context-free game is non-deterministic, we first
determinize it into an automaton Adet. Because we do not mention the (non-determinized)
automaton A anymore, assume that the starting state of Adet is given by q0, the set of states
by Q, the transitions by q a−→ p and the final states by QF . For reasons of comprehensibil-
ity, we postpone most of the explanations concerning the meaning of the positions until the
definition of the transitions.

• Check(γ, P, q), owner=


prover , if γ = ε

prover, if γ = aγ′ for a ∈ T \ {ε}, γ′ ∈ S

refuter, else.

The check-nodes represent sentential forms in the derivation process of shape wγα where
w is a terminal word s.t. q0

w−→ q and α is a sentential form. As the suffix α is discarded
whenever a prediction is challenged, the node in general does not store the complete
sentential form. In Figure 15 for example, the check-nodes Check(βi, P, qw) represent
sentential forms wβiα.

The purpose of the check-nodes is to track the target state in Adet of the terminal prefix
w from q0 on along the derivation process. This becomes more clear when we define the
transitions.

Intuitively, refuter wins the game starting from this node if the prediction P is correct for
γ and q, i.e. she can enforce the derivation of a terminal word w from α s.t. q w−→ p ∈ P .

• Verify(X,P, q), owner = owner of X
Verify nodes mark the beginning of a verify branch. In the next step, a rule X →G β
will be applied to X by its owner. Intuitively, refuter wins the game starting from this
node if the prediction P is correct for X and q.Although the check- and verify-nodes
seem very similar, we need to distinguish them as we only apply rules at verify-nodes.
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• Claim(Xγ′, P ′, P, q), owner =prover
At the claim nodes, refuter makes his prediction P ′ about the subplays. Therefore, the
claim-nodes belong to refuter. The old prediction P that has been inherited from the
previous node has to be kept in case prover does not challenge the prediction. Intuitively,
refuter wins from the claim-node if prediction P ′ is correct for X and q and if prediction
P is correct for γ and for all q′ ∈ P ′.

• Test(q, P ), owner=

{
refuter if q ∈ P
prover, else

The test nodes are the end nodes of the game, i.e. they are the only nodes without a
successor. They are winning for refuter if q ∈ P , i.e. the prediction is correct, and
winning for prover otherwise. Thus, the set of winning nodes for refuter are VF =
{Test(q, P ) ∈ V | q ∈ P}.

5.2.2. Edges of the GC game

Let us now define the edges of the graph:

• Check(aγ′, P, q) −−−→ Check(γ′, P, p)
If the first symbol of γ is a terminal, it will simply be consumed and its state change
composed with q, i.e. q a−→ p. Note that this transition is unique as Adet is deterministic.

If q tracked the state change of some w, p is the state change of wa. The owner of the
check-node does not matter for this case as it has only one successor. To simplify the
correctness proof, we choose prover to be the owner.

• Check(ε, P, q) −−−→ Test(q, P )
If γ = ε, the derivation process is finished and it remains to test whether the prediction
is correct: q ∈ P? The owner of the check-node does not matter here as well and we
choose prover again.

• Check(Xγ′, P, q)
(for all predictions P ′)−−−−−−−−−−−−−−→ Claim(Xγ′, P ′, P, q)

In this case, the check-node belongs to refuter. As we discussed above, refuter needs
to make a prediction for the subplay. As refuter can predict any set of boxes, we need
edges to all possible predictions and refuter is allowed to choose one.

• Claim(Xγ′, P ′, P, q)
skip (p∈P ′)−−−−−−−→ Check(γ′, P, p)

This edge leads into the skip-branch. The predecessor of the claim-node is the check-
node Check(Xγ′, P, q), representing a sentential form of shape wXγ′α. State q of the
check- and claim-node represents the target state of terminal prefix w in Adet (from q0
on). If prover decides to skip the derivation process of X and accepts the prediction,
she picks a state p from P ′. This state represents the target state of the terminal prefix
ww′ of ww′γα, where w′ has been derived from X. Therefore, we need such an edge
for every p ∈ P ′. The state p is stored in the check-node, which tracks the target state
of the terminal prefix. This edge is called a skip-edge and the branch starting at the
ckeck-node a skip-branch.

• Claim(Xγ′, P ′, P, q)
(verify)−−−−→ Verify(X,P ′, q)

This edge leads from the claim node, where the prediction for the subplay has been
made, to the verify branch. If prover does not accept the prediction P ′, the subplay
is played out. At this point, the information about the suffix γ′ is discarded and a
grammar rule can be applied in the next step. The prediction P is replaced by P ′. We
call this edge a verify-edge and the branch starting at the verify-node the verify-branch.
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• Verify(X,P, q)
(for all rules X⇒γ)−−−−−−−−−−−−→ Check(γ, P, q)

The verify-node belongs to the owner of X because he needs to choose the rule that will
be applied. Thus, there exists such an edge from Verify(X,P, q) to Check(γ, P, q) for
all rules X →G γ.

5.2.3. Starting node

As we consider the game from the point of view of refuter, the starting node of the game will
be

c0 = Check(S, Prej, q0), where Prej contains all non-accepting states.

As already mentioned above, a play starting at a check-node of this shape is won by refuter
if she can enforce the derivation of a terminal word w from S s.t. q0

w−→ q ∈ Prej. This
means that we verify whether refuter can make sure that the derived word is not accepted by
automaton Adet.

5.3. Determining the winner

After we constructed the finite game graph of the GC game from the grammar G and the
determinized automaton Adet, it remains to determine the winner of the game and thereby
also of the original inclusion game. As the game graph GGC is finite, we can use the attractor
Attr#(VF, E) for this task. It contains all nodes from which refuter can enforce a finite maximal
play ending in a nodes in VF.
In case the parameters are unambiguous, we write Attr

(k)

# for the fixed-point approximants
and Attr# for the fixed-point. If the starting node Check(S, Prej, q0) is contained in the
attractor, refuter has a winning strategy for the GC game and thereby also in the inclusion
game. If the starting node is not contained in the attractor, prover wins both games.
Instead of a simple attractor, we use an antichain-algorithm. Antichain algorithms have

been introduced in [4]. The idea is to reduce the number of elements in the fixed-point
approximants Attr

(k)

# to speed up the attractor construction by deleting appropriate nodes

from Attr
(k)

# . We make precise in a moment.
Formally, antichains are defined as follows.

Definition 17
An antichain of a partially ordered set (M,�) is a subset M ′ ⊆M s.t. all elements of M ′ are
incomparable, i.e. ∀e, e′ ∈M ′ : e 6� e′ and e′ 6� e.

We can combine the antichain idea with the attractor to reduce number of elements in the
attractor. We exploit the structure of the GC game. Whenever refuter wins from a node
v = Verify(X,P, q), then she also wins from any node v′ = Verify(X,P ′, q), where P ⊆ P ′.
The reason for this is twofold. On one hand we have that the parts of the game graph
reachable from v resp. v′ are very similar in structure. The structure is mainly determined
by the grammar rules and the states of A in form of the predictions. Thus, we have for each
play πv = v, v1, v2, . . . starting from v a corresponding play πv′ = v′, v′1, v

′
2, . . . starting from

v′. As long as no skip-edge is encountered on the plays, we have that vi and v′i are equal
except for the predictions P resp. P ′. As soon as a verify-node is reached, the predictions P ,
P ′ are discarded, replaced by the same prediction P ′′ and from this point on the nodes in the
plays are exactly the same. In particular, this means that both plays either end in test-nodes
Test(q, P ) resp. Test(q, P ′) or in the same node Test(q, P ′′) for some prediction P ′′.
On the other hand, we have that test-nodes only check for inclusion. Thus, if the last node

in πv belongs to refuter, the same holds for the last node in πv′ .
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Intuitively, this is due to the fact that refuter wins from a node Verify(X,P, q) if she can
enforce the derivation of some w ∈ T ∗ from X s.t. q w−→ p ∈ P . If this is the case, it holds for
the same word w that q w−→ p ∈ P ′ as P ′ ⊆ P .

We take the set of nodes V of GGC as domain for the partially ordered set.

Definition 18
The order � is defined on the verify-nodes. We have that

Verify(X,P, q) � Verify(X,P ′, q) ⇐⇒ P ⊆ P ′.

We will show that it is sufficient to only maintain �-minimal verify-nodes in the attractor
sets Attr#(VF, E)i. Any other verify-nodes can be safely discarded. Therefore, we change the
definition of the attractor to the following.

Definition 19
The antichain attractor is definied by

AttrA,#(VF, E)(0) = VF

AttrA,#(VF, E)(k+1) = A
(
AttrA,#(VF, E)k ∪M (k+1)

new

)
where M (k+1)

new = {v ∈ V | v ∈ # and ∃ (v, v′) ∈ E with v′ ∈ AttrA,#(VF, E)i}
∪ {v ∈ V | v ∈ � and ∀ (v, v′) ∈ E have v′ ∈ AttrA,#(VF, E)i}

and A(M) = {e ∈M |6 ∃e′ ∈M s.t. e′ � e}

AttrA,#(VF, E) =
⋃
k∈N

AttrA,#(VF, E)(k).

In case the parameters are unambiguous, we write Attr
(k)

A,# and AttrA,# for the antichain
attractor. Before we show that the antichain attractor correctly determines the winner of the
GGC, we state a few properties of the attractor sets Attr(k)# and Attr

(k)

A,#. They follow directly
from the definitions of the attractors.

Lemma 4
Let v ∈ V. Then it holds that

1. • Let v ∈ V#: v ∈ Attr
(k)

# ⇐⇒ ∃ (v, v′) ∈ E s.t. v′ ∈ Attr
(k−1)
#

• Let v ∈ V�: v ∈ Attr
(k)

# ⇐⇒ ∀ (v, v′) ∈ E holds v′ ∈ Attr
(k−1)
#

2. Suppose v is not a verify-node.

• Let v ∈ V#: v ∈ Attr
(k)

A,# ⇐⇒ ∃ (v, v′) ∈ E s.t. v′ ∈ Attr
(k−1)
A,#

• Let v ∈ V�: v ∈ Attr
(k)

A,# ⇐⇒ ∀ (v, v′) ∈ E holds v′ ∈ Attr
(k−1)
A,#

3. Suppose now v is a verify node. Then, we get the following weaker claim (the verify-node
may not be �-minimal and thus may be discarded by the A-operation).

• Let v ∈ V#: v ∈M (k)
new ⇐⇒ ∃ (v, v′) ∈ E s.t. v′ ∈ Attr

(k−1)
A,#

• Let v ∈ V�: v ∈M (k)
new ⇐⇒ ∀ (v, v′) ∈ E holds v′ ∈ Attr

(k−1)
A,#

From the discussion above we get the following Theorem.

Theorem 2
Check(S, Prej, q0) ∈ Attr# ⇐⇒ Check(S, Prej, q0) ∈ AttrA,#.
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Proof. ”⇐” We can easily show by induction that Attr(k)A,# ⊆ Attr
(k)

# for each k ∈ N. Then the
claim follows.
”⇒” Suppose that Check(S, Prej, q0) ∈ Attr#. This means that at least one of the succeeding

claim-nodes Claim(S, P, Prej, q0) has to be contained in the attractor. Let now Pmin ⊆ P be
an inclusion-minimal prediction s.t. Claim(S, Pmin, Prej, q0) ∈ Attr#.
This means on one hand that all succeeding check-nodes Check(ε, Prej, q) for q ∈ Pmin are

contained in the attractor. This means that the test-nodes succeeding these check-nodes are
contained in Attr# as well and then by definition also in AttrA,#. But then by Lemma 4, also
the check-nodes Check(ε, Prej, q) are contained in AttrA,#.
On the other hand, we can conclude from Claim(S, P, Prej, q0) ∈ Attr# that for the suc-

ceeding verify-node holds v = Verify(S, Pmin, q0) ∈ AttrA,#. But then we can deduce that
the verify-node is �-minimal in the attractor. Suppose the contrary, i.e. there is a verify-
node v′ = Verify(S, P ′min, q0) ∈ Attr# s.t. v′′ � v′. But then it would hold that claim-node
cl = Claim(()S, Pmin’, Prej, q0) ∈ Attr#. This is due to the fact that by P ′min ⊆ Pmin, the set
of check-nodes succeeding cl is a subset of the check-nodes succeeding Claim(S, P, Prej, q0),
which are all contained in Attr#. But this contradicts the fact that we chose Pmin minimal
in the first place.
Thus, we can apply Lemma 5 and get that Verify(S, Pmin, q0) ∈ AttrA,#. As all the suc-

cessors of the claim-node Claim(S, P, Prej, q0) are contained in AttrA,#, this also holds for the
claim-node and thereby for the check-node Check(S, Prej, q0).

We now prove Lemma 5 that we needed in the previous theorem.

Lemma 5
If Verify(X,P, q) ∈ Attr# and Verify(X,P, q) is �-minimal such, then also Verify(X,P, q) ∈
AttrA,#.

Proof. We prove the following stronger claim. If Verify(X,P, q) ∈ Attr
(k)

# and Verify(X,P, q)

is �-minimal such, then also Verify(X,P, q) ∈ Attr
(k)

A,#. We prove this by induction over k.
Base case: k = 0

As there are no verify-nodes in Attr
(0)

# , the claim holds trivially.
Induction step: k → k + 1

Let v = Verify(X,P, q) ∈ Attr
(k+1)

# and Verify(X,P, q) be �-minimal. Then, by Lemma 4 (1.)

either at least one or all successors of v have to be contained in Attr
(k)

# depending on whether
refuter or prover owns v. By construction of GGC, all successors are of shape Check(α, P, q),
where α is the right-hand side of a grammar rule X →G α. We show in Lemma 6 that if
such a successor node is contained in Attr

(k)

# , then it is also contained in Attr
(k)

A,#. Thus, by

Lemma 4 (3.) we can conclude that v = Verify(X,P, q) ∈M (k+1)
new .

It remains to show that v is �-minimal such. But if we assume the contrary, namely that
there exists some �-minimal node v′ = Verify(X,P ′, q) ∈ M (k+1)

new with P ′ ⊆ P . Then also
v′ ∈ Attr

(k+1)

A,# . As we have Attr(k+1)

A,# ⊆ Attr
(k+1)

# , v′ is contained in Attr
(k+1)

# contradicting the

fact that v was chosen �-minimal. Finally, we can deduce that v ∈ Attr
(k+1)

A,# .

To finalize the proof of Lemma 5 and Theorem 2 it remains to show the following claim.

Lemma 6
Let c = Check(α, P, q) be a successor node of v from above. If c ∈ Attr

(k)

# , then also c ∈
Attr

(k)

A,#.
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Proof. For this proof, we use the concept of layers L0, . . . , Ln. In layer Lj , we collect check-
nodes of shape Check(α′, P, q′) where α′ is a suffix of α. Furthermore, the nodes in each layer
have the following properties.

• They are contained in Attr
(k)

# .

• They are reachable from c via a path containing no verify-node.

• The paths only contain claim-nodes that are inclusion minimal in Attr
(k)

# i.e. nodes
Claim(α′, P ′, P, q′) s.t. no claim-node Claim(α′, P ′′, P, q′) with P ′′ ⊆ P ′ is contained in
the attractor.

v = Verify(A,K, q = q0)

c = Check(Xa,K, q0)

Claim(Xa,Pmin,K, q0)

Verify(. . . ) Check(a,K, q1)

Check(ε,K, q2)

. . . Check(a,K, q′1)

Check(ε,K, q′2)

L0

L1

L2

Figure 16.: Layer construction starting at c (all depicted nodes are contained in Attr
(k)

# ).

We start by L0 = {c} and collect the nodes in Lj+1 by taking appropriate successors of the
nodes from Lj . Figure 16 depicts an example of this layer construction. The goal is to show
that L0 ⊆ Attr

(k)

A,#, then the claim follows.
Intuitively, this is the case because we only chose inclusion minimal claim-nodes in the

paths. We do not need to consider paths containing verify-nodes as we can use the induction
hypothesis to prove that they are contained in Attr

(k)

A,#.

Therefore, we show that Lj ⊆ Attr
(k−f(j))
A,# ⊆ Attr

(k)

A,# for an adequate function f : N → N,
f(j) ≥ 0 and each layer Lj . Although it seems intuitive at first to define f(j) = j for all
j, it does not guarantee that Lj ⊆ Attr

(k−f(j))
A,# holds. The reason is the following. Suppose

the check-nodes of layer Lj are of shape Check(Xα′, P, q′) for some suffix Xα′ of α and that
Lj ⊆ Attr

(k−j)
A,# . To collect the nodes for layer Lj+1, we have to skip the direct successors of the

check-nodes as they are claim nodes. Thus, we would have Lj+1 ⊆ Attr
(k−j−2)
A,# and the index

of the attractor does not match the index of the layer anymore. For example in Figure 16
this is the case for L1.
This case always arises whenever α′ starts with a non-terminal. Furthermore, we have to

take into account how often this happened for the previous layers. Thus, we define

f(j) = j + #N(α, j)

where #N(α, j) equals the sum of the non-terminals in α1, . . . , αj .
Let now |α| = n. During the layer construction, we maintain the following three invariants.

1. The elements of Lj are contained in the attractor: Lj ⊆ Attr
(k−f(j))
# .
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2. For Check(α′, P, q′) ∈ Lj holds that |α′| = n− j.
We need this invariant to ensure that the layer construction eventually terminates.

3. If Lj ⊆ Attr
k−f(j)
A,# , then also Lj−1 ⊆ Attr

k−f(j−1)
A,# for j ≥ 1.

From this invariant we will deduce L0 ⊆ Attr
(k)

A,# by showing that Ln ⊆ Attr
k−f(n)
A,# at

the end.

The first layer only contains node c, L0 = {c}. The first invariant is met as k − f(0) = k
and the second invariants holds trivially. The third one does not apply.
Suppose now that we already constructed Lj and want to derive Lj+1. Let c′ = Check(α′, P, q′) ∈

Lj . We have to distinguish two cases.
First, let α′ = aβ for a ∈ T and β ∈ S ∗. Then, c′ only has one successor c′′(see Figure 17).

Then, we include c′′ in Lj+1. The invariants are all satisfied:

Case 1: α′ = aβ

• As c′ ∈ Lj , c′ ∈ Attr
(k−f(j))
# by the first in-

variant of Lj . But then, by Lemma 4 (1.),
c′′ ∈ Attr

(k−f(j))−1)
# . As the first symbol of α′

is a terminal, we have that f(j + 1) = f(j) + 1,
thus the first invariant is satisfied for Lj+1.

• From the second invariant of Lj , we get that
|aβ| = n− j. Thus |β| = n− j− 1 = n− (j+ 1).

• Finally, if c′′ ∈ Attr
(k−f(j+1))

A,# , c′ ∈

Attr
(k−f(j+1)+1)

A,# = Attr
(k−f(j))
A,# by Lemma 4

(2.).

c′ = Check(aβ, P, q′)

c′′ = Check(β, P, q′′)

Figure 17.: Case α′ =
aβ.

Case 2: α′ = Xβ
Second, let α′ = Xβ for X ∈ N . Then, the successors of c′ are claim-nodes of shape

Claim(Xβ,P ′, P, q). As c′ ∈ Lj , c′ ∈ Attr
(k−f(j))
# by the first invariant of Lj . Thus, at least

one of the succeeding claim-nodes is part of the attractor Attr(k−f(j)−1)# (Lemma 4 (1.)). We
consider one of the claim-nodes cl with inclusion minimal prediction P ′ = Pmin among those.
Figure 18 depicts the relevant part of GGC.

c′ = Check(Xβ,P, q′)

cl = Claim(Xβ,Pmin, P, q
′)Claim(. . . )

. . .

v′ = Verify(X,Pmin, q
′) c′′ = Check(β, P, q′′)Check(. . . )

. . .

one check-node for all q′′ ∈ Pmin

Figure 18.: Case α′ = Xβ.

We include all check-nodes c′′ succeeding cl = Claim(Xβ,Pmin, P, q
′) in Lj+1. This satisfies

all the invariants:
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• As cl is contained in Attr
(k−f(j)−1)
# , for all of the nodes c′′ must hold c′′ ∈ Attr

(k−f(j)−2)
# .

As the first symbol of α′ is a non-terminal this time, we have f(j+ 1) = j(j) + 2. Thus,
we can conclude that c′′ ∈ Attr

(k−f(j+1))

# .

• The second invariant holds as |Xβ| = n− j and therefore |β| = n− j + 1.

• The third invariant also holds. As cl ∈ Attr
(k−f(j)−1)
# , its succeeding verify-node v′ =

Verify(X,Pmin, q
′) is contained in Attr

(k−f(j)−2)
# = Attr

(k−f(j+1))

# by Lemma 4 (1.). We
can show that because we chose Pmin to be inclusion minimal, the verify-node v′ is
�-minimal in Attr

(k−f(j+1))

# .

Suppose the contrary, i.e. there is a verify-node v′′ = Verify(X,P ′min, q
′) ∈ Attr

(k−f(j+1))

#
s.t. v′′ � v′. But then it would hold that claim-node cl′′ = Claim(Xβ,Pmin’, P, q

′) ∈
Attr

(k−f(j)−1)
# . This is due to the fact that by P ′min ⊆ Pmin, the set of check-nodes

succeeding cl′′ is a subset of the check-nodes succeeding cl, which are all contained in
Attr

(k−f(j+1))

# . But this contradicts the fact that we chose Pmin minimal in the first
place.

Thus, we can apply the induction hypothesis of Lemma 5 and get that v′ ∈ Attr
k−f(j+1)

A,# .

Thus, if Lj+1 ⊆ Attr
k−f(j+1)

A,# , then also c′ ∈ Attr
k−f(j)
A,# (apply Lemma 4 (2.) twice).

Using invariant 2, we can conclude that there are only finitely many layers, more precisely
L0, . . . , Ln+1 (n = |α|). The check-nodes of the last layer are all of shape Check(ε, P, q′),
whose successors are test-nodes. Thus, no further layer Ln+2 can be constructed. LetMP be
the set of the corresponding test-nodes.
From the first invariant, we get that Ln+1 ∈ Attr

(k−f(n))
# and thus, by Lemma 4 (1.) MP ⊆

Attr
(k−f(n+1)−1)
# . From this, we can also deduce that (k− f(n+ 1)− 1) = 0. By definition of

the attractor, test-nodes can only be contained in the attractor AttrA,# if they are winning
i.e. MP ⊆ VF. But then, MP ⊆ Attr

(0)

A,# and thus, by Lemma 4 (2.) Ln+1 ⊆ Attr
(1)

A,# =

Attr
(k−f(n+1))

A,# .

Finally, we can inductively conclude by the third invariant that L0 ⊆ Attr
(k−f(0))
A,# = Attr

(k)

A,#
as desired.

5.4. Non-determinism

As we already hinted in the beginning of this section, the Guess & Check approach can only
be applied if we have a deterministic automaton on the right-hand side of the inclusion.
The following example shows that we can not adapt the GC game to work with a non-

deterministic automaton s.t. the winner of the original game and the GC game coincide. To
deal with the non-determinism, we have to let one of the players resolve the non-deterministic
choices. Obviously, we can not let refuter handle this task, as she would choose non-accepting
paths in A even if accepting ones exist and the word should be accepted. Thus, we assign the
task to prover by applying the following modifications to the game graph GGC (see Figure 19
).
As we do not have a deterministic automaton on the right-hand side of the inclusion, check-

nodes of shape Check(aγ, P, q) may now have several successors instead of only one. More
precisely, the successors are all check-nodes Check(γ, P, qi) s.t. there is a transition q

a−→ qi
in A. The check-nodes of shape Check(aγ, P, q) (with a terminal a at the beginning of the
sentential form) belong to prover, as she is allowed to resolve the non-determinism. Otherwise,
the GGC remains as defined above.
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q

q1

...

qn

a

a

 

Check�(aγ, P, q)

Check(γ, P, q1) Check(γ, P, qn). . .

Figure 19.: Modification of the GGC. Prover resolves the non-determinism.

Consider now the following example of a context-free game given by grammar G and au-
tomaton A (Figure 20).

S# →G aX

X# →G b | c
G : q0A :

q1

q2

qE

qF

a

a

b

c

c

b

Figure 20.: The GC game does not work with non-deterministic automata.

The example is actually the same as the example in Section 4 showing that the saturation
method does not work with non-deterministic automata as well. This is not surprising as the
reason why the non-determinism is an issue is the same for both approaches.
Figure 21 shows a part of the game graph GGC. As the game graphs in the GC game tend to

become very large, we only represent a snippet of the full game graph. The omitted parts are
hinted in gray. The depicted snippet of the game graph mainly covers the parts of GGC that
are contained in the attractor AttrA,#(VF, E). The nodes that are contained in the attractor
are marked in red. In particular, the attractor contains the starting node Check(S, Prej, q0),
indicating that refuter wins both the GC game and the context-free game. But obviously,
prover should win the context-free game as all derivable words from G are accepted by A.

The reason for this mismatch is the same as for the saturation approach. By letting prover
resolve the non-determinism, she has to fulfill a harder task to win the game. She has to show
that the automaton A can simulate every branching behavior of the GGC by an accepting path
in A, which is a strictly stronger property than language inclusion.
Thus, we are obliged to determinize the finite automaton A into a deterministic automaton

Adet and use the latter to construct the GGC.

5.5. Correctness of the Guess & Check approach.

Now that we have defined the GC game, it remains to show that the winning strategy for the
inclusion game can be converted to a winning strategy for the GC game and vice versa. This
also proves that the winner of both games coincides.

Theorem 3
If refuter has a winning strategy for the context-free game G, then there also exists one for
GGC and vice versa.

Proof. We show this by converting a winning strategy for G to one for the GGC and vice versa.
This is elaborated in sections 5.5.1 and 5.5.2.

The proof is an adapted version of Lemma 5.1 in the lecture notes [11].
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Check(S, Prej, q0)

Prej = {q0, q1, q2, qE}
PE = {qE}

Claim(S, PE , Prej, q0)Claim(. . . ) Check(ε, Prej, q0)

Test(qE , Prej)Verify(S, PE , q0)

Check(aX,PE , q0)

Check(X,PE , q1) Check(X,PE , q2)

Claim(X,PE , PE , q1) Claim(. . . )Check(ε, PE , qE)

Test(qe, PE) Verify(X,PE , q1)

Check(b, PE , q1)

Check(ε, PE , qE)

Test(qE , PE)

Check(c, PE , q1)

Check(ε, PE , qF )

Test(qF , PE)

Claim(X,PE , PE , q2)Claim(. . . ) Check(ε, PE , qE)

Test(qe, PE)Verify(X,PE , q2)

Check(b, PE , q2)

Check(ε, PE , qF )

Test(qF , PE)

Check(c, PE , q2)

Check(ε, PE , qE)

Test(qE , PE)

Figure 21.: Part of the game graph GGC for the context-free game in Figure 20. The nodes
contained in the attractor AttrA,#(VF, E) are marked with red background.

5.5.1. From the inclusion game to the GC game.

Let us assume that refuter wins the inclusion game G from the initial position S. If there exists
a winning strategy for refuter from S for the context-free game, there also exists a positional
winning strategy σ. This result has been shown in [5]. We use σ to construct a strategy σ′

(not necessarily positional) for refuter in GGC from the initial position Check(S, Prej, ρε) and
then show that σ′ is indeed a winning strategy.
We construct the strategy inductively. In the induction step, we consider the play prefixes

which are conform to the strategy σ′ that has been constructed so far and update σ′ to prolong
them. For the sake of simplicity, all the play prefixes ω in GGC which are mentioned in the
following construction are conform to σ′. We define for each play prefix ω in the induction
step the following two (partial) functions.

• strategy σ′: prefix in GGC 7→ position in GGC
The strategy σ′ takes a play prefix ω in GGC as input and returns a successor of last(ω),
i.e. the last position in ω.

• function f : prefix in GGC ending in check node 7→ prefix in G
Function f maps a prefix ω in GGC to a prefix π in G. We further require that f is prefix
faithful i.e. if ω1 v ω2, then f(ω1) v f(ω2).

The idea of the construction is the following: Function f is used to simulate play prefixes
ω in GGC by play prefixes π in G. For the simulated prefix π, we can use σ to determine a
successor position in G, which in turn will be used to update σ′ to deal with ω in GGC. Both
f and σ′ need to be updated in each induction step. Function f depends on the play prefix
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constructed so far by σ′ and σ′ on the simulated play prefix in G.

For both f and σ′, we require the following invariants to hold along the induction:

1. If play prefix ω in GGC ends in Check(γ, P, q), then f(ω) = π, vγα, where π is a play
prefix in G, v is a terminal word s.t. q0

v−→ q and α some sentential form. This invariant
is required to ensure that π = f(ω) reflects ω in G and that the step (last(π), σ(last(π)))
can be simulated from last(ω) in GGC.

2. The play prefixes f(π) defined in the induction step must be valid plays in G and
conform to σ. We need this invariant to prove that the constructed strategy σ′ is a
winning strategy by reasoning about the simulated plays in G.

3. Let

ω = ω1,Check(γ, P, q), ω2,Check(β, P ′, q′)︸ ︷︷ ︸
ω3

be a play prefix in GGC and there is no verify-node in ω3. Then we have the following
property.

f(ω1,Check(γ, P, q)) = π1, vγα

f(ω) = π1, vγα, π2, vwβα

We need this invariant to be able to reason about the suffix α of the last position
vwβα = last(f(ω)). The terminal prefix vw and sentential form β can be read off from
Check(β, P ′, q′) = last(ω). But because the suffix γ′ in a node Claim(Xγ′, P ′, P, q) is
discarded if the verify-branch is entered during the play, no information about the
suffix can be extracted from the check-nodes. By invariant 1, we only get that
last(f(ω1,Check(γ, P, q))) = vγα and last(f(ω)) = v′βα′, without any relation be-
tween α and α′. But, this is not sufficient to prove that the play ω is winning. However,
if no verify node is located between Check(γ, P, q) and Check(β, P ′, q′) in ω, we can
conclude that α = α′. Intuitively, this is the case because no part of γ is discarded
during the play ω3.

We only prove this for play prefixes of ω ending in consecutive check-nodes i.e. there is
no check-node in ω2. But this can easily be generalized to prefixes with non-consecutive
check-nodes by induction.

We first define f for the prefixes in GGC of length l. As f is only defined for prefixes ending
on a check-node, we only need to consider such play prefixes ω. Afterwards, we will define
σ′(ω) based on the simulated play f(ω).
Base case: | ω |= 1

Then ω = Check(S, Prej, q0). We set f(ω) = S, which satisfies the first two invariants, the
third does not apply.
Induction step: | ω |≥ 2

1. ω = ω′,Check(aγ, P, q),Check(γ, P, q′), where q a−→ q′.
From the invariants, we know that f(ω′Check(aγ, P, q)) = π, vaγα, which is conform to
σ. We define

f(ω) = π, vaγα = f(ω′,Check(aγ, P, q)).

This trivially satisfies all invariants.
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Note that f(ω1) = f(ω2) can only happen for finitely many ω1 v ω2, more precisely at
most until the whole sentential form γ has been consumed. This insight is important
for the correctness proof.

2. ω = ω′,Check(Xγ,P, q),Claim(Xγ,P ′, P, q),Verify(X,P ′, q),Check(β, P ′, q)
In this case, prover challenged the prediction P ′ and entered the subplay. Again by
the invariants, we can assume that f(ω′Check(Xγ,P, q)) = π, vXγα and this is a play
conform to σ. We set

f(ω) = π, vXγα, vβγα.

This satsfies the first invariant. By construction of the game GGC, we know that there
exists a rule X →G β. Otherwise, the edge (Verify(X,P ′, q),Check(β, P ′, q)) would not
exist. Therefore, the second invariant is satisfied as well. The third invariant does not
apply.

3. ω = ω′,Check(Xγ,P, q),Claim(Xγ,P ′, P, q),Check(γ, P, q′), where q′ ∈ P ′.
Here, we consider the case where prover accepted the prediction and picked state q′ ∈ P ′.
By the invariants, construction and the definition of σ′ (see below), we can assume the
following:

• f(ω′Check(X,P, q)) = π, vXγα, which is conform to σ.

• q′ ∈ P ′

• For all q′ ∈ P ′ there exists a valid play vXγα, n1, . . . , nk, vwγα conform to σ s.t.
q
w−→ q′. In this play, w is derived from X.

Using these assumptions, we define

f(ω) = π, vXγα, n1, . . . , nk, vwγα

which satisfies our invariants.

This concludes the definition of f . We now turn our attention to σ′ for the prefixes ω
of length l. As the claim- and jump-nodes belong to prover and the test-nodes do not
have a successor, we only need to consider play prefixes ending with check-nodes of shape
Check(Xγ,P, q) and verify-nodes where the non-terminal belongs to refuter. Let f(ω) =
π, vγα in the following.

A. ω = ω′,Verify(X,P, q), where X ∈ #
In the next step, refuter needs to choose one of the check-nodes Check(β, P, q). Intu-
itively, this move would correspond to the choice of the rule X →G β. We want to
mimic the choice of σ on the simulated play f(ω). Using operator rσ(), we can extract
the grammar rule used in a step (γ, σ(γ)) of a play in G.

Definition 20
rσ(vXα) = β, if σ(vXα) = vβα and X belongs to refuter

We fix

σ′(ω) = Check(rσ(S), P, q).

B. ω = ω′,Check(Xγ,P, q)
By his next move, refuter has to make a prediction about the outcome of the subplay.
Refuter has to ensure that she wins both the verify- and the skip-branch. The prediction
has to include all possible state changes of terminal words derivable from X according
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to the winning strategy σ. Let thus P ′ contain all q′ s.t. q w−→ q′ and there exists a valid
play from vXγα to some sentential form vwγα that is conform to σ. We set

σ′(ω) = Claim(Xγ,P ′, P, q).

Now that we have constructed a strategy σ′ for refuter, it remains to prove that it is indeed a
winning strategy. This means that any play starting from Check(S, Prej, q0) and conform to σ′

ends in a test node Test(p, P ) with p ∈ P . Let now ω be any play starting at Check(S, Prej, q0)
and conform to σ′.
We first prove that ω eventually visits a test-node, meaning it can not be infinite.

Lemma 7
Let ω be a play in GGC starting from Check(S, Prej, q0) and conform to σ′. Then ω is finite
and ends with a test-node.

Proof. Towards a contradiction, assume that ω never visits a test-node. By construction
of GGC this means that we visit infinitely many check-nodes. Consider now f(ω). As
|f(ω1)| = |f(ω2)| can only happen for finitely many prefixes ω1, ω2 of ω and for all other
prefixes ω3 v ω4 we have |f(ω3)| < |f(ω4)|, f(ω) must be of infinite length too. But by the
second invariant f(ω) is a valid play conform to σ. As infinite plays are losing for refuter we
have a contradiction. Thus, ω must be of finite length. Because the test-nodes are the only
nodes without successor, ω must end with a test-node.

Finally, we show that the test-node that concludes ω belongs to refuter.

Lemma 8
Play ω ends with a test node Test(q, P ) s.t. q ∈ P .

Proof. We distinguish between two cases.
First, we assume that there is no verify edge in ω. Figure 22 (left-hand side) illustrates this

case. As there is no verify edge in ω, the initial prediction Prej is never replaced. Therefore,
ω ends in a test-node with prediction Prej. We show that state q is included in Prej using
the first and third invariant. Let ω1 be the prefix of ω containing only the initial position
Check(S, Prej, q0) and ω2 be the prefix obtained by removing the last node Test(q, Prej).

By construction, last(f(ω1)) = f(Check(S, Prej, q0)) =
S = vSα for v = α = ε. Using the first invariant, we
get that last(f(ω2)) = vwεα′ s.t. q0

w−→ q. By the
third invariant, we get that v = α = ε. Finally, we
can use the second invariant which guarantees us that
f(ω) is a play conform to σ and thus w is not accepted
by automaton Adet. Therefore, q ∈ Prej and the final
test-node belongs to refuter.

Check(S, Prej, q0)

...

Check(ε, Prej, q)

Test(q, Prej)

 S

...

 w

q0
w−→ q

ω f(ω)

Figure 22.: No verify edge in ω.

Second, we consider the case where ω contains at least one verify edge. Refer to Figure
23 for an illustration (left-hand side) and notation. Let v = Verify(X,P ′, q) be the last
verify-node in ω.
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We identify prefix ωi v ω with the prefix ending at Ci
for i = 1, 2, 3. Then, we have for the (simulated) play
prefixes f(ωi) that

• last(f(ω1)) = vXγ1α with q0
v−→ q (invariant 1)

• last(f(ω2)) = vγ2γ1α =: vγ2α
′ (definition of f)

• last(f(ω3)) = vwα′, where q0
vw−−→ q′ (invariant 1

+ 3)

• The play from vXγ1α to vwα′ = vwγ1α is valid
and conform to σ (invariant 2).

Consider now prediction P ′. By definition of σ′, P ′

contains all states q′′ s.t. there exists a valid play con-
form to σ from vXγ1α to some sentential form of shape
vw′γ1α. This means that P ′ in particular contains q′′,
where q w−→ q′′ (last bullet above). Then, we have that
q0

v−→ q
w−→ q′ and because automaton Adet is determin-

istic, it follows that q′ = q′′ ∈ P ′ (third bullet above).
Therefore, the test-node belongs to refuter.

Check(S, Prej, q0)

...

C1 = Check(Xγ1, P, q)

Claim(Xγ1, P
′, P, q)

v = Verify(X,P ′, q)

C2 = Check(γ2, P
′, q)

...

C3 = Check(ε, P ′, q′)

Test(q′, P ′)

 S

...

 

vXγ1α

 vγ2α
′

 

...

vwα′

q0
vw−−→ q′

ω f(ω)

Figure 23.: Node v is the last verify-
node in ω.

We have proven that if refuter wins the inclusion game, she also wins the GC game. We
show that the converse direction holds as well.

5.5.2. From the GC game to the inclusion game.

Let us now assume that we have a positional winning strategy σ′ for refuter from Check(S, Prej, q0)
in GGC. We derive a winning strategy σ for refuter in G from σ′ by constructing a pushdown
transducer P that reads play prefixes in G and outputs moves for refuter.

Definition 21
A pushdown transducer is given by the tuple P = (QP ,Γ,∆, vI ,ΣI ,ΣO, λ), where

• QP is the finite set of states,

• Γ is the finite stack alphabet, Γ⊥ := Γ ∪· {⊥} for a fresh symbol ⊥ 6∈ Γ,

• ∆ ⊆ QP × Γ⊥ × ΣI ×QP × Γ≤2⊥ is the finite set of transitions,

• vI ∈ QP is the initial state,

• ΣI resp. ΣO are the finite input resp. output alphabets and

• λ : QP ⇀ ΣO the partial output function.

The transitions t can be classified into three categories. Let t = (v, z, r, v′, z′) where v, v′ ∈ QP ,
z ∈ Γ⊥, r ∈ ΣI and z′ ∈ Γ≤2⊥ . Then we call t

• a pop-transition if |z′| = 0,

• a skip transition if |z′| = 1 and

• a push transition if |z′| = 2.
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We write transitions t = (v, z, r, v′, z′) as v z−−→
z/z′

v′.

The symbol ⊥ is used to mark the bottom of the stack. It can not be pushed on nor popped
from the stack.
A configuration of P is given by an element c = (v, s) with v ∈ QP and s ∈ Γ+

⊥. A
configuration captures the state and the stack content of P at a given moment.
A run C of the pushdown transducer on R = r1 . . . rn ∈ Σ∗I is a sequence of configurations

C = c1, c2, . . . s.t.

• c1 = (vI ,⊥)

• if ci = (v, xs) and q ri−−→
x/y

q′ (x, y ∈ Γ≤2, s ∈ Γ+
⊥ ) we have that ci+1 = (v′, ys). We

denote this by ci → cj.

Alternatively, we may write a run as vI
r1−−−→

x1/y1
v1

r2−−−→
x2/y2

v2
r3−−−→

x3/y3
. . . where the stack

changes are depicted on the arrows. Both representations are equivalent: At the beginning of
a run, the stack always consists of only the ⊥-symbol, thus we can recompose the stack content
for any vi of the run.

First, we define the PDS and then prove that the strategy implemented by P is indeed a
winning strategy for refuter in G.

The pushdown transducer P. Assume that refuter has a winning strategy σ′ for GGC.
The idea of the pushdown transducer P is the following. It should read the moves of prover
during the play and output moves for prover. The strategy σ implemented by P simulates
the winning strategy σ′ in G. We use the game graph of GGC as control structure. More
precisely, we only use the parts of the graph that are reachable by plays conform to σ′ i.e. if a
node belongs to prover, we include all its successors (we need to react to all possible choices
of prover) and if it belongs to refuter, we only take the successor given by σ′.
Unfortunately, this control structure only allows us to either enter the verify- or the skip-

branch. At a claim-node Claim(Xγ,P ′, P, q), the verify-branch contains the strategy for the
derivation process of X and the skip branches contain the strategy for the rest of the game.
For strategy σ, we need the information of both the verify and skip-branches. Therefore, we
adapt the transitions of the pushdown transducer and make use of the stack. The transitions
of the control structure correspond for most parts to the edges of the game graph. At a claim
node Claim(Xγ,P ′, P, q), we first enter the verify-branch. Therefore, there is a transition to
the corresponding verify-node Verify(X,P ′, q) and none into the skip-branches. Additionally,
we push the claim-node onto the stack. This allows us to find our way into the correct skip-
branch once the verify-branch has been traversed. The verify-branch ends at a test-node of
shape Test(p, P ′), where p ∈ P ′ as σ′ is winning for refuter. Then, we pop the topmost claim-
node of the stack. Using this information, we can restore the first node of the appropriate
skip-branch Check(γ, P, p) and continue the simulation from there. Figure 24 depicts this
idea.
We make this precise in the following definition.

Consider the pushdown transducer P = (QP ,Γ,∆, vI ,ΣI ,ΣO, λ) with the following properties.

• The set of states QP = V
∣∣
σ′

is given by the vertices in GGC that can be visited by any
play that is conform to σ′.

• The finite stack alphabet Γ = {Claim(γ, P ′, P, q) ∈ QP} consists of the set of claim-
nodes contained in QP .

• We define the transition relation ∆ below.

• The starting state corresponds to the starting vertex of the GC game, Check(S, Prej, q0).
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...

Check(Xγ,P, q)

vi = Claim(Xγ,P ′, P, q)

Verify(X,P ′, q)

Check(β, P ′, q)

...

Test(p, P ′)

vj = Check(γ, P, p)

...

Push vi

X →G β

Pop vi

Figure 24.: Run of a pushdown transducer. Rule X →G β is an input if X belongs to prover
and an output if X belongs to refuter. The stack operations are depicted along
the arrows. At all positions where no input is given, we have ε as input. If no
stack operation is depicted, a skip operation is executed pushing the same element
that the P has read back onto the stack.

• The finite input/output alphabet are given by ΣI = {X →G γ | X ∈ �} ∪· {ε} resp.
ΣO = {X →G γ | X ∈ #}.

• The output function λ : QP ⇀ ΣO that determines the next move of refuter.

The transition relation ∆ contains the following edges.

• v = Claim(Xγ,P ′, P, q)
ε−−−→

z/vz
Verify(γ, P ′, q)

• v = Verify(X,P, q)
X→Gγ−−−−→
z/z

Check(γ, P, q)

If X ∈ #, then X →G γ is the output of state v, otherwise it is the input.

• Test(q, P )
ε−−→
z/ε

Check(γ, P, q) if ⊥ 6= z = Claim(Xγ,P ′, P, q)

If z = ⊥, then there is no outgoing transition from the test state and the run ends.

• otherwise v ε−−→
z/z

v′ if v, v′ ∈ QP , (v, v′) ∈ V and σ′(v) = v′ in case v belongs to refuter.

Now it remains to show that the strategy σ implemented by P is winning for refuter in G.
Let π = α1, α2, . . . be any play conform to σ in G. For the proof, we need to introduce

some notation.

Definition 22
Let αi = wXβ and αi+1 = wγβ in π. We define ri := X →G β.

• We call R = r1, r2, . . . the sequence of rules of π. Informally, this is the sequence of
grammar rules that the players applied during the play π.
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. . .

. . .

. . .
cjci

pop vipush vi

evolution of the stack

Figure 25.: Evolution of the stack between a pair (ci, cj), where ci = (vi, si) and cj = (vj , sj).

• We denote by R? the subsequence of R restricted to the rules X →G γ with X ∈ ? for
? ∈ {#,�}.

• Let C be the run of R� on the PDT. Then we call C the run associated with π.

• Note that if we take the sequence R′ of rules forming the inputs and outputs along the
run C, we get R = R′. We call R′ the sequence of rules of C.

Let now C = c0, c1 . . . be the run associated with π. We prove the claim in two steps.

1. π = α1, α2, . . . , αn is finite (and thus also C = c0, . . . , cm)

2. αn is winning for refuter i.e. αn ∈ T ∗ and αn 6∈ L(A)

Step 1: π is finite We prove the first claim by contradiction. If we assume that π has
infinite length, then so has C. From the configuration sequence C, we build a valid play
ω in GGC, which is conform to σ′. We show that ω also has infinite length and obtain a
contradiction as σ′ is winning for refuter.
To construct the play ω from C, we use the notion of pairs.

Definition 23
Let ci = (vi, si) and cj = (vj , sj) be two configurations in C. We say that ci and cj form a
pair if

1. vi = Claim(Xγ,P ′, P, p) and vj = Check(γ, P, p′) with p′ ∈ P ′ and

2. index j ≥ i is the smallest index s.t. si = sj.

In other words, after configuration ci the claim-node vi is pushed onto the stack and before
configuration vj it is popped again. At state vi, the run entered the verify-branch, traversing it
until a test-node is reached. At vj, the run enters the corresponding skip-branch. Thus the run
between between a pair corresponds to the traversal of the verify branch. Refer to Figure 24
for an example. For all ck, k ∈ {i + 1, . . . , j − 1}, the stack height sk is at least as big as
|si|. (see Figure 25) From the definition it is clear that no element of the sequence C can be
contained in more than one pair.
Note that the previous statement is about elements of the sequence C, not configurations in

general. It is possible that (ci1 , cj1), (ci2 , cj2) with (i1 6= i2 6= j1 6= j2) both form a pair and
ci1 = ci2 resp. cj1 = cj2.

To construct a valid play π from configuration sequence C, we need to relate the transitions
in C to edges in GGC. The following trivial lemma states the relation.

Lemma 9

1. If (ci, cj) forms a pair, then vi = Claim(Xγ,P ′, P, q) → Check(γ, P, q′) = vj is a valid
move conform to σ′ in GGC.

2. For all transitions v −−→
y/z

v′ with v 6= Test(p, P ), v → v′ is a valid move conform to σ′

in GGC.
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Proof. This follows directly by construction of P.

We now construct ω from C. Therefore, we inductively construct build ωi v ω from prefixes
Ci v C of length i.
We maintain the following invariants:

1. ωi ends v if Ci ends in c = (v, s).

2. ωi is a valid play in GGC conform to σ′.

The idea of the construction is as follows. Suppose that ci = (vi, si), ci+1 = (vi+1, si+1) and
that we have already constructed ωi from Ci. For the most part, transitions in P correspond
to edges in the game graph GGC. If this is the case, i.e. (vi, vi+1) ∈ E , we can simply append
vi+1 to ωi. The only exception, where transitions in P do not correspond to edges in GGC is
when vi is a test-node. Consider figure 26.

...

Check(Xγ,P, q)

vk = Claim(Xγ,P ′, P, q)

Verify(X,P ′, q)

Check(β, P ′, q)

...

vi = Test(p, P ′)

vi+1 = Check(γ, P, p)

...

Push vk

X →G β

Pop vk

Figure 26.: Deriving play ωi+1 from Ci+1. The arrows have the following meaning.
(1) The black arrows represent the run C (stack information depicted on the
arrows).
(2) The red arrows represent the play prefix ωi.
(3)The green arrows represent the play prefix ωi+1.

By construction of the P, vi+1 is a check-node forming a pair with some claim-node vk in
ωi. Configuration ck = (vk, sk) is the last configuration in the sequence of some Ck. Between
vk and vi in ωi, the run traverses the verify-branch starting at vk and vi+1 is the first node of
the corresponding skip-branch starting at vk. Clearly, (vk, vi+1) is a valid move in GGC and
conform to σ′. Instead of prolonging ωi, we prolong ωk by vi+1 to construct ωi+1 i.e. we avoid
the whole verify-branch and go directly into the skip-branch.
We now make this precise.
Base case: i = 1

Then we have v1 = Check(S, Prej, q0) and define ω1 = v1, which satisfies both invariants.
Induction step: i→ i+ 1

We have to consider two cases:
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• Case 1: |si+1| = |si| − 1 (top element of the stack is popped).

This means that vi+1 = Check(γ, P, q) and vi+1 forms a pair with some vj = Claim(Xγ,P ′, P, q′)
(j < i). We define ωi+1 = ωj , vi+1, which satisfies the first invariant. By the induction
hypothesis and Lemma 9, ωi+1 is a valid play in GGC conform to σ′.

• Case 2: otherwise.

In this case, we simply append the state vi+1 of vi+1 to ωi and get ωi+1 = playWi, vi+1.
The first invariant is satisfied. As |si+1 6= |si| − 1|, no pop operation has been executed
during the transition from ci to ci+1. Therefore, vi cannot be a test node and we can
apply 9 which ensures that the second invariant holds.

We now prove that the resulting play ω has infinite length. This leads to the desired
contradiction with the fact that σ′ is a winning strategy for refuter in GGC.

Lemma 10
Play ω constructed in the previous step is of infinite length.

Proof. We prove by induction over l ∈ N, that there exists a kl s.t. |ωk| ≥ l for all k ≥ kl.
Base case: l = 1
For all ωi, i ∈ N, it trivially holds that ωi ≥ 1. Thus we fix k1 = 1.
Induction step: l→ l + 1
From the induction hypothesis, we know that |ωk| ≥ l for all k ≥ kl. Let last(Ck) = ck =

(vk, sk). We consider the induction step where ωk for k > kl is constructed by appending vk
to some ωj for j < k.
There are two possible cases.

• ωk has been constructed by appending vk to ωj for j ≥ kl. From the induction hypoth-
esis, we know that |ωj | ≥ l and thus |ωk| > l.

• ωk has been constructed by appending vk to ωj for j < kl. In this case, we can only
deduce that |ωk| ≥ l using the induction hypothesis. But this can only happen for
finitely many k ≥ kl as there are only finitely many j < kl and each claim-node can
only be contained in at most one pair.

Thus, there exists some kl+1 ≥ kl s.t. |ωk| ≥ l + 1 for all k ≥ kl+1.

Step 2: αn is winning for refuter Finally, we prove the second claim that αn ∈ T ∗ and
αn 6∈ L(A). Before tackling the claim, we state a few properties of the run C which are
necessary for the following proofs. The properties follow from the construction of P from the
GC game, but we omit the technical proof here. The enthusiastic reader may convince himself
by conducting a formal proof.

Observation. Let (ci, cj) be a pair in C, where vi = Claim(Xα,P, P ′, q) and
vj = Check(α, P ′, q′). Then the successor of vi is a verify-node vi+1 = Verify(X,P ′, q).
Furthermore, between ci and ci+1, node vi is pushed onto the stack.
Let now X →G γ be the grammar rule that is read (if X belongs to prover) or outputted

(if X belongs to refuter) after vi+1. We denote by l = |γ| the size of the right-hand side of
the rule.
We use the structure given by the GC game to argue that the sequence ci, . . . , cj in C

contains configurations cj1 , . . . , cjl+1
s.t. vjk = Check(γ[k,l], P, qk) and sjk = si+1. By γ[k,l], we

denote the suffix γk, . . . , γl of γ. In other words, we have such a check-node for each suffix of
γ in the sequence ci, . . . , cj . In the subsequent proofs, we will reason about these check-nodes
contained between the configurations of a pair.
We use an inductive argument to explain why such configurations cj1 , . . . , cjl+1

exist.
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Configuration cj1 = ci+2 is the direct successor of ci+1 in C (see

Figure 27). Transition vi+1
X→Gγ−−−−→
z/z

vi+2 = Check(γ, P, q) corre-

sponds directly to the edge vi+1 −−→ vi+2 in the GC game (see Def-
inition 21). As the stack is not altered in the transition, si+1 = sj1 ,
the claim follows.

vi = Claim(Xα,P, P ′, q)

vi+1 = Verify(X,P, q)

vj1 = Check(γ, P, q)

Push vi

X ⇒ γ

Figure 27.

Suppose now that we have proven the existence of configuration cjk in the sequence ci, . . . , cj .
We want to conclude that this is also the case for cjk+1

. We have to make a case distinction
based on vjk = Check(γ[k,l], P, qk). The first symbol of γ[k,l] is either a terminal or a non-
terminal, i.e. γ[k,l] = aγ[k+1,l] or γ[k,l] = Y γ[k+1,l].

In the first case, the direct successor of cjk is the con-
figuration that we look for. The state vjk+1 is of shape
Check(γ[k+1,l], P, qk+1) (see Figure 28). As in the base case,
the transition vjk

ε−−→
z/z

vjk+1 corresponds directly to an edge

in GC game by definition of the pushdown transducer.

vjk = Check(γ[k,l], P, qk)

vjk+1 = Check(γ[k+1,l], P, qk+1)

Figure 28.

The second case is more involved.

We make use of the relation between P
and the GC game again. Consider there-
fore Figure 29. It depicts the a snippet
of the GC game starting at vertex vjk (if
we ignore the input/output, the stack op-
erations and the transition from the test-
node to vjk+1

). At the claim-node vjk+1,
the pushdown transducer enters the verify-
branch while pushing vjk+1 onto the stack.
In the verify-branch, further stack oper-
ations may be conducted, but vjk+1

can
only popped from the stack by the tran-
sition from the test-node Test(pk, Pk) to
vjk+1

. In this case, the run reaches state
vjk+1

and the stack is of form sjk+1
= sjk .

Thus, cjk+1
= (vjk+1

, sjk+1
) is the desired

configuration.

...

vjk = Check(Y γ[k+1,l], P, qk)

vjk+1 = Claim(Y γ, Pk, P, qk)

Verify(Y, Pk, qk)

Check(β, Pk, qk)

...

Test(pk, Pk)

vjk+1
= Check(γ[k+1,l], P, pk)

...

Push vjk+1

X →G β

Pop vjk+1

Figure 29.

Thus, we only have to argue that the run does not get stuck in the verify-branch, i.e. vjk+1

will be popped at some configuration in the sequence ci, . . . , cj . This is guaranteed by the
fact that |sj | = |si+1| − 1 = |sjk | − 1.

We can argue in a similar fashion to get a weaker claim in case we do not want to as-
sume that C contains pair (ci, cj), but only a part of the sequence ci, . . . , cj . Suppose
therefore that ci = (vi, si) with vi = Claim(Xα,P, P ′, q). Let X →G γ be the grammar
rule which is inputted/outputted after ci+1. Let then cjn+1 = (vjn+1 , sjn+1) s.t. vjn+1 =
Check(γ[n+1,l], P, qn+1) and sjn+1 = si+1. Then, we can conclude in a similar fashion as above
that the sequence ci, . . . , cjn+1 contains configurations cj1 , . . . , cjn s.t. vjk = Check(γ[k,l], P, qk)
and sk = sjn+1 for k = 1, . . . , n.

We now use the observations to prove the first lemma.
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Lemma 11
Let ci = (vi, si) and cj = (vj , sj) be two configurations in C with vi = Claim(Xγ,P ′, P, q) and
vj = Check(γ, P, q′), q′ ∈ P ′. Let R = r1, . . . , rn be the restriction the sequence of rules of C
to the inputs/outputs between ci and cj in C. If (ci, cj) forms a pair then X ⇒∗ v, v ∈ T ∗

with q v−→ q′ by applying sequence R starting from X.

Proof. We prove this by induction over the maximal stack growth g in the sequence ci, . . . , cj .
In other words, if the maximal stack size of any configuration ck = (vk, sk) in the sequence
ci, . . . , cj is |sk| = |si|+ g.
Base case: g = 1

As vi is pushed onto the stack after ci and only popped
before cj , no additional push can be performed during
the sequence ci, . . . , cj . Figure 30 depicts this situ-
ation. This entails that the grammar rule X ⇒ β
which is applied after the verify-node vi+1 is of a
special form. The derived sentential form must be
a terminal word, i.e. β = w = w1 . . . wl ∈ T ∗. If
this is not the case, meaning that β contains a non-
terminal, we would need an additional claim-node in
the sequence vi, . . . , vj , which would bring on an ad-
ditional push-operation. After the verify-node vi+1,
the derived word w is consumed symbol by symbol in
the consecutive check-nodes and the state changes are
composed. If vk = Check(w[k,l], P, qk), then vk+1 =

Check(w[k+1,l], P, qk+1) with qk
wk−−→ qk+1. Here, we

use notation w[k,l] for wk . . . wl. By an inductive argu-
ment, we get that the last check-node Check(ε, P, ql+1)
before the test-node contains state ql s.t. q

w−→ ql+1.
As X ⇒ v, v ∈ T ∗ is the only rule in sequence
ci, . . . , cj , the claim follows.

vi = Claim(Xα,P, P0, q1)

vi+1 = Verify(X,P, q1)

Check(w,P, q1)

Check(w[2,l], P, q2)

...

Check(ε, P, ql+1)

Test(ql+1, P )

vj = Check(γ, P0, ql+1)

Push vi

X ⇒ w

Pop vi

Figure 30.: Sequence vi, . . . , vj .

Induction step: g → g + 1
Let X →G β be the rule applied after the verify-node vi+1 = Verify(XP ′, q). In this case,

β may contain non-terminals and thus sequence vi+1, . . . , vj includes claim-nodes.
We first introduce some notation and gather some properties of the sequence ci, . . . , cj .

(Figure 31). All claims follow by construction of P from the GC game (see Observation
above).

• Let l = |β| be the size of the right-hand side of grammar rule X →G β which is
inputed/outputed after configuration ci+1.

• Let h be the stack height after vi has been pushed, i.e. h = |si+1| = |si|+ 1.

• Let I = {j1, . . . , jl+1} ⊆ {i, . . . , j} be the set of indices s.t. for configuration cjk =
(vjk , sjk), k = 1, . . . , n holds that vjk is a check-node and |sjk | = h. Note that |I| = |γ|+1
as we have one such check-node for each suffix of γ. More precisely, the check nodes vjk
are of shape Check(γ[k,l], P, qk).

• Let vjk = Check(aγ[k+1,l], P, qk), i.e. the first symbol of γ[k,l] is a terminal. Then, the
terminal a is consumed and the successor of vjk is vjk+1

= Check(aγ[k+1,l], P, qk+1) where
qk

a−→ qk+1. This situation is depicted on the right in Figure 31. We collect the indices
jk of these check-nodes in IT ⊆ I.

• Let now the first symbol of γ[k,l] be a non-terminal X, i.e. vjk = Check(Y γ[k+1,l], P, qk)
. Then, its successor vjk+1 = Claim(Y γ[k+1,l], P

′, P, qk) forms a pair with vjk+1
=

56



Check(γ[k+1,l], P, qk+1). We call Rjk the sequence of rules contained in the subsequences
vjk+1, . . . , vjk+1

. Furthermore we denote by wk the sentential form derived from Y by
the sequence Rjk . This situation is depicted on the left in Figure 31. We collect the
indices jk of these check-nodes in IN ⊆ I. Note that we have IT ∪· IN = I.

vi = Claim(Xα,P, P0, q0)

vi+1 = Verify(X,P, q0)

vj1 = Check(γ, P, q1)

...

...

vjk = Check(Y γ[k+1,l], P, qk)

vjk+1 = Claim(Y γ[k+1,l], P
′, P, qk)

...

vjk+1
= Check(γ[k+1,l], P, qk+1)

...

...

vjk = Check(aγ[k+1,l], P, qk)

vjk+1
= Check(γ[k+1,l], P, qk+1)

...

...

vjl+1
= Check(ε, P, ql+1)

Test(ql+1, P )

vj = Check(α, P, ql+1)

Rjk

Push vi

X ⇒ γ

Pop vi

Y
Rjk

⇒∗ wk

qk
wk−−→ qk+1

apply IH consume a

qk
a−→ qk+1

Figure 31.: States vjk , vjk+1
(jk, jk+1 ∈ I) in the sequence vi, . . . , vj . The left part rep-

resents the case where vjk = Check(Y γ[k+1,l], P, qk) and the right part where
vjk = Check(aγ[k+1,l], P, qk).

For all pairs (vjk+1, vjk+1
), (jk ∈ IN ) in the sequence vi, . . . , vj , we can apply the in-

duction hypothesis as their maximal stack growth is smaller by at least 1 (we pushed at
the beginning of sequence vi, . . . , vj). Let vjk+1 = Claim(Y γ[k+1,l], P

′, P, qk) and vjk+1
=

Check(γ[k+1,l], P, qk+1). Then, we get that wk (Y ⇒∗ wk) is a terminal word s.t. qk
w−→ qk+1.

We now put the collected facts together to show that X ⇒∗ w by applying sequence of
rules R and that w ∈ T ∗.
Therefore, we show the following lemma by induction over k = 1, . . . , l + 1.

Lemma 12
Let vk = Check(γ[k,l], P, qk). Then we have that X ⇒∗ vk.γ[k,l] for some terminal word uk ∈ T ∗
by the sequence of rules X →G γ,Rt1 , . . . , Rtn where t1, . . . , tn ∈ IN , t1, . . . , tn ≤ jk. For vk
furthermore holds that q0

uk−→ qk.
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Proof. Base case: k = 1
We know that qj1 = Check(γ[1,l], P, q0) = Check(γ, P, q0). Because qj1 is the first check

node after the verify-node vi+1, only rule X →G γ has been applied so far. The claim follows
as ε.γ = γ and q0

ε−→ q0.
Induction step: k → k + 1
We have to distinguish two cases:

1. vjk+1
is part of a pair, i.e. vjk ∈ IN . Then we know that

vjk = Check(Y γ[k+1,l], P, qk)

vjk+1
= Check(γ[k+1,l], P, qk+1) with qk

wk−−→ qk+1

Recall that wk ∈ T ∗ is derived from Y by the sequence of rules Rjk (Induction hypothesis
of Lemma 11).

From the induction hypothesis of Lemma 12, we get that

X ⇒∗ uk.γ[k,l] where q0
uk−→ qk

by X ⇒ γ,Rt1 , . . . , Rtn (t1, . . . , tn ∈ IN , t1, . . . , tn ≤ jk). Furthermore, we just argued
that γk = Y ⇒∗ wk by rules Rk. We can easily deduce that

X ⇒∗ uk.wk.γ[k+1,l] =: uk+1.γ[k+1,l]

where q0
uk−→ qk

wk−−→ qk+1

by X ⇒ γ,Rt1 , . . . , Rtn , Rjk .

2. vjk+1
is not part of a pair. Then we know that

vjk = Check(aγ[k+1,l], P, qk)

vjk+1
= Check(γ[k+1,l], P, qk+1) with qk

a−→ qk+1

From the induction hypothesis, we get that

X ⇒∗ uk.γ[k,l] where q0
uk−→ qk

by X ⇒ γ,Rt1 , . . . , Rtn (t1, . . . , tn ∈ IN , t1, . . . , tn ≤ jk).
By construction, there can be no rules between vjk and vjk+1

. It follows directly that

X ⇒∗ uk.γk.γ[k+1,l] = uk.a.γ[k+1,l] := uk+1.γ[k+1,l]

where q0
uk−→ qk

a−→ qk+1

by X ⇒ γ,Rt1 , . . . , Rtn .

Using this for k = l + 1, where vk+1 = Check(ε, P, ql+1) induces that X ⇒∗ ul+1.ε = ul+1

with q0
ul+1−−−→ ql+1 by sequence of rules R. The claim follows.

However this does not suffice to show that αn is winning for refuter. We want to apply
Lemma 11 to the outermost pair (ci, cj) contained in C. In case ci = (Claim(S, P, Prej, ρε),⊥)
and cj = (Check(ε, Prej, ρv),⊥), the claim follows. But, we cannot simply assume that this is
the case. The fact that we constructed P from a winning strategy for the GC game guarantees
us that we do not get stuck in a verify-branch. However, the run C may get stuck at a verify-
node if the grammar rules that have been read/outputted so far already derived a terminal
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word w from S and C never reaches configuration cj . The following lemma shows that this
can not be the case.

Lemma 13
Let c = (v, s) be a configuration in C where v = Verify(X,P, q). Let furthermore R be
the sequence of rules restricted to the partial run c1, . . . , c. Then, S ⇒G wXα by applying
sequence R to S. We say that sentential form wXα is associated to c.

Proof. We prove this by induction over the stack height h = |S| of configuration c.
Base case: h = 1

The only configuration c s.t. v is a ver-
ify node and |s| = 1 is c3 where v3 =
Verify(S, P, Prej, q0). Consider Figure 32
for a graphic representation. After config-
uration c2, v2 is pushed onto the stack.
A verify-node can only occur as direct
successor of a claim-node and during this
transition a push-operation is performed.
Thus, no configuration with a verify-node
as state and stack height 1 can appear as
long as v2 is already on the stack. But in
case v2 gets popped, no further configu-
rations with verify-nodes as states appear
(see Figure 32). Therefore, c = c3 is the
only configuration with the desired prop-
erties.

v1 = Check(S, Prej, q0)

v2 = Claim(S, P, Prej, q0)

v3 = Verify(S, P, q0)

v4 = Check(β, P, q0)

...

Test(p, P ′)

Check(ε, Prej, p)

Test(p, Prej)

Push v2

X →G β

Pop v2

Figure 32.

As no rules are read/outputted in the sequence c1, c2, c3, R = ε and the sentential form
associated with c is S. Thus, the claim holds.
Induction step: h→ h+ 1
Let c = (v, s) be s.t. v = Verify(X,P, q) and |s| = h + 1. Let now c′ = (v′, s′) be the

configuration with a verify-node as state, v′ = Verify(Y, P ′, q′), and |s′| = h s.t. no other
configuration with the same properties is located between c′ and c. Let finally c′′ be the
direct predecessor of c′. Thus v′′ = Claim(Y α, P ′, P ′′, q′) and |s′′| = h− 1.

We now state a few properties of the sequence c′′, . . . , c. Refer to Figure 33 for a graphical
representation of the sequence.

. . .

. . .

. . .

v′′ = Claim(Y α, P ′, P ′′, q′)

v′ = Verify(Y, P ′, q′)

Claim(. . . ) Check(. . . )

Check(Xγ[n+1,l], P
′, q)

Claim(Xγ[n+1,l], P, P
′, q)

v = Verify(X,P, q)

evolution of the stack

Y →G γst
ac

k
he

ig
ht

Figure 33.: Sequence c′′, . . . , c.

• Let Y →G γ be the grammar rule that is read/inputted after c′. We denote by l the
length of the right-hand side of the rule.

• The sequence c′′, . . . , c may contain several pairs (ci, cj) with |si| = |sj | = h. Thus, we
can apply Lemma 11 to all such pairs in c′′, . . . , c.
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• The two direct predecessors of c have states Claim(Xγ[n+1,l], P, P
′, q)

resp. Check(Xγ[n+1,l], P
′, q) for some k ≤ l and stack height h. Let cjk be the configu-

ration corresponding to the check-node.

• Using the observation we made at the beginning of this paragraph, we get that the
sequence c′′, . . . , c contains configurations cj1 , . . . , cjn−1 s.t. s.t. vjk = Check(γ[k,l], P, qk)
and sk = sjn+1 for 1 ≤ k ≤ n− 1.

• Let R2 be the sequence of rules restricted to the sequence c′, . . . , c.

The stated properties induce that we have a similar setting than the one in Lemma 11.
The only difference is that we do not want to assume that the configurations cj1 , . . . , cjn
are embedded in a pair. However, we do not need this assumption to apply Lemma 12 to
Check(Xγ[n+1,l], P

′, q). We get that Y ⇒∗ w2Xγ[n+1,l] by applying rules R2 to Y for some
w2 ∈ T ∗.
It remains to combine this statement with the induction hypothesis applied to c′. Let

therefore R1 be the sequence of rules restricted to c1, . . . , c′. Then we can deduce by the
induction hypothesis that the sentential form associated with c′ is of shape w1Y β for some
w1 ∈ T ∗. It follows that the sequence of rules R = R1, R2 applied to S entails derivation
S ⇒∗ w1Y β ⇒∗ w1w2Xγ[n+1,l]β which is of the desired shape.

It remains to show that αn is winning for refuter.

Lemma 14
αn ∈ T ∗ and αn 6∈ L(Adet) = L(A).

Proof. We apply the Lemma 11 to the outermost pair contained in C = c0 . . . , cm.
By Lemma 13, we get that the pair consists of c1 = (Claim(S, P, Prej, ρε),⊥) and cm−1 =

(Check(ε, Prej, ρv),⊥). As there are no rules between c0 = (Check(S, Prej, ρε),⊥) and c1 as
well as between cm−1 and cm = (Test(ρv, Prej),⊥), all the rules R in C are contained between
the pair. Applying Lemma 11 gives us that S ⇒∗ v = αn with αn ∈ T ∗ by rules R. As all
runs in P are also winning plays of GGC by construction, ραn ∈ Prej and thus αn 6∈ L(Adet).

5.6. Overview of the Guess & Check approach

We end the section again by presenting a brief overview of the algorithm to solve context-free
games. Let G be a context-free game given by the context-free grammar G and the finite
automaton A. We employ the following steps.

1. Determinize the finite automaton A into Adet.

2. Construct the finite game graph GGC from the grammar G and the determinized au-
tomaton Adet.

3. Determine the winner of the GC game by an attractor AttrA,#(VF, E),where VF contains
all test-nodes Test(q, P ) that are winning for refuter, i.e. q ∈ P and E are the edges of
GGC. If the starting state Check(S, Prej, q0) is contained in the attractor, refuter wins.
Otherwise, prover wins.
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Part II.

Comparison
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6. Overview of the comparison

In the first part of the thesis, we defined three methods to solve context-free games. It is
an interesting question whether these three approaches, while solving the same problem, also
have common design principles or whether and how they differ. We focus on three aspects.

1. Computation of possible plays vs. winning plays.
When dealing with context-free games, there are two informations which need to be
computed. First, we need to know which plays are possible in general and how the
players influence them, without regard of whether they are winning for refuter or not.
Second, we have to determine whether refuter can enforce one of the winning plays. We
will see how the three approaches deal with this two different tasks and whether they
handle them separately or at the same time.

2. Dealing with non-determinism.
In general, we can not assume that the automaton A on the right-hand side is determin-
istic. Thus, we examine how the algorithms deal with a non-deterministic automaton.

3. The computed (intermediary) information The last question that we address is
whether similar information is computed during the algorithms. All three algorithms
work with some kind of fixed-point iteration. The summary approach uses a Kleene
iteration to compute the formulas, the saturation approach saturates an automaton and
the Guess & Check approach computes an attractor. We compare both the information
of intermediary and the final step of the three approaches. This gives us an insight into
the differences and similarities of the mechanics of the algorithms.

We use the summary method as central point and compare it the two other approaches.
More precisely, we determine whether and how the formulas of the summary approach
can be found in the information computed by the other methods. Furthermore, we
determine whether any additional information (compared to the formulas) is computed
by the Saturation resp. Guess & Check approach. For each of the results, we discuss
how it can be explained by the mechanics of the respective algorithms.

In the following sections, we successively address the aspects above.
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7. Computation of possible plays vs. winning plays

In this section, we examine whether the algorithms handle the tasks of computing the possible
plays and determining the winning plays separately.

Summary approach In the summary approach, the separate computation of the possible
plays in form of a formula and the actual winner by evaluating the formula was a key aspect
to the method. This separation allowed us to examine the parse trees rather than the game
arena. The parse tree does not allow us to determine the winner of the play directly (for
example by an attractor) as the leafs are not labeled the derivable terminal prefixes. The
parse trees have as leafs the terminals w1, . . . , wn that constitute the derivable words w. In
the Kleene iteration, we assemble the boxes of the derivable words from the boxes of the
terminals. Thus, the first part of the computation is mostly conducted on the grammar, more
precisely on the rules of the grammar. The automaton A is only used to factorize the domain
to make it finite. After we determined the boxes of all terminals a ∈ T , the automaton is not
needed again.

Saturation approach The saturation approach works in two steps as well. In the first
step, we saturate the determinized automaton Adet by adding new transitions labeled by
non-terminals to the automaton. The automaton is again used to factorize the domain. The
goal is that after the factorization, Adet accepts all sentential forms contained in the attractor
Attr#(L(Adet),→BG), where →BG are the edges of the game arena. The saturation is based
solely on the grammar rules and the transitions of Adet without regard for final or non-final
states. Thus, we have computed runs for all sentential forms contained in the game arena in
the saturated automaton, regardless of whether they are contained in the attractor or not.
Only in the second step, where we determine whether the starting symbol S has an accepting
run, we compute which player wins the game.

Guess & Check approach The Guess & Check algorithm however does not use this sepa-
ration. This becomes clear at the first claim-nodes in the game graph GGC. These nodes are
of shape Claim(S, P ′, Prej, q0), where S is the starting symbol of the grammar, P ′ ⊆ 2Q is
any prediction, Prej is the prediction containing all non-final states and q0 the initial state of
automaton Adet.
In the verify-branch of the claim-node, it is checked whether refuter can enforce that every

play from S ends in a terminal word w s.t. q0
w−→ q with q ∈ P ′. To this end, the derivation

process of S needs to be played out and thus the verify-branch contains all possible plays.
In the skip-branches, we check whether the prediction P ′ is also favorable for refuter. For
every p ∈ P ′, we have a test-node Test(p, Prej) which belongs to refuter if p is not a final
state. Together, these branches decide whether refuter wins the game. By the attractor, we
simultaneously determine whether prediction P ′ is valid (verify-branch), which concerns the
possible plays, and whether refuter wins with this prediction (skip-branch), which determines
if the plays are winning. As the claim-nodes belong to prover, Claim(S, P ′, Prej, q0) is only
contained in the attractor if all successor nodes are i.e. refuter wins in all branches.
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8. Non-determinism

In this section, we examine how the three approaches deal with a non-deterministic automaton
on the right-hand side of the inclusion. We will see that actually all of the methods use some
kind of determinization.

Summary approach Although the summary approach can not completely avoid determiniz-
ing computations, it is able to avoid an upfront determinization of A in favor of an on-the-fly
determinization. The key ideas are the usage of boxes and the composition operator.
The boxes can be used to determinize the automaton A. The corresponding deterministic

automaton has the boxes of the transition monoid of A as states and the transitions are given
by the composition operator ;. We call this automaton the box automaton of A. It is defined
as follows.

Definition 24
The box automaton of A is given by AM = (T,B(A), ρε, BF ,−→M ). It has the following
properties.

• The set of states is given by the finite set of boxesB(A) of A.

• The starting state is ρε.

• The final states are given by the accepting boxes BF = {ρ | (q0, qf ) ∈ ρ, where qF ∈ QF }
where q0 is the starting state of A and QF the set of final states of A.

• The set of transitions is given by τ a−→ τ ; ρa for τ, ρa ∈ B(A) and a ∈ T .

• For each word w ∈ T ∗ we have that ρε
w−→
∗
M ρw, where −→∗M is the reflexive and transitive

closure of −→M .

• The language of AM coincides with the language of A: L(AM ) = L(A).

• The automaton AM is deterministic.

Figure 35 (left) depicts the box automaton of example automaton Aex (Figure 34). Note
that the box automaton of A may be strictly larger than the minimal deterministic automaton
of A (Figure 35 (right)).

q0 q1

qF

a

a

b c
id = ρε ρa ρb ρc ρaa ρbb

Figure 34.: Automaton Aex and its boxes. The first dash represents state q0, the second one
q1 and the third qF . Box ρb is the only accepting box.

The problem with upfront determinization is that in most cases the automaton A can read
more terminal words than the grammar G can produce. Consider for example the grammar
Gex from Section 3.

S� → b | XY
X# → a | aX
Y� → b | c
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ρε ρa

ρb

ρc

ρaa ρbb

b

a

c

a

a

c

b

b

c

a, b, c

a, b, c

a, b, c

q0 q1

qF

qE

a

a

b c

bc
a, b, c

a, b, c

Figure 35.: Box graph of the automaton Aex (left) and a minimal deterministic automaton
recognizing L(A) (right).

We have that L(Gex) = a∗(b | c) if we ignore the ownership partition and regard Gex as
regular grammar. However, Aex can read any word from (a | b | c)∗ and can decide whether it
is accepted or not. If we determinize the whole automaton, we create unique paths for words
which can not even by produced by the grammar.
In the summary algorithm, we are able to only compute the boxes of derivable words.
We start with the formulas σa = ρa representing the plays starting from a ∈ T . The boxes

of the terminals can easily be determined from the original automaton A without the need
to determinize A. Then, we determine the words derivable from some non-terminal X by
composing the formulas σαi for i = 1, . . . , n if X →G α is a rule with left-hand side X. Note
that we do not take the alternating structure of the plays into account and only focus on the
derivable words. The key to this step is the ;-operator, which allows us to compose plays.
By this method, for all terminal words w derivable from X, we get the state ρw that the box
automaton would be in after reading w. Thus, we can determinize A on-the-fly along the
words derivable from the starting symbol S, which may leave parts of the box automaton AM
untouched.
The other two approaches however do not get around a upfront determinization of A. We

already discussed in the respective sections (Section 4 and 5) that we can not simply execute
the algorithms with a non-deterministic automaton as the right-hand side of the inclusion.
An on-the-fly determinization as in the summary approach is impossible as well as we explain
below. Both the saturation and the Guess & Check algorithms need to know the complete
deterministic automaton at the beginning of their computations.

Saturation approach To avoid an upfront determinization of A, we could adapt the al-
ternating automaton to work with sets of states of A (macrostates) instead of states of the
determinized automaton Adet. We denote the adapted alternating automaton by A ′. This
adaptation simply mimics the powerset construction of the determinization and can compute
the transitions of the original alternating automaton A on-the-fly. The transitions would be
between a set of states of A and a set of sets of states of A:

q
a−−→A Q

where q is a set of states of A and Q is a set of sets of states of A. The transitions can be
derived from the transitions of A. The saturation rules are similar to the ones for A . If we
can identify the paths of A that do not correspond to words derivable in G, we can omit the
computation of the corresponding transitions during the on-the-fly computations. However,
the following discussion shows that this apporach fails.
The saturation method uses transitions to represent plays and paths to compose them

instead of the ;- operator. These differences make an on-the-fly determinization impossible.
As in the summary approach, we start with the plays starting from terminals a. They are
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represented by the transitions in the initial, unsaturated automaton A ′0 . Then, we determine
the state changes induced by words derivable in a play from non-terminal X by considering
paths

q0
α1−−−→A ′ Q1

α2−−−→A ′ . . .
αn−−−→A ′ Qn

in A ′ (suppose we have rule X →G α1 . . . αn). This entails that at some point in the satura-
tion, we had to add transitions with right-hand side q ∈ Qi for i = 1, . . . , n − 1 (we already
described this in Section 4). At this point, transition q0

α1−−−→A ′ Q1 may not yet have existed.
This means that we can not simply leave out some transitions of A during the saturation
as we may need the transition in a succeeding saturation step. Therefore, the on-the-fly
construction is bound to fail.
In general, the saturation approach results in “useless” paths in A . On one hand paths

q0
α−−−→
∗
A Q may exist s.t. α is not derivable from S. On the other hand, there may also be

paths q α−−−→
∗
A Q s.t. α is derivable from S, but the paths are never used in a saturation step

starting from q0. More precisely, this means that no path q0
β−−−→
∗
A Q′ with q ∈ Q′ exists

in A s.t. X →G βα is a grammar rule. The chances that “useless” paths appear in A is
actually very high. This is due to the fact that Adet is a deterministic automaton and thus is
in particular complete i.e. has a transition from every state for every non-terminal.

Guess & Check approach A similar adaptation as for the saturation approach could be
applied to the game graph GGC of the GC game in order to set up for an on-the-fly deter-
minization. The state q of Adet that is stored in each vertex of GGC could be replaced by a
set of states of A and the predictions P ⊆ 2A

det replaced by sets of sets of states of A. Again,
this construction simply mimics the powerset construction of the determinization step, the
macrostates correspond to states in Adet. The idea is to exclude certain states from Adet from
the predictions, if we know that they cannot be reached by words derivable in G.
The Guess & Check approach differs inherently from the other approaches in the sense that

it is a top-down approach. Both the summarization and the saturation approach compute the
plays bottom-up. The computation begins with the plays starting from terminals and then
uses the grammar rules backwards to compute the plays starting from non-terminals X i.e. if
we have rule X →G α, we derive the plays starting at X from the plays starting at α.
In the Guess & Check approach however, we use the grammar rules forwards. At the claim-

nodes Claim(Xγ,P ′, P, q), refuter makes a prediction about the terminal words derivable
from X in form of the state changes that they induce from q. If prover wants to verify the
prediction P ′, grammar rules X →G α are applied and the computation continues by verifying
the same prediction P ′ for α.
However at the claim-nodes, where the predictions are made the derivation process has not

yet taken place and the derivable terminal words are unknown. This means that we can not
safely omit states from Adet (or macrostates of Adet) and only allow refuter to use a subset
of the states in her prediction. Thus, we need to know the whole state space of Adet for the
predictions.
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9. Comparing the computed information

In this section, we compare the information which is computed during the fixed-point itera-
tions in the three algorithms. We take the formulas σ(k)X , σX of the summary approach as base
and determine whether they can be retrieved from the (intermediary) information computed
by the saturation resp. Guess & Check method and vice-versa.
We first compare the summary approach to the saturation approach. The information

that is computed during the saturation, are the newly added transitions to the alternating
automaton A . The saturation process starts with the alternating automaton A0 containing
only transitions for terminals. Each saturation step creates a new alternating automaton
Ai by adding new transitions to Ai−1. We pair each of the newly added transitions with a
time stamp t, indicating in which of the iterations they were added to A . We show how the
transitions with time stamp t ≤ k relate to the formulas σ(k)X .
In the second part of the section, we compare the summary approach to the Guess &

Check method. The fixed-point iteration in the Guess & Check method corresponds to the
antichain-attractor construction. In the first iteration, the attractor set Attr(0)A,# corresponds
to the set of test-nodes Test(q, P ) that are winning for refuter i.e. where q ∈ P . Then,
attractor set Attr

(k)

A,# is computed from Attr
(k−1)
A,# by adding appropriate predecessors of the

nodes in Attr
(k−1)
A,# . We relate the nodes contained in Attr

(k)

A,# to the formulas σ(k)X .

9.1. Summarization approach vs. Saturation approach

At the first glance, it does not seem to be possible to extract the intermediary formulas
σ
(k)
X from the transitions of the saturated alternating automaton A . The problem lies in the

different preprocessing steps of the two algorithms, which are conducted before the fixed-point
iteration.

X� → a | bG :

q0A1 : q1

a

a

b b

X� → a | bG :

q0A2 : q1

b

a

a b

t1 = q0
X−−−→A {q0},

t2 = q0
X−−−→A {q1},

t3 = q1
X−−−→A {q0},

t4 = q1
X−−−→A {q1}

σX =

ρa

∨
ρb

σX =

ρa

∨
ρb

Saturation

Summarization Summarization

Figure 36.: Reconstruction of the boxes fails. Two context-free games with their formulas
(left/right) and the transitions of A (middle). Although the formulas differ, the
the transitions are the same for both games.

The summary algorithm bundles transitions of the automaton A together to form boxes and
during the Kleene iteration, we only compute on the boxes, not the single transitions in A. In
the saturation algorithm however, the transitions of A are directly translated to transitions in
the alternating automaton A and during the saturation they are treated individually (even
if they are labeled with the same terminal).
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In order to retrieve the formulas from the saturated automaton, we would have to assemble
the boxes from the transitions. The following example (Figure 36) shows that this is in general
not possible.
In the example, we have two context-free games G1 resp. G2 given by grammar G and

deterministic automaton A1 resp. A2. For both games, the saturation process leads to exactly
the same transitions, depicted in the middle of the figure. Let us try to determine the formula
σX from the transitions. In Section 4, we explained that the choices of prover are represented
by sets of states and the choices of refuter by non-determinism. For both states q0, q1, we
have two transitions labeled by X leading to a macrostate containing only one element. Thus,
intuitively the formula should be of shape τ ∨ρ for some boxes τ, ρ. It remains to assemble the
boxes τ and ρ from the state changes indicated by the transitions. However, the construction
fails at this step as we do not know how to match the transitions. Pairing t1 with t4 and t2 with
t3 will lead to the formula on the left, which corresponds to G1. On the other hand, pairing
t1 with t3 and t2 with t4 produces the formula on the right side of Figure 36, corresponding
to G2. Thus, there is a correct way to assemble the transitions to get the formulas, but we
can not determine which one.
Thus, this difference in the preprocessing of the algorithms does not allow to retrieve the

formulas from the transitions. However, the fact that there is a way to correctly assemble the
transitions to construct the formulas, hints that there is a relation between the information
computed during the fixed-point iterations in the two algorithms. Thus, our formulas do not
seem to be a good base to compare the saturation and the summary approach. Luckily, the
summary paradigm is not limited to the algorithm that we presented in Section 3. In [8], an
other summary algorithm was presented, which better matches the mechanics of the saturation
approach. It is also based on a Kleene iteration to determine formulas based on a system of
equations. As for the summary algorithm from Section 3, the formulas summarize plays,
although in a different way.
The rest of this subsection is organized as follows. First, we introduce the alternative

summary algorithm. Then, we show that the formulas computed by the alternative algorithm
can be determined from the transitions of the alternating automaton. Finally, we will come
back to the summary algorithm from Section 3 and show that under the right circumstances,
the formulas can be derived from the transitions.

9.1.1. Alternative Summary Algorithm

Let us recall the idea behind the formulas in the summary algorithm from Section 3. Formula
σX captures the plays starting from X by interpreting provers choices by ∧ and refuters
choices by ∨. The atomic propositions are the boxes of the words derivable from X.
For the alternative algorithm, we slightly change this idea. In addition to the non-terminal

X, we also fix a state q of A. Then, the formula σq,X captures plays starting from X from
state q on. The choices of prover resp. prover are again handled by ∧ resp. ∨. But instead
of the boxes of the derivable terminal words w, the atomic proposition represent the target
state p of the run of A on w from q on, i.e. q w−→ p. We emphasize the singular of the word
“run” in the previous sentence. This summary-based algorithm does not get around a upfront
determinization of A. The reason is the same as for the saturation and Guess & Check
approach. We can not let any of the players resolve the non-determinism and therefore have
to work with a deterministic automaton on the right-hand side of the inclusion.
Because we do not mention the (non-determinized) automaton A anymore, assume that the

starting state of Adet is given by q0, the set of states by Q, the transitions by q a−→ p and the
final states by QF for the rest of this section.
The formulas are computed in the same manner as in the other summary-based algorithm,

by a Kleene iteration on a system of equations derived from the rules of the grammar. Our
domain consists again of the positive Boolean formulas, but this time over the states of Adet

augmented by the unsatisfiable formula false modulo logical equivalence. The partial ordering
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is implication ⇒ as in Section 3. We use the formula false to handle infinite plays and we
factorize by logical equivalence ⇔ to make the partial ordering ⇒ antisymmetric on the
domain.
The equation for each terminal a and state q of Adet is given by

∆q,a = p if q a−→ p.

The equation for each non-terminal X and state q of Adet is defined as follows.

∆q,X = ⊗
X→α1...αn

∆q,α1 : ∆Q,α2 · · · : ∆Q,αn , where ⊗ =

{
∨ if X ∈ #

∧ if X ∈ �

Note that we use an other operator :, called the matching operator, to compose the formulas
for α1, . . . , αn and that we use the set of states Q in the notation ∆Q,αi for i = 2, . . . , n instead
of a single state p. The notation ∆Q,αi actually represent a family of formulas (∆p,αi)p∈Q
instead of a single formula. To understand this, recall the structure of a play from sentential
form XY . First, vY is derived for some v ∈ T ∗ in the play from XY and then the play
carries on to derive vw ∈ T ∗ from vY . Suppose we want to compute the target states in A
from q on of terminal words vw derivable in plays from XY . We call these the plays from
XY and q on. If we translate this setting to variables, we have ∆q,X : ∆Q,Y . The variable
∆q,X is a placeholder for the plays starting from X and q. At this moment, the target states
induced by the terminal words v derivable from X are yet unknown. Thus, we do not know
from which state the plays from Y should start. We can only narrow it down to the family
of formulas ∆Q,Y . But as soon as the variable ∆q,X is replaced by the summary of the plays,
we can resolve the uncertainty by matching ∆Q,Y with each of the plays from X and q on.
If the terminal word v derived during this play induces target state q′ from q, we can resolve
∆Q,Y to ∆q′,Y .
The discussion leads to the following definition of the operators. G,H represent formulas,

FQ a family of formulas and q, p atomic propositions.

(G⊗ H) : FQ = G : FQ ⊗ H : FQ q : FQ = Fq

where ⊗ ∈ {∧,∨}. The formula false is handled on the syntactic level by false : FQ = false.
Lemma 11 in [MMN] shows that the :-operator is associative. Thus, we have

G : (FQ : F ′Q) = (G : FQ) : F ′ : Q = G : FQ : F ′Q.

Clearly, the operators ∧,∨ are monotonic and Lemma 11 in [MMN] shows that the same
holds for operator :. Thus, by the same line of argumentation as in Section 3, we get that the
Kleene iteration computes a least solution for the system of equations. For each non-terminal
X and state q of Adet, we denote the intermediary solutions of the Kleene iteration by σ(k)q,X

and the least solution by σq,X . As for the formulas of the regular summary algorithm, the
solutions σ(k)q,X capture all plays where at most k rules are applied in each branch of the parse
tree corresponding to the play.
To determine the winner of the game, we proceed as in section 3. We are interested in the

formula σq0,S where q0 is the starting state of Adet and S the starting symbol of G. We define
an assignment for the atomic propositions and evaluate the formula. As we play from the
point of view of refuter, we assign true to all states that are non-final and false to the states
that are accepting. If σq0,S evaluates to true, refuter wins, otherwise prover does.
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9.1.2. Example of the alternative summary algorithm

To promote a better understanding of the new algorithm, we present an example of the
computations. Let us revisit the running example of Section 3 (Figure 37).

S� → c | XY
X# → a | aX
Y� → b | c

q0 q1

qF qE

a, c

a, b

b c

a, b, c

a, b, c

Figure 37.: Grammar Gex and (determinized) automaton Aex from Section 3.

We determinized the automaton Aex by adding an error state qE with a self-loop for all
terminals a, b, c. From Gex and Aex, we derive the following system of equations

∀q ∈ {q0, q1, qF , qE} :


∆q,S = ∆q,c ∧∆q,a : ∆Q,X : ∆Q,Y

∆q,X = ∆q,a ∨∆q,a : ∆Q,X

∆q,Y = ∆q,b ∧∆q,c

For the sake of readability, we only consider a subset of the variables for the Kleene iteration:

∆q0,S = ∆q0,c ∧∆q0,a : ∆Q,X : ∆Q,Y = q1 ∧ q1 : ∆Q,X : ∆Q,Y = q1 ∧∆q1,X : ∆Q,Y

∆q0,X = ∆q0,a ∨∆q0,a : ∆Q,X = q1 ∨∆q1,X

∆q1,X = ∆q1,a ∨∆q1,a : ∆Q,X = q0 ∨∆q0,X

∆q0,Y = ∆q0,b ∧∆q0,c = qF ∧ q1
∆q1,Y = ∆q1,b ∧∆q1,c = q0 ∧ qF

All other solutions are computed analogously.

i σ
(i)
q0,S

0 false

1 q1 ∧ false : ∆Q,Y = false

2 q1 ∧ q0 : ∆Q,Y = q1 ∧∆q0,Y = q1 ∧ q1 ∧ qF
3 q1 ∧ (q0 ∨ q1) : ∆Q,Y = q1 ∧ (∆q0,Y ∨∆q1,Y ) = q1 ∧ ((q1 ∧ qF ) ∨ (q0 ∧ qF )

i σ
(i)
q0,S

σ
(i)
q0,X

σ
(i)
q1,X

σ
(i)
q0,Y

σ
(i)
q1,Y

0 false false false false false

1 false q1 q0 q1 ∧ qF q0 ∧ qF
2 q1 ∧ q0 q1 ∨ q0 q0 ∨ q1 q1 ∧ qF q0 ∧ qF
3 q1 ∧ (q0 ∨ q1) q1 ∨ q0 q0 ∨ q1 q1 ∧ qF q0 ∧ qF

If we set qF to false and all other atomic propositions to true in σq0,S = σ
(3)
q0,S

= q1 ∧ ((q1 ∧
qF )∨ (q0 ∧ qF ), the formula evaluates to false as expected. Indeed, recall from Section 3 that
prover wins this context-free game.
Note that we are actually only interested in the solution of ∆q0,S . All other solutions are

only used to compute the value σq0,S . In the Kleene iteration above, we only considered the
variables that were needed, however in general the algorithm can not decide which variables
are needed and which are superfluous. Therefore, simply all solutions σq,X are computed.
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9.1.3. Set representation of the formulas

The goal of the comparison is to determine whether the formulas σq,X can be retrieved from
the transitions of the saturated alternating automaton A . The transitions are of shape

q
X−−−→A P1

...

q
X−−−→A Pn

where P1, . . . , Pn are sets of states of Adet. Thus, we would have to compare a set of tran-
sitions, whose right-hand sides are sets of states to a Boolean formula. Clearly, these two
representations do not match very well, making the comparison more involved. Fortunately,
it is possible to represent Boolean formulas by sets as well. After bringing the Boolean for-
mula into disjunctive normal form (DNF), we can represent the clauses by sets of atomic
propositions and the whole formula as a set of sets. Clearly, the two representations are
equivalent.
We represent the unsatisfiable formula false by the empty set {}.
In the example above, the DNF of σq0,S is given by

σq0,S = (q1 ∧ qF ) ∨ (q1 ∧ q0 ∧ qF ).

Thus, the set representation of the formula is

σq0,S = {{q1, qF }, {q0, q1, qF }}.

We are interested in the set representations of the (intermediary) formulas σ(k)q,X . In Boolean
formula representation, they are given by

σ
(k)
q,X = ⊗

X→α1...αn
σ(k−1)q,α1

: σ
(k−1)
Q,α2

· · · : σ(k−1)Q,αn
, where ⊗ =

{
∨ if X ∈ #

∧ if X ∈ �

where σ(k−1)Q,αi
stands for the family (σ

(k−1)
q,αi )q∈Q.

Assuming that σ(k−1)q,αi are already in set representation for i = 1, . . . , n and all q ∈ Q, we
have to define how the operations :, ∧ and ∨ combine the sets and prove that the resulting
set is as expected.
We first consider each operator on its own and then combine the results to obtain a set

theoretic representation for σ(k)q,X .

Matching operator Let us start with a easy example to provide some intuition of the
definition ahead. Let us consider G : FQ for formula G and family of formulas FQ given by

G = (q1 ∧ q2) ∨ q3
Fq1 = (p1 ∧ p2) ∨ p3
Fq1 = (p4 ∧ p5) ∨ p6
Fq1 = (p7 ∧ p8) ∨ p9.
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Then, G : FQ is given by

G : FQ =
(

(q1 ∧ q2)︸ ︷︷ ︸
K1

∨ q3︸︷︷︸
K2

)
: FQ

= (Fq1 ∧ Fq2) ∨ Fq3

=

[(
(p1 ∧ p2) ∨ p3

)
∧
(
(p4 ∧ p5) ∨ p6

)]
︸ ︷︷ ︸

H1

∨
[
(p7 ∧ p8) ∨ p9

]
︸ ︷︷ ︸

H2

Note that we marked the parts of the formula by H1 resp. H2 that stem from clause K1

resp. K2 of G by a bracket. For the set representation, we need to bring the formula into
DNF. We use distributivity to normalize the formula (Figure 38).

G : FQ =

[(
(p1 ∧ p2) ∨ p3

)
∧
(
(p4 ∧ p5) ∨ p6

)]
∨
[
(p7 ∧ p8) ∨ p9

]

=

[
(p1 ∧ p2 ∧ p4 ∧ p5) ∨ (p1 ∧ p2 ∧ p6) ∨ (p3 ∧ p4 ∧ p5) ∨ (p3 ∧ p6)

]
∨
[
(p7 ∧ p8) ∨ p9

]

Figure 38.: Normalizing G : FQ.

Let us point ou the steps in this computation that lead to for example clause (p1∧p2∧p3∧p4).
In the first step, we replaced q1 resp. q2 in K1 by Fq1 and Fq2 . In the resulting subformula
H1, we have two operator alternations. The outermost operator is the ∧ from clause K1 of
G. Then, we have the alternation of ∨ and ∧ of the formulas Fq1 resp. Fq2 . To reach DNF,
we multiply every clause in Fq1 with every clause in Fq2 . For our example clause, we matched
clause (p1 ∧ p2) with (p3 ∧ p4). In general, we can do the replacing of the atomic propositions
by formulas and the clause matching in H1 by a function

z :K1 →
⋃
q∈Q

Fq

q 7→ Fq

which maps every atomic proposition q in K1 to a clause in Fq. By considering every pos-
sible function of this shape, we get every clause from H1. For the example clause, we have
function q1 7→ {p1, p2} and q2 7→ {p4, p5} if we assume that G and (Fq)q∈Q are already in set
representation. We proceed analogously for K2 and H2. In this case, the function z only has
to map q3 to either {p7, p8} or to {p9}.
The previous discussion leads to the following definition.

G : FQ =
⋃
K∈F

⋃
z:K→

⋃
q∈Q

Fq

q 7→Fq

{ ⋃
p∈K

z(p)
}

In the setting of the formulas σ(k)q,X , G = Gp0 will be a member of a family of formulas
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(Gq)q∈Q. To use a more unified notation, we can rewrite the definition above to

G : FQ =
⋃

z1:I0→
⋃
q∈Q

Gq

q 7→Gq

⋃
z2:I1→

⋃
q∈Q

Fq

q 7→Fq

{ ⋃
p1∈z1(p0)

z2(p1)
}

where I0 = {p0} and I1 = img(z1) is the image of function z1.
In general, we will have compose a formula with several families. We will use the following

notation for multiple successive compositions at once. LetG(1)
q be a formula andG(2)

Q , . . . , G
(n)
Q

be families of formulas.

G(1)
q

n

:
i=2
G

(i)
Q = G(1)

q : G
(1)
Q : G

(2)
Q : · · · : G(n)

Q

The following theorem shows how we lift the definition above to multiple successive com-
positions and proves the correctness.

Theorem 4
Let G(1)

q be a formula and G(2)
Q , . . . , G

(n)
Q be families of formulas. Then, we have that

G(1)
q

n

:
i=2
G

(i)
Q =

⋃
z1:I0→

⋃
p∈Q

G
(1)
p

p0 7→C(1)
p0

⋃
z2:I1→

⋃
p∈Q

G
(2)
p

p1 7→C(2)
p1

. . .
⋃

zn:In−1→
⋃
p∈Q

G
(n)
p

pn−1 7→C(n)
pn−1{ ⋃

p1∈z1(p0)

⋃
p2∈z2(p1)

. . .
⋃

pn−1∈zn−1(pn−2)

zn(pn−1)

}

where

• I0 = {q}

• Ii = img(zi) are the images of the functions zi for i = 1, . . . , n,

• C(i)
pj−1 ∈ G

(i)
pi−1 are clauses of the formulas G(i)

pi−1 for i = 1, . . . , n and

• pi ∈ Ii, for i = 1, . . . , n.

Before we prove this theorem, we introduce a helping lemma. Let therefore be z1, . . . , zn
s.t.

zi :Ii−1 →
⋃
p∈Q

Gq

pi−1 7→ C(i)
pi−1
∈ Gqi−1 .

Lemma 15

1. For i = 1, . . . , n, it holds that Ii =
⋃

p∈Ii−1

zi(p).

2. I1 = z1(ρ0)

Ii =
⋃

p1∈z1(p0)

⋃
p2∈z2(p1)

. . .
⋃

pi−1∈zi−1(pi−2)

zi(pi−1) for i = 2, . . . , n

Proof. The first claim is clear by definition of the zi.
We prove the second claim by induction over i.
Base case: i = 1
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Then we have that

I1
Claim 1

=
⋃
p0∈I0

z1(p0) = z1(p0)

Induction step: i→ i+ 1

Ii+1
Claim 1

=
⋃
pi∈Ii

zi+1(pi).

Now, we use Claim 1 again to get that Ii =
⋃

pi−1∈Ii−1

zi(pi−1). Furthermore we use the following

set-theoretic equation, which is easy to see.⋃
e∈{

⋃
f∈N

Mf}

Le =
⋃
f∈N

⋃
e∈Mf

Le, for N,Mf , Le sets.

Then it follows that

Ii+1 =
⋃

pi−1∈Ii−1

⋃
pi∈zi(pi−1)

zi+1(pi).

By using Lemma the first claim on Ii−1, we can apply this step iteratively until i = 1,
where we can use that I1 = z1(p0). The claim follows.

With the helping lemma at hand, we can prove Theorem 4.
Proof of Theorem 4 We prove the claim by induction over n.
Base case: n = 2
For the matching of a formula with a single family of formulas, the claim has been proven

in [8].
Induction step: n→ n+ 1

Using the base case, we can split off the last family of formulas G(n+1)
Q and then apply the

induction hypothesis for n = 2.

G(1)
q

n+1

:
i=2

G
(i)
Q =

(
G(1)
q

n

:
i=2
G

(i)
Q

)
: G

(n+1)
Q

= Gq : G
(n+1)
Q

=
⋃

z′:I0→
⋃
p∈Q

Gp

p0 7→Cp0

⋃
z′n+1:I→

⋃
p∈Q

G
(n+1)
p

p 7→C(n+1)
p

{ ⋃
p∈z′(ρ0)

z′n+1(p)

}
=: H ′

where I = img(z′), In+1 = img(z′n+1) and Cp0 ∈ Gp0 , C
(n+1)
p ∈ G(n+1)

p .
Let furthermore be

H :=
⋃

z1:I0→
⋃
p∈Q

G
(1)
p

p0 7→C(1)
p0

. . .
⋃

zn:In−1→
⋃
p∈Q

G
(n)
p

pn−1 7→C(n)
pn−1

⋃
zn+1:In→

⋃
p∈Q

G
(n+1)
p

pn 7→C(n+1)
pn{ ⋃

p1∈z1(p0)

. . .
⋃

pn−1∈zn−1(pn−2)

⋃
pn∈zn(pn−1)

zn+1(pn)

}

74



the expected representation of G(1)
q

n+1

:
i=2

G
(i)
Q .

Claim: H ′ = H

Proof. We prove the claim by mutual inclusion.

• ”⊆”

Let K ′ ∈ H ′. Then, we know that there exist z′ : I0 →
⋃
p∈Q

Gp, p0 7→ Cp0 and z′n+1 : I →⋃
p∈Q

G
(n+1)
p , p 7→ C

(n+1)
p s.t.

K ′ = {
⋃

p∈z′(p0)

z′n+1(pn)}

To show that K ′ ∈ H, we provide z1, . . . , zn+1 with zi : Ii−1 →
⋃
p∈Q

G
(i)
p , pi−1 7→ C

(i)
pi−1

s.t.

K ′ = {
⋃

p1∈z1(p0)

. . .
⋃

pn−1∈zn−1(pn−2)

⋃
pn∈zn(pn−1)

zn+1(pn)} ∈ H

By definition of z′, we have that I = z′(q) ∈ Gq. Then, we can use the induction
hypothesis, to write I as

I = {
⋃

p1∈z1(p0)

. . .
⋃

pn−1∈zn−1(pn−2)

zn(pn−1)}

for some z1, . . . , zn.

Let us take z1, . . . , zn as above. Then we have In = I by Claim 1 of Lemma 15 and thus
we can set zn+1 = z′n+1. Using the claims of Lemma 15, this gives us

{
⋃

p1∈z1(p0)

. . .
⋃

pn−1∈zn−1(pn−2)

⋃
pn∈zn(pn−1)

zn+1(pn)}

Claim 2
= In+1

Claim 1
= {

⋃
pn∈In

zn+1(pn)}

={
⋃

pn∈I=z′(p0)

z′n+1(pn)} = K ′

• ”⊇”

Let K ∈ H. Therefore, there exist z1, . . . , zn+1 with zi : Ii−1 →
⋃
p∈Q

G
(i)
p , pi−1 7→ C

(i)
pi−1

s.t.

K = {
⋃

p1∈z1(p0)

. . .
⋃

pn−1∈zn−1(pn−2)

⋃
pn∈zn(pn−1)

zn+1(pn)}.

This time, we have to provide some z′ : I0 →
⋃
p∈Q

Gp, p0 7→ Cp0 and z′n+1 : I →
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⋃
p∈Q

G
(n+1)
p , p 7→ C

(n+1)
p s.t.

K = {
⋃

p∈z′(p0)

z′n+1(pn)}

Consider therefore

In = {
⋃

p1∈z1(p0)

. . .
⋃

pn−1∈zn−1(pn−2)

zn(pn−1)}.

By construction, we know that In ∈ G.

We set z′(p0) = In, which entails I = In. Thus, we can fix z′n+1 = zn+1, which is again
well-defined. Finally, we have that

{
⋃

p∈z′(p0)

z′n+1(pn)} = {
⋃

p∈I=In

zn+1(pn)} Claim 1
= In+1 = K

by Lemma 15 which concludes the proof of the claim and the theorem.

Disjunction and Conjunction For the set theoretic representation of the ∧- and ∨-operator,
we refer to Lemma 18 of [8]. The authors consider conjunctive normal form, therefore we have
to exchange the result for ∧- and ∨. Let G,H be formulas in set representation in DNF, the
we have that

G ∨H = G ∪H G ∧H = {K1 ∪K2 | K1 ∈ G,K2 ∈ H}.

We can easily lift the definitions to the conjunction/disjunction of several formulas by
induction. Let G1, . . . , Gn be formulas in set representation.

n∨
i=1

Gi =

n⋃
i=1

Gi

n∧
i=1

Gi = {
n⋃
i=1

Ki | Ki ∈ Gi}.

We now have defined how the operators :, ∨ and ∧ behave when applied to sets of states.
This allows us to determine the set theoretic representation of the formulas σ(k)q,X . Recall that
they were given by

σ
(k+1)
q,X = ⊗

X→α1...αn
σ(k)q,α1

: σ
(k)
Q,α2
· · · : σ(k)Q,αn

, where ⊗ =

{
∨ if X ∈ #

∧ if X ∈ �

if represented as a Boolean formula.

Definition 25
Let now be

• X →G γ be the grammar rules with left-hand side X,

• n = |γ| the size of the right-hand side of the grammar rule X →G γ,

• I(γ)0 = {q} for each rule X →G γ,

• I(γ)j = img(z
(γ)
i ), for i = 1, . . . , n are the images of some functions z(γ)i ,

• C(γi)
pi−1 ∈ σ

(k)
pi−1,γi , for i = 1, . . . , n are the clauses of the formulas σ(k)pi−1,γi ,
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• and pi ∈ I(γ)i , for i = 1, . . . , n.

If we have now that X ∈ #, the set-theoretic representation is given by

σ
(k+1)
qX =

⋃
X→γ

⋃
z1:I0→

⋃
p∈Q

σ
(k)
p,γ1

p0 7→C
(γ1)
p0

⋃
z2:I1→

⋃
p∈Q

σ
(k)
p,γ2

p1 7→C
(γ2)
p1

. . .
⋃

zn:In−1→
⋃
p∈Q

σ
(k)
p,γn

pn−1 7→C(γn)
pn−1{ ⋃

p1∈z(γ)1 (p0)

⋃
p2∈z(γ)2 (p1)

. . .
⋃

pn−1∈z(γ)n−1(pn−2)

z(γ)n (pn−1)

}

In case X ∈ �, we have

σ
(k+1)
q,X =

{ ⋃
X→Gγ

K(γ) |

K(γ) ∈
⋃

z
(γ)
1 :I

(γ)
0 →

⋃
p∈Q

σ
(k)
p,γ1

p0 7→C
(γ1)
p0

⋃
z
(γ)
2 :I

(γ)
1 →

⋃
p∈Q

σ
(k)
p,γ2

p1 7→C
(γ2)
p1

. . .
⋃

z
(γ)
n :I

(γ)
n−1→

⋃
p∈Q

σ
(k)
p,γn

pn−1 7→C(γn)
pn−1{ ⋃

p1∈z(γ)1 (p0)

⋃
p2∈z(γ)2 (p1)

. . .
⋃

pn−1∈z(γ)n−1(pn−2)

z(γ)n (pn−1)

}}
.

9.1.4. Comparison: Summarization vs. Saturation

With the set-theoretic representation of the formulas σ(k)q,X at hand, we are now able to com-
pare the information computed during the fixed-point iterations in the two approaches. More
precisely, we want to relate the solutions σ(k)q,X with the transitions q X−−−→A P of the al-
ternating automaton A with left-hand side q and label X that appeared during the k-th
saturation step in Ak. To this end, we will add a time stamp to each transition to indicate
the saturation step in which it was added to A , i.e. q X−−−→A

k
P if the transition appeared in

the k-th saturation step.
Comparing the formulas with the transitions leads to the following theorem.

Theorem 5
Let q ∈ Q and α ∈ S . Then we have

σ(k)q,α = {K1, . . . ,Km} ⇐⇒ q
α−−−→A
t≤k

Kj for j = 1, . . . ,m.

Before we prove the theorem, we briefly explain the general idea behind the proof.

Proof idea Suppose we have K ∈ σ
(k)
q,X and want to show that there exists a transition

q
X−−−→A
t≤k

K. From the set-theoretic representation of σ(k)q,X , we know that there exist appro-

priate functions z1, . . . , zn defining clause K. On the other hand, transition q X−−−→A
t≤k

K was

added to A based on one of the saturation rules and (an) appropriate path(s) q γ−−→
∗
A

t<k

K ′.

We will use the functions z1, . . . , zn to show the existence of such (a) path(s) in A . More
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precisely, they will define the intermediary positions of the path(s)

q
γ1−−−→A
t<k

K(1) γ2−−−→A
t<k

. . .K(n−1) γn−−−→A
t<k

K ′.

For the other direction, we will use the intermediary positions to show the existence of
appropriate functions z1, . . . , zn defining clause K.

As we will need the intermediary positions of the paths in A for the proof, we unroll the
definition of −−→∗A as given in Section 4 to be able to reason about the intermediary positions
of the paths.

Intermediary positions of the paths in the alternating automaton Suppose we have path
q

γ−−→
∗
A

t≤k
K in A for some γ = γ1, . . . , γn, with γi ∈ S and K ⊆ 2Q. Then, we define the

intermediary positions K(1), . . . ,K(n) of the path as follows.

Definition 26
Let q γ−−→

∗
A

t≤k
K be a path in A . Then, we call K(1), . . . ,K(n) with K(i) ⊆ 2Q the intermediary

positions of the path if

• there exists a transition q γ1−−−→A
t≤k

K(1) in A .

• for i = 1, . . . , n− 1, we have K(i+1) =
⋃

p∈K(i)

Dp, s.t. there exists a transition

p
γi+1−−−−→A
t≤k

Dp in A .

• K = K(n)

Let us make an example for |γ| = 2. Suppose we have that q γ−−→
∗
A

t≤k
K. Then, there exist

K(1),K(2) s.t.

q
γ1−−−→A
t≤k

K(1) =


p1

γ2−−−→A
t≤k

Dp1

...
pk

γ2−−−→A
t≤k

Dpk

and K = K(2) =
⋃

pi∈K(1)

Dpi .

Using the definition of −−→∗A , it is sufficient to show the existence of such K(1), . . . ,K(n) to
conclude the existence of the path q γ−−→

∗
A

t≤k
K(n) = K.

We will use the intermediary positions K(1), . . . ,K(n) to define the functions z1, . . . , zn.
For the other direction of the proof, we use the z1, . . . , zn to show the existence of positions
K(1), . . . ,K(n) as defined above.
We split the proof into its two directions. The claim of Theorem 5 follows from Lemma 16

and Lemma 17.

Lemma 16
Let α ∈ S and q ∈ Adet. Then, it holds that

σ(k)q,α = {K1, . . . ,Km} ⇒ q
α−−−→A
t≤k

Kj for j = 1, . . . ,m.
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Proof. We prove the claim by induction over k.
Base case k = 0:
We have to distinguish two cases: First, let α = a ∈ T . Then, on one hand σ

(k)
q,X = p if

q
a−→ p by definition of the system of equations. On the other that q a−−→A

0
p as the transitions

of A0 correspond to the transitions in Adet. Before the first iteration we have not added any
other transitions yet, meaning that this is the only such transition. Thus, the claim holds.
Now let α = X ∈ N . Again by definition, σ(k)q,X = {} (unsatisfiable formula false). As we

have not started the saturation process yet, there is no transition labeled by a non-terminal
X. Thus, the claim holds.
Induction step k→ k + 1: The case for α = a ∈ T is trivial. From K ∈ σ(k+1)

q,a , it follows
that K = {p} if q a−→ p in Adet. As all transitions from A0 correspond to transitions in Adet,
we have that q a−−→A

0
{p}. The claim follows.

Let now K ∈ σ(k+1)
q,X . Because the shape of the clause K differs depending on which player

owns X, we need to distinguish two cases.

• X ∈ #

According to definition 25, there is a grammar rule X →G γ s.t. we can write K as

K =
⋃

p1∈z1(q)

⋃
p2∈z2(p1)

. . .
⋃

pn−1∈zn−1(pn−2)

zn(pn−1)

for some functions z1, . . . , zn (n = |γ|) with

zi :Ii−1 →
⋃
p∈Q

σ(k)p,γi

pi−1 7→ C(γi)
pi−1
∈ σ(k)pi−1,γj .

Recall that I0 = {q} and Ii = img(zi) for 1 = 2, . . . , n.

Overview: We use the functions zi to show that there exists a path q γ−−→
∗
A

t≤k
K for

grammar rule X →G γ. Then, the claim follows from the first saturation rule.

Let us thus define intermediary states K(1), . . . ,K(n) s.t.

1. K(1) ∈ σ(k)q,γ1 ,

2. for i = 1, . . . , n− 1 we have K(i+1) =
⋃

p∈K(i)

Dp for some Dp ∈;σ
(k)
p,γi and

3. K = K(n).

Then, it follows from the induction hypothesis and the first two points above that

1. q γ1−−−→A
t≤k

K(1)

2. For K(i+1) =
⋃

p∈K(i)

Dp, there exists a transition p γi−−−→A
t≤k

Dp for each p ∈ K(i).

From the existence of such K(1), . . . ,K(n), we can conclude that there is a path
q

γ−−→
∗
A

t≤k
K(n) 3.

= K

As X ∈ #, we get that q X−−−→A
t≤k

K by the first saturation rule, proving the claim.
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Definition of K(1), . . . ,K(n): Let us define the K(1), . . . ,K(n) as introduced in 1., 2.
and 3. above. We define the K(s) inductively for i = 1 . . . , n − 1 using the functions
zi. In order to ensure well-undefinedness of the functions zi, we require that K(i) =
Ii = img(zi). Recall the results from Lemma 15, which we use to maintain the invariant
K(i) = Ii.

Ii =
⋃

p∈Ii−1

zi(p) for i = 1, . . . , n

Ii =
⋃

p1∈z1(p0)

⋃
p2∈z2(p1)

. . .
⋃

pi−1∈zi−1(pi−2)

zi(pi−1) for i = 2, . . . , n

In particular, it holds that In = K.

First, we define that

K(1) = z1(q).

Then, K(1) ∈ σ(k)q,γ1 and K(1) = z1(q) =
⋃
p∈I0

z1(p) = I1.

Let now i ∈ {1, . . . , n−1} and suppose K(i+1) has already been defined for j = 1, . . . , i.
We define

K(i+1) =
⋃

p∈K(i)

Dp

=
⋃

p∈K(i)

zi+1(p)

As p ∈ K(i) = Ii, this is well-defined. Furthermore, we have Dp = zi+1(p) ∈ σ(k)q,γi+1 by
definition of zi+1. It remains to show that K(i+1) = Ii+1. This easily follows from

K(i+1) =
⋃

p∈K(i)

Dp =
⋃
p∈Ii

zi+1(p) = Ii+1.

It remains to prove that indeed K = K(n) (part 3.). This follows from K(n) = In = K.

• X ∈ �
According to Definition 25, we can write K as

K =
⋃
X→γ

K(γ) where K(γ) =
{ ⋃
p1∈z(γ)1 (p0)

⋃
p2∈z(γ)2 (p1)

. . .
⋃

pn−1∈z(γ)n−1(pn−2)

z(γ)n (pn−1)
}

for some z(γ)1 , . . . , z
(γ)
n (n = n(γ) = |γ|) with

z
(γ)
i :I

(γ)
i−1 →

⋃
p∈Q

σ(k)q,γi

pi−1 7→ C(γ)
pi−1
∈ σ(k)pi−1,γi .

For each such γ, we use the z(γ)i to prove that q γ−−→A
t≤k

K(γ). Then by applying the

second saturation rule, we get that q γ−−→A
t≤k+1

⋃
X→Gγ

K(γ) and the claim follows.

To prove the existence of the paths q γ−−→A
t≤k

K(γ), we proceed as in the case forX ∈ # for
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each γ by defining intermediary positions K(1), . . . ,K(n) from the z(γ)i The construction
is analogue.

Lemma 17
Let α ∈ S and q ∈ Q

q
α−−−→A
t≤k

Ki for i = 1, . . . , n⇒ σ(k)q,α = {K1, . . . ,Kn}.

Proof. We prove this again by induction over k.
Base case k = 0:
As in Lemma 16.
Induction step k→ k + 1: Suppose we have transition q

α−−−→A
t≤k+1

K. The case where

α = a ∈ T is again trivial. The transitions q a−−→A
t≤k+1

K labeled with a terminal word always

stem from a transition q
a−→ p and by definition of the alternating automaton A0 we have

K = {p}. But due to transition q a−→ p, we also have that σ(k+1)
q,a = {p} by definition of the

system of equations. This proves the claim.
Suppose now that we have transition q

X−−−→A
t≤k+1

K for X = α ∈ N . We want to show

that K ∈ σ(k+1)
q,X . Let us therefore consider the path(s) that were used in combination with a

saturation rule to create q X−−−→A
t≤k+1

K. As the number of these paths varies depending on who

owns X, we make case distinction.

• X ∈ #

Then, transition q X−−−→A
t≤k+1

K was created using the first saturation rule in combination

with a path q γ−−→
∗
A

t≤k
K for some rule X →G γ.

Overview: This time, we use the intermediary positions K(1), . . . ,K(n) (n = |γ|) of
path q

γ−−→
∗
A

t≤k
K to prove that K ∈ σ

(k+1)
q,X . We use the K(i) to define appropriate

functions z1, . . . , zn with

zi :Ii−1 →
⋃
p∈Q

σ(k)p,γi

pi−1 7→ C(γi)
pi−1
∈ σ(k)pi−1,γj .

(0.2)

and I0 = {q}. The functions define a clause K ′ s.t.

K ′ = {
⋃

p1∈z1(q)

⋃
p2∈z2(p1)

. . .
⋃

pn−1∈zn−1(pn−2)

zn(pn−1)} ∈ σ(k+1)
q,X .

Then claim follows by showing that K = K ′.

Definition of z1, . . . , zn: Let K(1), . . . ,K(n) be the intermediary positions of path
q

γ−−→
∗
A

t≤k
K. Then, by definition of the intermediary positions, it holds that

1. there exists a transition p γ1−−−→A
t≤k

K(1)
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2. for i = 1, . . . , n − 1, we have K(i+1) =
⋃

p∈K(i)

Dp, s.t. there exists a transition

p
γi+1−−−→ Dp

3. K = K(n)

Then, it follows by the induction hypothesis and the two first points above that

1. K(1) ∈ σ(k)q,γ1 and

2. for i = 1, . . . , n− 1, we have that Dp ∈ σ(k)p,γi+1 for p ∈ K(i).

Let us now inductively define the zi for i = 1, . . . , n. To ensure that we defined zi(p)
for each p ∈ Ii−1), we require that in each step we maintain invariant Ii = K(i).

First, we define z1(q) := K(1), which is sufficient given that I0 = {q}. As K(1) ∈ σ(k)q,γ1 ,
the function is as desired in 0.2. The invariant also holds:

I1 =
⋃
p∈I0

z1(p)

= z1(p)

= K(1)

Let now i ∈ {1, . . . , n− 1} s.t. zj for j ≤ i have already been defined for each p ∈ Ij−1
and are conform to the definition 0.2. Then, we set

zi+1(p) = Dp for p ∈ Ii.

From the invariant, we have that Ii = K(i), thus this is well defined. As Dp ∈ σ(k)p,γi , the
definition of zi+1 is as required by definition Furthermore, we have that

Ii+1 =
⋃
p∈Is

zi+1(p)

=
⋃

p∈K(i)

zi+1(p)

=
⋃

p∈K(i)

Dp

= K(s+1).

It remains to prove that K ′ as defined by z1, . . . , zn coincides with K. This follows from
the third point above: K ′ = In = K(n) 3.

= K.

• A ∈ �
In this case, transition q

X−−−→A
t≤k+1

K was created using the second saturation rule in

combination with paths q γ−−→
∗
A

t≤k
K(γ) for each rule X →G γ with K =

⋃
X→Gγ

K(γ).

Thus, we have intermediary positions K(1), . . . ,K(n) (n = |γ|) for each such path
q

γ−−→
∗
A

t≤k
K(γ). We can apply the same construction as for the case X ∈ # to

each sequence of intermediary positions K(1), . . . ,K(n) and thereby define functions
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z
(γ)
1 , . . . , z

(γ)
n (n = n(γ) = |γ|) with

z
(γ)
i :I

(γ)
i−1 →

⋃
p∈Q

σ(k)q,γi

pi−1 7→ C(γ)
pi−1
∈ σ(k)pi−1,γi .

By construction, these functions define the clauses

K(γ) =
{ ⋃
p1∈z(γ)1 (p0)

⋃
p2∈z(γ)2 (p1)

. . .
⋃

pn−1∈z(γ)n−1(pn−2)

z(γ)n (pn−1)
}
.

for each γ.

Finally, we get K =
⋃

X→Gγ

K(γ) ∈ σ(k+1)
q,X as expected.

Recall the result that we just proved.

σ(k)q,α = {K1, . . . ,Km} ⇐⇒ q
α−−−→A
t≤k

Kj for j = 1, . . . ,m.

for q ∈ Q a state in Adet and α ∈ S a sentential form. The result suggest a strong relation
between the formulas and the transitions. Intuitively, this makes sense from the point of
view of each method. In Section 3, we explained how transforming the formulas into DNF
flattened the game to just one choice for each player. The same holds for the formulas of the
alternative summary algorithm. If K is a clause of σ(k)q,α, then refuter can enforce a terminal
word w in a play from α and q s.t. q w−→ p ∈ K. Which state of K will be reached is decided
by prover. For the saturation approach, there is a similar intuition. The choices of refuter are
represented by non-determinism and the ones of prover by the sets of states on the right-hand
side of transitions. If we have transition q α−−−→A K, then refuter can enforce the derivation
of a terminal word w from α s.t. q w−→ p ∈ K. But again, she can not narrow it down to a
particular state of K. This decision belong to prover.
However this does not yet explain why the k-th solution in the Kleene iteration σ(k)q,α cor-

responds to the transitions q α−−−→A
k

K with time stamp k. Recall from Section 3 that the

formulas σ(k)q,α capture plays starting from α with at most k applications of rules in each branch
of the corresponding parse tree. With the following inductive reasoning, we can show that
the same holds true for transitions q α−−−→A

k
K. For k = 0, there are only transitions labeled

by terminals. Indeed, only plays from terminals have at most 0 transitions in each branch
of their parse tree. Let us now consider the transitions of shape q α−−−→A

k+1
K and the plays

π that they capture. Suppose that α = X ∈ N , otherwise the claim holds trivially. Then,
the transitions from above have been constructed from paths q γ−−→

∗
A

k

K ′, if there exists a

grammar rule α →G γ = γ1, . . . , γn, using one of the saturation rules. For each of the tran-
sitions p γi−−−→

∗
A

k

K ′′ involved in these paths holds by induction that they represent plays πi

with at most k applications in each branch of their parse tree. We construct the plays π by
composing the plays πi in the paths. Thus, the parse tree of π is rooted at X and the parse
trees of πi are appended to the root. Then, the resulting parse tree of π has at most k + 1
applications of rules in each branch (the root counts as one application). These intuitions
explain the result of Theorem 5.
The theorem furthermore shows the strong resemblance of the two algorithms in terms of

their mechanics. In the summary approach, the clauses of the formula σ(k+1)
q,X are computed
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from the clauses Ki of formulas (σ
(k)
p,γi)p∈Q where X →G γ1 . . . γn is a grammar rule with right-

hand side X. These clauses correspond to the right-hand sides of transitions p γi−−−→A
t≤k

Ki

that are used to form paths of shape q γ−−→
∗
A

t≤k
K. These paths in return are used with one of

the saturation rules to create transitions q X−−−→A
t≤k+1

K.

The proof of the theorem on the other hand points out that the two methods handle the
composition of plays in a different manner. In the summary algorithm, we use the matching
operator : to compose plays

σ(k)q,α1
: σ

(k)
Q,α2
· · · : σ(k)Q,αn

.

Or in case of the set-theoretic representation, we used the functions zi to compose plays. In
the proof, we had to translate the functions into paths

q
α1−−−→A
t≤k

P1
α2−−−→A
t≤k

. . .
αn−−−→A
t≤k

Pn

and vice-versa. And indeed as we already hinted in Section 8, the saturation approach uses
paths to compose plays.

9.1.5. Relation to the box-based saturation algorithm

As we mentioned in the beginning of this section, the formulas of the box-based saturation
algorithm can nevertheless be determined from the transitions, but only under the right
circumstances. By circumstances we mean the correct way to determinize at the beginning of
the saturation algorithm. There exist several deterministic automaton Adet that recognize the
same language as A and the saturation algorithm can be applied based on any of them. One
particular is the deterministic box automaton AM that we introduced in section 8. Recall
that the nodes are given by the boxes of A and the transitions by the composition operator i.e.
there is a transition τ a−→ ρ if ρ = τ ; ρa for τ, ρ boxes and ρa the box of a. It is not surprising
that in the case where we use the box automaton AM of A for the saturation algorithm, we
can actually derive the formulas from the transitions and vice-versa.
However instead of conducting a nearly identical proof as for Theorem 5, we show that

there is a relation between the formulas of the box-based summary algorithm and the ones of
the alternative summary algorithm if we use the box automaton of A here as well. Then we
can simply reuse the statement of Theorem 5 to get the desired relation.
But before we can relate the two types of formulas, we first need to define the set-theoretic

representation of the box-based formulas σ(k)X . Recall thatσ(k)X was given by

σX = ⊗
X→α1...αn

σα1 ; . . . ;σαn , where ⊗ =

{
∨ if X ∈ #

∧ if X ∈ �

Therefore, we need to define how the operators ;, ∨ and ∧ behave when applied to sets of sets
of boxes. The definitions for the Boolean operators are exactly the same as for the formulas
of the alternative summary algorithm. The composition operator behaves similarly to the
matching operator :.

Theorem 6
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Let G1, . . . , Gn be formulas. Then

n

;
i=1
Gi =

⋃
z1:I0→I0;G1
ρ0 7→ρ0;C1

⋃
z2:I1→I1;G2
ρ1 7→ρ1;C2

. . .
⋃

zn:In−1→In−1;Gn
ρn−1 7→ρn−1;Cn

{
⋃

ρ1∈z1(ρ0)

⋃
ρ2∈z2(ρ1)

. . .
⋃

ρn−1∈zn−1(ρn−2)

zn(ρn−1)}

where

• I0 = {ρε}

• Ij = img(zj), for j = 1, . . . , n

• Cj ∈ Gj, for j = 1, . . . , n

• ρj ∈ Ij, for j = 1, . . . , n

The only difference lies in the functions zi, which are defined slightly different. The reason
is the following. In the setting of the alternative summary algorithm, suppose we had the
composition G : FQ of a formula G with a family of formulas FQ. The functions zi were used
to replace the atomic propositions p of G by an adequate member Fp of the family FQ and
to match clauses to normalize the resulting formula to DNF. In the setting of the box-based
algorithm, we may have composition G;F of two formulas G and F . Instead of replacing the
atomic propositions by formulas, we compose the atomic propositions τ of G with F , i.e. τ ;F .
This composition is conducted by the functions zi, in addition to the matching of clauses to
normalize the formula to DNF.
The proof of Theorem 6 is analogue to the one of Theorem 5 and is therefore skipped.
Finally, we get the following set-theoretic representations for the formulas σ(k)X .

Definition 27
Let

• X →G γ be the grammar rules with left-hand side X,

• n = |γ| the size of the right-hand side of the grammar rule X →G γ,

• I(γ)0 = {ρε} for each rule X →G γ,

• I(γ)i = img(z
(γ)
i ), for i = 1, . . . , n are the images of the functions z(γ)i ,

• C(γi)
ρi−1 ∈ σ

(k)
γi , for i = 1, . . . , n are the clauses of the formulas σ(k)γi

• and ρi ∈ I(γ)i , for i = 1, . . . , n.

If we have now that X ∈ #, the set theoretic representation is given by

σ
(k+1)
X =

⋃
X→γ

⋃
z1:I0→I0;σ(k)

γ1

ρ0 7→ρ0;C
(γ1)
ρ0

⋃
z2:I1→I1;σ(k)

γ2

ρ1 7→ρ1;C
(γ2)
ρ1

. . .
⋃

zn:In−1→In−1;σ
(k)
γn

ρn−1 7→ρn−1;C
(γn)
ρn−1{ ⋃

ρ1∈z(γ)1 (ρ0)

⋃
ρ2∈z(γ)2 (ρ1)

. . .
⋃

ρn−1∈z(γ)n−1(ρn−2)

z(γ)n (ρn−1)

}

In case X ∈ �, we have
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σ
(k+1)
X =

{ ⋃
X→Gγ

K(γ) |

K(γ) ∈
⋃

z
(γ)
1 :I

(γ)
0 →I0;σ

(k)
γ1

ρ0 7→ρ0;C
(γ1)
ρ0

⋃
z
(γ)
2 :I

(γ)
1 →I1;σ

(k)
γ2

ρ1 7→ρ1;C
(γ2)
ρ1

. . .
⋃

z
(γ)
n :I

(γ)
n−1→In−1;σ

(k)
γn

ρn−1 7→ρn−1;C
(γn)
ρn−1{ ⋃

ρ1∈z(γ)1 (ρ0)

⋃
ρ2∈z(γ)2 (ρ1)

. . .
⋃

ρn−1∈ρ(γ)n−1(ρn−2)

z(γ)n (ρn−1)

}}
.

Relation of the two types of formulas Suppose now that we used the box automaton
AM as base to compute the formulas σ(k)q,X . This means that the states q in the formulas

correspond boxes of A i.e. q = ρ for some box ρ ∈ B(A). Thus, both types of formulas σ(k)X

and σ(k)ρ,X belong to the same domain, namely the positive Boolean formulas over the set of

boxes of A. This allows us to apply the matching operator : with a formula σ(k)X on the left
side, i.e. σ(k)X : FB(A) for a family of formulas FB(A) in the following proof.

Theorem 7
Let ρ be a state of the box automaton AM of A, i.e. ρ is a box of A and X a non-terminal.
Then, the following holds for all k ∈ N0.

σ
(k)
ρ,X = ρ;σ

(k)
X

Proof. We prove the claim by induction over k.
Base case: k = 0
In this case, the proof holds trivially, because σ(0)ρ,X = σ

(0)
X = false and then also ρ;σ

(0)
X =

false.
Induction step: k → k + 1

Then, σ(k)ρ,X is of the following form.

σ
(k+1)
ρ,X = ⊗

X→α1...αn
σ(k)ρ,α1

: σ
(k)
B(A),α2

· · · : σ(k)B(A),αn
, where ⊗ =

{
∨ if X ∈ #

∧ if X ∈ �

Recall that the set of boxes B(A) of A coincides with the set of states of AM .
We can apply the induction hypothesis to σ(k)ρ,α1 and get

σ
(k+1)
ρ,X = ⊗

X→α1...αn
ρ;σ(k)α1

: σ
(k)
B(A),α2

· · · : σ(k)B(A),αn

= ρ;

[
⊗

X→α1...αn
σ(k)α1

: σ
(k)
B(A),α2

· · · : σ(k)B(A),αn

]
by definition of the composition operator ;.
To prove the theorem, it remains to show that

G : σ
(k)
B(A),αi

= G;σ(k)αi for i = 2, . . . , n.

We prove this claim by a structural induction over G.
Base case G = τ ∈ B(A):
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G : σ
(k)
B(A),αi

= τ : σ
(k)
B(A),αi

= σ(k)τ,αi

= τ ;σ(k)αi = G;σ(k)αi

The last step follows from the induction hypothesis on k.
Induction step G = G1 ⊗ G2:
We get from the definitions of : and ; that

G : σ
(k)
B(A),αi

= (G1 ⊗ G2) : σ
(k)
B(A),αi

= G1 : σ
(k)
B(A),αi

⊗ G2 : σ
(k)
B(A),αi

IH
= G1;σ

(k)
αi ⊗ G2;σ

(k)
αi

= (G1 ⊗ G2);σ
(k)
αi = G;σ(k)αi .

Intuitively, the result can be explained as follows. Suppose terminal word w can be derived
from X. Then formula σρ,X captures the target state τ of the run of w in AM starting from
ρ. But as the transitions in ρA correspond to the composition operator, this means that
τ = ρ; ρw On the other hand, σX captures the box ρw of w. The structure of both formulas is
the same as they both consider the words derivable from X and identically handle the choices
of the players. They only differ in the atomic proposition. But it suffices to compose box ρ
in front of every atomic proposition in σX to get the atomic proposition in σρ,X . Using the
computation rules for the composition operator, we can pull the box ρ to the front of σX and
the claim follows.

Comparison: Box-based summarization vs. Saturation By combining the results of
Theorem 5 and Theorem 7, we can deduce the relation between the box-based summary
algorithm and the saturation approach based on the deterministic box automaton AM .

Theorem 8
Let ρ ∈ B(A) be a box of A and α ∈ S . Then we have

ρ;σ(k)α = {K1, . . . ,Km} ⇐⇒ ρ
α−−−→A
t≤k

Kj for j = 1, . . . ,m.

Although we again have a strong relation between the clauses of the formulas and the
transitions of the saturated automaton, this result clearly suggests that the saturation method
is not able to make use of the power of the boxes. Note therefore that the clauses of formula
ρ;σ

(k)
α are of shape ρ;K ′ for K ′ ∈ σ(k)α .

Suppose we want to compose the plays starting from α1 with the plays starting from α2

(αi ∈ S ). In the summary approach, the boxes allowed us to compute the plays starting from
α1 resp. α2 independently in form of formulas σα1 resp. σα2 and compose them afterwards
with the ;-operator: σα1 ;σα2 . In terms of the box automaton AM , independently means that
we capture the target states of runs starting from ρε on words derivable from αi.
In the saturation approach however, we compose plays using paths in the alternating au-

tomaton. In this case, we are interested in the paths of shape ρε
α1α2−−−−−→

∗
A P ⊆ B(A). For

the paths, we need all possible transitions ρε
α1−−−→A P1, and τ

α2−−−→A P2 for each τ ∈ P1.
Theorem 8 shows that for τ, τ ′ ∈ P1, the latter transitions are of shape τ α2−−−→A τ ;Ki resp.
τ ′

α2−−−→A τ ′;Ki for each Ki ∈ σα2 . Thus, the saturation approach computes the same in-
formation several times, more precisely it does not compute the information about the plays
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from α2 independently of the plays from α1. The reason is that the composition by paths (see
Section 8) does not allow this independent computation and thus the saturation approach can
not make use of the power of the boxes.
For this reason and because the box automaton in general is not the smallest deterministic

automaton recognizing L(A) (see for example Figure 35), it is not advisable to use the satu-
ration algorithm in combination with the box automaton. The saturation approach benefits
from a small deterministic automaton, thus it is preferable to use a minimal deterministic
automaton recognizing L(A).

This concludes the comparison of the summary approach with the saturation approach. We
now consider the comparison with the Guess & Check method.
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9.2. Summarization approach vs. Guess & Check approach

In this section, we intend to compare the nodes contained in the k-th fixed-point approximant
Attr

(k)

A,# with the formulas σ(k)X . More precisely, we want to compare the verify-nodes with the
formulas. Intuitively, refuter wins from a verify-node Verify(X,P, q) if she is able to enforce
the derivation of a terminal word w from X s.t. q w−→ p ∈ P . In Section 3 on the other
hand, we argued that formula σX contains clause K if refuter can enforce the derivation of
a terminal word w s.t. the box ρw of w is contained in K. It would thus not be surprising if
there was a relationship between the clauses K and the predictions P in the verify-nodes.
At this point, the reader may ask whether we could also use the claim-nodes, where the

predictions are made, for the comparison. The answer is negative. This is related to the fact
that in the Guess & Check method the tasks of computing the possible plays and the task of
deciding whether refuter can enforce a winning one are not separated. Refuter only wins at
a claim-node Claim(Xγ,P, P ′, q) if two conditions hold true. On one hand, refuter must be
able to derive a terminal w from X s.t. q w−→ p. This is the property that we are interested
in. However, she must also be able to derive a terminal word w′ from γ s.t. p w′−→ p′ ∈ P ′ for
every p ∈ P . Thus, the claim-nodes in the attractor will not match with the formulas.
Let us thus try to determine a relationship between the formulas σ(k)X and the verify-nodes in

the antichain attractor set Attr(k)A,# . But as for the comparison with the saturation approach,
deriving the formulas from the verify-nodes does not seem possible. Figure 36 shows an
example of a context-free game. On the left, the formula which is computed by the summary
approach is depicted. On the right, we have the verify-nodes that are contained in the
antichain attractor. Let us try to derive the formulas from the verify-nodes. We argued that
the predictions should correspond to clauses. Thus, as we have two predictions, the formula
should be of shape τ ∨ ρ. As the verify-nodes Verify(X, {q0}, q0) and Verify(X, {q1}, q0) are
contained in the attractor, refuter can enforce the derivation of a word w from X s.t. q0

w−→ q0
or q0

w−→ q1. At this point, we would like to assemble the clauses τ and ρ from these state
changes. However, we only have state changes with q0 as left-hand side as we only have
verify-nodes with state q0 in the attractor. But for the boxes, we also need the state changes
from q1 on.
Note that even if the attractor contained verify-nodes with state q1, we would still not be

able to derive the formulas. As in the previous section, we would not know how to pair the
verify-nodes with states q0 resp. q1 to assemble the boxes. Thus, in any case we are not able
to derive the formulas from the verify-nodes that are contained in the attractor.
Due to the fact that the attractor may contain only verify-nodes Verify(X,P, q) for some of

the states q ∈ Q, it makes sense to compare them to the formulas of the alternative summary
algorithm. If the attractor contains verify-nodes Verify(X,P, q) for some state q, we should
be able to establish a relation to the formula σq,X .
The rest of this section is organized as follows. We first show that there is indeed a relation

between the verify-nodes Verify(X,P, q) in the k-th fixed-point approximant Attr(k)A,# and the

formulas σ(k)q,X . Then, we show that the formulas σ(k)X are related to the verify-nodes of the
k-th fixed-point approximant of the attractor if we use the box automaton as base for the
construction of the game graph.

9.2.1. Comparison: Summarization vs. Guess & Check

As we will show, we can compute the formulas σq,X directly from the attractor AttrA,#. It
is even possible to determine the intermediary solutions σ(k)q,X from the intermediary attractor

sets Attr(i)A,#. However, we have to slightly modify the definition of the attractor.
Instead of advancing step-by-step in the game graph GGC by only including appropriate

direct predecessors, we want to iterate the attractor construction until we reach a verify-node
on the path (or can not progress any further). In other words, in each attractor step we
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X� → a | bG :

q0A1 : q1

a

a

b b

Verify(X, {q0}, q0),
Verify(X, {q1}, q0)︸ ︷︷ ︸

∈AttrA,#

σX =

ρa

∨
ρb

Guess & CheckSummarization

(a) Only verify-nodes with state q0 appear in the game graph.

Check(X,Prej, q0)

Claim(X, {q0}, Prej, q0)Check(ε, Prej, q0)

Test(q0, Prej) Verify(X, {q0}, q0)

Check(a, {q0}, q0)

Check(ε, {q0}, q1)

Test(q1, {q0})

Check(b, {q0}, q0)

Check(ε, {q0}, q0)

Test(q0, {q0})

Claim(X, {q1}, Prej, q0) Check(ε, Prej, q1)

Test(q1, Prej)Verify(X, {q1}, q0)

Check(a, {q1}, q0)

Check(ε, {q1}, q1)

Test(q1, {q1})

Check(b, {q1}, q0)

Check(ε, {q1}, q0)

Test(q0, {q1})

(b) Part of the game graph GGC for the context-free game defined in Figure 39a. The nodes that are
marked in red are all nodes of the game graph GGC that are contained in the attractor AttrA,#.

Figure 39.: Reconstruction of the formulas fails.

ascend as far in GGC as possible and only stop if we reach a verify-node on the path or no
further nodes can be included (Figure 40). The verify-nodes can be understood as barriers
for the attractor construction.
Formally, we can define the modified attractor AttrA,# as follows.

Definition 28

Attr
(0)

A,# = {Test(q, P ) | q ∈ P}

Attr
(k+1)

A,# = A
(
IterateAttr(Attr

(k)

A,#, 1)

)
AttrA,# =

⋃
k≥0

Attr
(k)

A,#
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where IterateAttr(M, i) =

{
Mnew ∪ IterateAttr(Mnew, inew) ∪Mverify if i = 1

∅ if i = 0
with

Mnew = {v ∈ V, v not a verify-node | v ∈ # and ∃ (v, v′) ∈ E with v′ ∈M}
∪ {v ∈ V, v not a verify-node | v ∈ � and ∀ (v, v′) ∈ E have v′ ∈M}
∪M

inew =

{
1 if M (Mnew

0 if M = Mnew

Mverify = {v ∈ V, v verify-node | v ∈ # and ∃ (v, v′) ∈ E with v′ ∈M}
∪ {v ∈ V, v verify-node | v ∈ �, v and ∀ (v, v′) ∈ E have v′ ∈M}

verify

verify

verify

verify

verify

Attr
(k)

A,#

Attr
(k+1)

A,#

Figure 40.: Intuition behind the modified attractor.

The idea behind the construction is the following. Suppose we want to compute Attr
(k+1)

A,# .
The function IterateAttr is used to iterate a regular one-step attractor construction. Initially,
the input of IterateAttr is the set Attr

(k)

A,#. Then, in each step sets Mnew and Mverify are
computed from the input M (M ⊆ V). Set Mnew contains all non-verify-nodes that would
be contained in the regular one-step attractor (where only direct predecessors are considered)
when applied to setM . SetMverify on the other hand contains all verify-nodes of the one-step
attractor of M . We need to make this separation to ensure that only the nodes in Mnew
are used for further attractor computations by IterateAttr . The nodes in Mverify are simply
added to the fixed-point approximant Attr

(k+1)

A,# . The input inew serves as flag to ensure the
termination of the attractor construction. If no new nodes are collected in Mnew, the flag is
set to 0 and the computation terminates. Note that the computation always terminates as the
set of nodes V in the game graph GGC is finite. At the end, we apply the antichain operator
A to IterateAttr(Attr

(k)

A,#, 1) to get rid of the non-�-minimal elements.
Although the definition of the alternative attractor AttrA,# differs a bit from the definition

of the antichain attractor AttrA,# from Section 5, the new attractor AttrA,# also allows us
to determine the winner of the GC game. In fact, Theorem 2 can be proven analogously for
AttrA,#.
The rough idea behind this new attractor is to count the number of verify-nodes on paths

in GGC. As grammar rules in the GGC are always applied after the verify-nodes, counting the
number of verify-nodes comes down to counting the number of rules that have been applied.
Recall from Subsection 9.1 that the formulas σ(k)q,X captured plays for which at most k rules
were applied in each branch of the parse tree. Thus, it makes sense to limit the number of
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applied rules on the paths in GGC when we aim to compute the intermediary solutions.
Before we present the theorem describing the relation between the solutions σ(k)q,X and the

fixed-point approximant Attr
(k)

A,#, we state a few simple properties of Attr(k)A,#, which will be
useful in the proof of the theorem. The statements allow us to conclude that particular node(s)
are included in the attractor from the inclusion of its pre- or successor(s) (statements 1,2).
As the verify-nodes are handled differently in the attractor AttrA,# than the other nodes, we
need special cases if any of the involved nodes is a verify-node (statements 3,4).

Lemma 18
Let v ∈ V be a node in the game graph GGC.

1. Let v ∈ Attr
(k)

A,#. Then, it holds that

• If v ∈ V#, then ∃ transition (v, v′) ∈ E s.t. v′ ∈ Attr
(k)

A,#.

• If v ∈ V�, then ∀ transitions (v, v′) ∈ E holds v′ ∈ Attr
(k)

A,#.

2. Let v′1, . . . , v
′
m be the successors of v and assume none of the nodes v, v′1, . . . , v

′
m is a

verify-node.

• If v ∈ V# and v′i ∈ Attr
(k)

A,# for some i ∈ {1, . . . , n}, then v ∈ Attr
(k)

A,#.

• If v ∈ V� and v′i ∈ Attr
(k)

A,# for all i ∈ {1, . . . , n}, then v ∈ Attr
(k)

A,#.

3. Let v be a claim-node and v′0 be the succeeding verify-node resp. v′1, . . . , v
′
n the succeeding

check-nodes. Then it holds that

v ∈ Attr
(k)

A,# ⇐⇒ v′0 ∈ Attr
(k−1)
A,# and v′i ∈ Attr

(k)

A,# for i = 1, . . . , n.

4. Let v be a verify-node.

• If v ∈ V# and v′i ∈ Attr
(k)

A,# for some i ∈ {1, . . . , n}, then v ∈ IterateAttr(Attr
(k)

A,#, 1).

• If v ∈ V� and v′i ∈ Attr
(k)

A,# for all i ∈ {1, . . . , n}, then v ∈ IterateAttr(Attr
(k)

A,#, 1).

Proof. For the proof, we use the following notation. In the attractor set Attr(k)A,#, sets Mnew
resp. Mverify are computed iteratively by function IterateAttr . If a set was computed in the
i-th iteration, we denote it by M (i)

new resp. M (i)
verify for i = 1, . . . , n, where n is the iteration

where inew is set to 0. For the attractor set Attr
(k−1)
A,# , we denote the corresponding sets by

M
′(i)
new resp. M ′(i)verify for i = 1, . . . , n′.
For the statements one, two and four, we only prove the part for refuter. The case for

prover is analogue.
Claim 1:
We prove the claim by contraposition. Assume that no successor of v is contained in

Attr
(k)

A,#. Thus none of the successors is contained in any of the sets M (i)
new or M (i)

verify, i ≤ n.
But from the definitions of the sets Mnew and Mverify, it is clear that a node is only included
in iteration j if at least one of its successors is included in M (j−1)

new . Thus, v 6∈ M (i)
new for any

i ≤ n and thus v 6∈ Attr
(k)

A,#.
Claim 2:
Let v′ be a successor of v s.t. v′ ∈ Attr

(k)

A,#. As v′ is no verify-node, v′ ∈M (i)
new for some i ≤ n.

But then by definition of Mnew resp. Mverify, either v ∈ M
(i+1)
new or v ∈ M (i+1)

verify , depending on

the type of node of v. In any case, v ∈ Attr
(k)

A,# as v is also not a verify-node (meaning that
it will not be discarded by the A-operator).
Claim 3:
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For the direction from left to right assume that either v′0 6∈ Attr
(k−1)
A,# or v′j 6∈ Attr

(k)

A,# for

some j ∈ {1, . . . ,m}. In the first case, we may have that v′0 ∈ M
(i)
verify for some i ≤ n, but as

the verify-nodes are treated separately v′0 will never appear in any of the sets M (i)
new for any

i ≤ n. In the second case, we get that v′j 6∈ M
(i)
new for any i ≤ n (as in Claim 1). Thus, it

follows that also v 6∈M (i)
new for any i ≤ n and thereby v 6∈ Attr

(k)

A,#.

For the other direction, assume that v′0 ∈ Attr
(k−1)
A,# and v′j ∈ Attr

(k)

A,# for j = 1, . . . ,m.

This means that v′0 ∈ M
(0)
new for any i ≤ n and that for each of the v′j holds that they are

included in some M (ij)
new. If we take take the maximum imax of all the i1, . . . , im, we get that

v′0, v
′
1, . . . , v

′
m ∈M

(imax)
new as we haveM (i)

new ⊆M (i+1)
new for 0 ≤ i ≤ n−1. But then, v ∈M (imax+1)

new

by definition of Mnew and thereby v ∈ Attr
(k)

A,#.
Claim 4:
Let v′ be a successor of v s.t. v′ ∈ Attr

(k)

A,#. As v′ is no verify-node (the successors of verify-

nodes are never verify-nodes themselves), v′ ∈ M (i)
new for some i ≤ n. But then by definition

of Mnew resp. Mverify, either v ∈ M
(i+1)
new or v ∈ M (i+1)

verify , depending on the type of node of v.

In any case, v ∈ IterateAttr(Attr
(k)

A,#, 1). We can not conclude that v ∈ Attr
(k)

A,# as v may be
discarded by the A-operator.

With the helping lemma at hand, we can prove the following theorem, stating the relation
between the formulas σ(k)q,X and the verify-nodes Verify(X,P, q) in the attractor set Attr(k)A,#.

Theorem 9
Let X ∈ N .

1. If Verify(X,K, q) ∈ Attr
(k)

A,# then K ∈ σ(k)q,X (reduced).

2. If K ∈ σ(k)q,X (reduced) then Verify(X,K, q) ∈ Attr
(k)

A,# given that Verify(X,K, q) ∈ V.

We call a CNF-formula σ(k)q,X reduced if it does not contain any two clauses K,K ′ s.t. K ⊆
K ′. This restriction is sound as a non-restricted CNF-formula is always logically equivalent
to the corresponding restricted formula. We have to presume that the formula is restricted
because we only consider inclusion minimal predictions P of verify-nodes Verify(X,P, q) in
the antichain attractor.
For the second part of the theorem, we have to presume that the verify-node is included in

the game graph GGC, as there may be states q s.t. no verify-node Verify(X,P, q) are included
in GGC for a fixed non-terminal X. In Figure 39 for example, Verify(X,P, q1) 6∈ V for any
prediction P . There may even be a non-terminal X s.t. no verify-node Verify(X,P, q) is
contained in the game graph at all. Both of these properties are due to the fact that the
game graph GGC is constructed in a top-down fashion. Intuitively, a run in the GGC from the
starting node corresponds to a derivation process starting from S. If the run ends in a node
Verify(X,P, q), the derivation process should end at a sentential form wXα s.t. q0

w−→ q in the
deterministic automaton Adet. Thus, if no (appropriate) such derivation process exists, no
verify-node Verify(X,P, q) with state q will be in V. Unfortunately, as the predictions in the
GGC can be arbitrary sets, we can not make such a strong statement. In fact, as Figure 41a
shows, the game graph may include verify-nodes even if no appropriate derivation process
exists. However, due to the fact that we do not have predictions for terminal words, at least
some verify-nodes with no appropriate derivation process can be excluded (Figure 41b).
Even though the predictions in the nodes are arbitrary, the sentential forms stored in the

nodes are not. The sentential forms appearing in the nodes are only based on the gram-
mar rules. If there is no derivation process from S reaching X at all, no such verify-node
Verify(X,P, q) will be contained in GGC at all.
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Verify(S, P, q)

Check(Y Z, P, q)

Claim(Y Z, Parbitr, q) Claim(. . . )

Check(Z,P, qarbitr)Verify(. . . )

Claim(Z,P ′, P, qarbitr)

Verify(Z,P ′, qarbitr) Check(. . . )

(a) We have Verify(Z,P ′, qarbitr) ∈ V for any state
qarbitr.

Verify(S, P, q)

Check(Y aZ, P, q)

Claim(Y aZ, Parbitr, q) Claim(. . . )

Check(aZ, P, qarbitr)

Check(Z,P, q′ 6= q)

Verify(. . . )

Claim(Z,P ′, P, q′)

Verify(Z,P ′, q′) Check(. . . )

(b) Suppose that state q has no incoming edges la-
beled by a. Then Verify(Z,P ′, q) 6∈ V.

Figure 41.

Proof idea: Suppose we have K ∈ σ
(k)
q,X and want to show that node Verify(X,K, q) ∈

Attr
(k)

A,# (given that it is contained in the game graph at all). From the set-theoretic represen-

tation of σ(k)q,X , we know that there exist appropriate functions z1, . . . , zn defining clause K.

On the other hand, we know that Verify(X,K, q) ∈ Attr
(k)

A,# if at least one (in case X ∈ #)

or all (if X ∈ �) of its successors Check(α,K, q) are contained in Attr
(k)

A,#. We will use
the functions z1, . . . , zn to define a winning strategy from the check-node(s) Check(α,K, q).
More precisely, the functions provide the correct predictions for prover in the claim-nodes s.t.
she wins in both the verify- and in any of the skip-branches. If there exists such a winning
strategy, Check(α,K, q) must be contained in the attractor.
For the other direction, we the winning strategy to define the functions z1, . . . , zn by taking

the predictions made during the winning plays as function values of the zi.
We now prove each direction of the theorem separately. For the first direction, we drop the

property that the formulas have to be restricted at the moment. It will be reestablished later.

Lemma 19
Let X ∈ N .
v = Verify(X,K, q) ∈ Attr

(k)

A,# ⇒ K ∈ σ(k)q,X .

Proof. We prove this by induction over k.
Base case k = 0:
If k = 0, then σ(k)q,X = {} by definition. Thus σ(k)q,X does not contain any clause. By defini-

tion, Attr(0)A,# does not contain any verify-node. The claim follows.
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v = Verify(X,K, q = q0)

Check(Y a,K, q0)

Claim(Y a, P,K, q0)

Verify(. . . ) Check(a,K, q1)

Check(ε,K, q2)

. . . Check(a,K, q′1)

Check(ε,K, q′2)

L0

L1

L2

Figure 42.: Example of layers L0, L1, L2 for starting node v = Verify(X,K, q). All depicted
nodes are contained in the attractor AttrA,#.

Induction step k→ k + 1: Let v = Verify(A,K, q) ∈ Attr
(k+1)

A,# . Depending on the owner

of X, either at least one or all successors of v have to be contained in Attr
(k+1)

A,# (Lemma 18
(1.)). Thus, we distinguish two cases:

1. X ∈ #X ∈ #X ∈ #

Then, there exists at least one successor node Check(γ,K, q) ∈ Attr
(k+1)

A,# with X →G γ

a grammar rule. The goal is to prove that K ∈ σ(k+1)
q,X .

To prove the claim, we define z1, . . . , zn (n = |γ|) s.t.

zi :Ii−1 →
⋃
p∈Q

σ(k)p,γi

p 7→ C(γi)
p ∈ σ(k)p,γi

(0.3)

and thereby construct clause

K ′ = {
⋃

q1∈z1(q)

⋃
q2∈z2(q1)

. . .
⋃

qn−1∈zn−1(qn−2)

zn(qn−1)} ∈ σ(k+1)
q,X

where I0 = {q} and Ii = img(zi) for i = 1, . . . , n.

Finally, we show that K ′ = K, which proves the claim.

To define these zi, we use the concept of layers Li for i = 0, . . . , n in the game graph
GGC. We already used layers in Section 5, but we briefly recall the concept. Layers Li−1
are sets of check nodes of shape Check(γ[i,n],K, qi−1), which are collected by moving

downwards inside the attractor Attr(k+1)

A,# starting at v = Verify(X,K, q) in GGC. Layer
Li+1 is obtained from layer Li by collecting all next occurrences of check-nodes that
are reachable from a check-node in Li inside of the attractor Attr(k+1)

A,# . The process is
depicted in Figure 42.

We are interested in the states of the check-nodes in the layers, therefore we use the
following definition.

state(Li) := {q | Check(γ[i+1,n], P, q) ∈ Li}

As we will see, the sets state(Li) of the layers Li correspond to the images Ii of
the functions zi. To compute the actual function values zi(p) for p ∈ Ii−1, we con-
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sider the successors in Li of the check-node u = Check(γ[i,n],K, q) ∈ Li−1. If check-
nodes Check(γ[i+1,n],K, qj) ∈ Li for j = 1, . . . ,m are reachable from u, then zi(p) =
{q1, . . . , qm}. In the example of Figure 42, we would have that z1(q0) = {q1, . . . , q′1} and
z2(q1) = {q2}.
We now make this construction precise and show that the functions z1, . . . , zn are well-
defined and as desired in Equation 0.3.

Layer construction We inductively define the L0, . . . , Ln and thereby also the z1, . . . , zn.
In order to guarantee that the zi are well-defined and as we claimed in Equation 0.3,
we maintain the following invariants:

a) state(Li) = Ii

b) Li ⊆ Attr
(k+1)

A,# for i = 0, . . . , n.

We construct the layers inductively as follows.

i = 0

As already mentioned above, by v = Verify(X,K, q) ∈ Attr
(k+1)

A,# , we know that there

exists at least one successor Check(γ,K, q = q1) ∈ Attr
(k+1)

A,# by Lemma 18 (1.). Let
u be such a successor. If there is more than one, we can pick an arbitrary successor.
Then, we define L0 = {u} and we get state(L0) = {q} = I0. Clearly, the first invariant
is satisfied. The second invariant holds as well because I0 is fixed to only contain q.

i→ i + 1

We need to define zi+1(qi) for each qi ∈ Ii. From invariant (a), we get that Ii = state(Li)
and thus there exists u = Check(γ[i+1,n]K, qi) ∈ Li. We need to distinguish between the
cases γi+1 ∈ T and γi+1 ∈ N .

a) γi+1 ∈ T

We depict u and its unique successor u′ in Fig-
ure 43. As γi+1 ∈ T , u′ is of the form
Check(γ[i+2,n],K, qi+1) s.t. qi

γi+1−−−→ qi+1. We define

zi+1(qi) = {qi+1}.

u = Check(γ[i+1,n],K, qi)

u′ = Check(γ[i+2,n],K, qi+1)

Figure 43.: Construction of
Li+1 .

Thus, we map qi to the clause containing only qi+1. This map matches the desired
definition in Equation 0.3 as σ(k)qi,γi+1 = {{qi+1}} (recall that σ(k)p,a is defined to only
contain a single clause {p′} s.t. p a−→ p′).

It remains to define Li+1 and show that the invariants hold. As u ∈ Attr
(k+1)

A,# ,

the same must hold for the unique successor: u′ ∈ Attr
(k+1)

A,# (Lemma 18 (1.)). We
define

Li+1 = {u′ | u′ successor of u ∈ Li}

We argued above that the successors u′ are contained in the attractor, therefore
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the second invariant is satisfied. For the first invariant, note that

Ii+1 =
⋃
p∈Ii

zi+1(p)

=
⋃

p∈state(Ii)

zi+1(p)

=
⋃

p∈state(Ij)

p′ where p
γi+1−−−→ p′

= state(Li+1),

which proves that the first invariant holds.

b) γi+1 ∈ N

u = Check(γ[i+1,n],K, qi)

cl = Claim(γ[i+1,n], Pqi ,K, ρi)Claim(. . . )

. . .

v′ = Verify(γi+1, Pqi , qi) u′ = Check(γ[i+2,n],K, qi+1)Check(. . . )

. . .

one check node for each qi+1 ∈ Pqi

Figure 44.: Construction of Li+1.

In this case, the successors of u are claim-nodes of the form Claim(γ[i+1,n], P,K, qi).

By invariant (2) u ∈ Attr
(k+1)

A,# , therefore at least one succeeding claim-node is also

contained in the attractor Attr(k+1)

A,# (Lemma 18 (1.)). Let cl = Claim(γ[i+1,n], Pqi ,K, qi)
be an arbitrary node among these claim-nodes. Figure 44 depicts the situation.

Let v′ = Verify(γi+1, Pqi , qi) be the verify-node that succeeds cl. From cl ∈
Attr

(k+1)

A,# , it follows by Lemma 18(3.) that v′ ∈ Attr
(k)

A,#. Using the induction

hypothesis of Lemma 19, we get that Pqi ∈ σ
(k)
qi,γi+1 . Thus, the following definition

is as desired in Equation 0.3.

zi+1(qi) = Pqi

It remains to define Li+1 and show that the invariants hold. From cl ∈ Attr
(k+1)

A,# and
Lemma 18(3.), we get that all succeeding check-nodes u′ = Check(γ[i+2,n],K, qi+1)

(qi+1 ∈ P ) are contained in the attractor Attr(k+1)

A,# . We define

Li+1 =
⋃
u∈Li

{u′ = Check(γ[i+2,n],K, qi+1) |

u = Check(γ[i+1,n],K, qi),

cl = Claim(γ[i+1,n], Pqi ,K, qi) ∈ Attr
(k+1)

A,# successor of u

and u′ successor of cl}

which by the discussion above satisfies the second invariant.
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For the first invariant consider

Ii+1 =
⋃
qi∈Ii

zi+1(qi)

=
⋃

qi∈state(Li)

zi+1(qi)

=
⋃

qi∈state(Li)

Pqi

=
⋃

qi∈state(Li)

⋃
p∈Pqi

p = state(Li+1)

where Pqi is the prediction of a claim-node cl = Claim(γ[i+1,n], Pqi ,K, qi) ∈ Attr
(k+1)

A,#
succeeding u = Check(γ[i+1,n],K, qi) ∈ Li. The invariant follows.

The resulting functions z1, . . . , zn are defined as desired in Equation 0.3. Thus, the
functions construct a clause

K ′ = In = {
⋃

q1∈z1(q0)

⋃
q2∈z2(q1)

. . .
⋃

qn−1∈zn−1(qn−2)

zn(qn−1)} ∈ σ(k+1)
q,A .

Correctness: Now it remains to show that indeed K ′ = In
!

= K.

We prove this by mutual inclusion.

”⊆”

Let p ∈ In. Then, also p ∈ state(Ln). Thus, there exists some u = Check(ε,K, p) in
Ln. From invariant (2), we get that u ∈ Attr

(k+1)

A,# . Therefore, the unique successor u′

of u is a test-node Test(p,K) ∈ Attr
(k)

A,# (Lemma 18 (1.)) and thus p ∈ K follows.

”⊇”

This direction is more involved. We have to show that for each p ∈ K, we have p ∈ In =
state(Ln). To show this, we use the inclusion minimality of K. If p 6∈ state(Ln), then
we can show that at least one successor of Verify(A,K \{p}, q) is contained in Attr

(k+1)

A,# .
This contradicts the fact that v = Verify(A,K, q) is contained in the antichain-attractor,
because in this case v can not be �-minimal (Lemma 18 (4.)). The reason why this
holds is actually related to the reason why we can use an antichain-attractor in the
first place. We make use of the fact that parts of the game graph reachable from
Verify(A,K, q) resp. Verify(A,K \ {p}, q) are similar in structure and the predictions
K resp. K ′ = K \ {p} are only relevant in the test-nodes. If p 6∈ state(Ln), then there
will be no test-node of shape Test(p,K) succeeding the nodes in Ln. Thus, it would be
sufficient to have K ′ as prediction instead of K, which contradicts the fact that K is
inclusion minimal.

Lemma 20
∃p ∈ K s.t. p 6∈ state(Ln) ⇒ there exists a successor u of Verify(A,K ′ = K \ {p}, q)
contained in Attr

(k+1)

A,# .

Proof. From v ∈ Attr
(k+1)

A,# , it follows that there exists a successor Check(γ,K, q) ∈

Attr
(k+1)

A,# (Lemma 18 (1.)). We now make use of the similar structure of the parts of
GGC that are reachable from v resp. v′. We can deduce that Verify(A,K ′, q) has a
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successor of similar shape Check(γ,K ′, q). By further use of the similar structures, we
can prove the following statement.

Check(γ[i+1,n],K
′, qi) ∈ Attr

(k+1)

A,# for qi ∈ state(Li).

In particular, we get that also Check(γ,K ′, q) ∈ Attr
(k+1)

A,# as desired. We conduct a
proof by reverse induction on i.

Base case i = n:

Check(ε,K, qn)

Test(qn,K)

u = Check(ε,K ′, qn)

t = Test(qn,K
′)

 

Figure 45.

Let qn ∈ state(Ln). Then, there exists Check(ε,K, qn) ∈ Ln. From the second invariant
of the layer construction, we get that Check(ε,K, qn) ∈ Attr

(k+1)

A,# , meaning that qn ∈ K.
Consider now u = Check(ε,K ′, qn). Its unique successor is test-node t = Test(qn,K

′)
(Figure 45). As qn 6= p (p 6∈ state(Ln)), we know that qn ∈ K ′ = K \ {p} and thus both
t and u are contained in the attractor (Lemma 18 (2.)).

Induction step i→ i− 1:

Let qi−1 ∈ state(Li−1). We want to show that u = Check(γ[i,n],K
′, qi−1) ∈ Attr

(k+1)

A,# .
We need to distinguish two cases.

• γi ∈ T

Check(γ[i,n],K, qi−1)

Check(γ[i+1,n],K, qi)

u = Check(γ[i,n],K
′, qi−1)

u′ = Check(γ[i+1,n],K
′, qi)

 

Figure 46.

By definition of state(Li−1), there exists Check(γ[i,n],K, qi−1) ∈ Li−1 and by defi-
nition of Li, its unique successor Check(γ[i+1,n],K, qi) ∈ Li. Thus, qi ∈ state(Li).
Then, we get from the induction hypothesis that u′ = Check(γ[i+1,n],K

′, qi) ∈
Attr

(k+1)

A,# and then, by Lemma 18 (2.), also u ∈ Attr
(k+1)

A,# .

• γi ∈ N
Again by definition of state(Li−1), there exists Check(γ[i,n],K, qi−1) ∈ Li−1 ⊆
Attr

(k+1)

A,# . For the construction of Li, we picked one of the claim-nodes

Claim(γ[i,n], P,K, qi−1) succeeding the check-node in the attractor Attr(k+1)

A,# . Then,
all the check-nodes that succeeded this claim-node were incorporated into Li. Refer
to Figure 47 for a visual representation of the situation.

We need to show that u = Check(γ[i,n],K
′, qi−1) ∈ Attr

(k+1)

A,# . From the structure
that we described above, we get that u has a successor cl = Claim(γ[i,n], P,K

′, qi−1)

We prove that cl ∈ Attr
(k+1)

A,# , then u ∈ Attr
(k+1)

A,# follows by Lemma 18 (2.). By
Lemma 18(3.) we need to show that

a) the verify-node u′ = Verify(γi, P, qi−1) succeeding cl is contained in Attr
(k)

A,#
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Check(γ[i,n],K, qi−1)

Claim(γ[i,n], P,K, qi−1)Claim(. . . )

. . .

u′ = Verify(γi, P, qi−1) Check(γ[i+1,n],K, qi)Check(. . . )

. . .

∈ Attr
(k+1)

A,#

∈ Li−1

∈ Li
∈ Attr

(k)

A,#
one check node for each qi ∈ P

 
u = Check(γ[i,n],K

′, qi−1)

cl = Claim(γ[i,n], P,K
′, qi−1)Claim(. . . )

. . .

u′ = Verify(γj , P, qi−1) uqi = Check(γ[i+1,n],K
′, qi)Check(. . . )

. . .

one check node for each qi ∈ P

Figure 47.: Extract of GGC.

b) all check-nodes uqi = Check(γ[i+1,n],K
′, qi) succeeding cl are contained in

Attr
(k+1)

A,# .

The verify-node u′ is actually the same verify-node succeeding Claim(γ[i,n], P,K, qi−1)

from above. As Claim(γ[i,n], P,K, qi−1) ∈ Attr
(k+1)

A,# , u′ ∈ Attr
(k+1)

A,# by Lemma 18
(3.).

By construction of Li, all check-nodes Check(γ[i+1,n],K, qi) are contained in Li.
This means that qi ∈ state(Li). Therefore, we can apply the induction hypothesis
to the check nodes uqi = Check(γ[i+1,n],K

′, qi) and get that uqi ∈ Attr
(k+1)

A,# .

We finally get K ′ = In = K, which proves the correctness of the layer construction.

This closes the case of X ∈ # and we can tackle the case where X belongs to prover.

2. X ∈ �X ∈ �X ∈ �
In this case, all the successors Check(γ,K, q) of v have to be contained in the attractor
Attr

(k+1)

A,# . For each Check(γ,K, q), we define functions z(γ)1 , . . . , z
(γ)
n (n = |γ|) with

z
(γ)
i :I

(γ)
i−1 →

⋃
p∈Q

σ(k)p,γi

p 7→ C(γi)
p ∈ σ(k)p,γi .

(0.4)

These functions construct a clause

K ′ =

{ ⋃
X→γ

K(γ) | K(γ) =
{ ⋃
p1∈z(γ)1 (q)

⋃
q2∈z(γ)2 (q1)

. . .
⋃

qn−1∈z(γ)n−1(qn−2)

z(γ)n (qn−1)
}}
∈ σ(k+1)

q,X
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Finally, we will show that K and K ′ coincide.

We can make the same layer construction as for the case X ∈ # for each Check(γ,K, q).
The process defines Lγ1 , . . . , L

γ
n resp. z(γ)1 , . . . , z

(γ)
n for n = |γ| as required in Equation 0.4

. As in the case for X ∈ #, the invariants hold:

a) state(L
(γ)
i ) = I

(γ)
i = img(z

(γ)
i )

b) L(γ)
i ⊆ Attr

(k+1)

A,# for i = 0, . . . , n.

Let now

K ′(γ) = I(γ)n =
{ ⋃
p1∈z(γ)1 (q)

⋃
p2∈z(γ)2 (p1)

. . .
⋃

pn−1∈z(γ)n−1(pn−2)

z(γ)n (pn−1)
}

and we show that K !
= K ′ =

⋃
A→γ

K ′(γ) ∈ σ(k+1)
q,X .

We prove the claim by mutual inclusion.

”⊇”

We show that K ′(γ) ⊆ K for all rules X → γ. Let p ∈ K ′(γ). Then, also p ∈ I(γ)n =

state(L
(γ)
n ). Thus, there exists some u = Check(ε,K, p) in Lγn. From invariant b), we get

that u ∈ Attr
(k+1)

A,# . Therefore, the successor Test(p,K) ∈ Attr
(k+1)

A,# and p ∈ K follows.

”⊆”

Let p ∈ K. We need to show that p ∈
⋃

X→γ
K ′(γ) =

⋃
X→γ

I
(γ)
n for n = |γ|. We use the

inclusion minimality of K again. Suppose therefore that p 6∈
⋃

X→γ
I
(γ)
n =

⋃
X→γ

state(L
(γ)
n ).

This means that p 6∈ I(γ)n for any γ. Like in the case of X ∈ #, we prove that then a
successor of Verify(X,K ′ = K \ {p}, q) will be contained in Attr

(k+1)

A,# . Then, v can not
be �-minimal and thereby not contained in the antichain-attractor (Lemma 18 (4.)).

We proceed as in Lemma 20 and prove that

Check(γ[i+1,n],K
′, qi) ∈ Attr

(k+1)

A,# for qi ∈ state(L
(γ)
i )

by reverse induction for all γ.

We can reuse the proof from Lemma 20, but need to adapt the base case. Let there-
fore qn ∈ state(L

(γ)
n a). Thus, there exists a node Check(ε,K, qn) ∈ L(γ)

n which is also
contained in the attractor (invariant b)). Thus, the succeeding test-node Test(qn,K)

is also contained in Attr
(k+1)

A,# (Lemma 18 (1.)), meaning that qn ∈ K. As qn 6=
p (qn ∈ state(Ln) = I

(γ)
n , p 6∈ I

(γ)
n ), we know that qn ∈ K ′ = K \ {p}. There-

fore, node Test(qn,K
′) belongs to refuter and both the test-node and its predecessor

Check(ε,K ′, qn) are contained in Attr
(k+1)

A,# (Lemma 18 (2.)).

The rest of the proof is identical to the proof in Lemma 20 for each γ (using z(γ)i instead
of zi).

It follows that Check(γ,K ′, q) ∈ Attr
(k+1)

A,# for all X → γ. Thus, v = Verify(A,K, q) can

not be �-minimal and v 6∈ Attr
(k+1)

A,# .

This proves the inclusion.

Having considered both cases X ∈ # and X ∈ �, this concludes the proof of Lemma 19.
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Lemma 21
Let X ∈ N .
K ∈ σ(k)q,X (reduced) ⇒ Verify(X,K, q) ∈ Attr

(k)

A,# given that Verify(X,K, q) ∈ V.

Proof. We show the claim by induction over k.

Base case: (k = 0)
As for Lemma 19.
Induction step: (k → k + 1)

Let therefore be K ∈ σ(k+1)
q,X . We need to show that v = Verify(X,K, q) ∈ Attr

(k+1)

A,# . As K
is of different shape depending on the owner of X, we distinguish two cases.

1. X ∈ #X ∈ #X ∈ #

From the set representation of σ(k+1)
q,X , we get that there exists a grammar rule X →G γ

s.t. K is of the following form.

K = In = {
⋃

p1∈z1(p0)

⋃
p2∈z2(p1)

. . .
⋃

pn−1∈zn−1(pn−2)

zn(pn−1)}

for some z1, . . . , zn with

zi :Ii−1 →
⋃
p∈Q

σ(k)p,γi

p 7→ C(γi)
p ∈ σ(k)p,γi

Note that we assume that σ(k)p,γi are already reduced.

The idea is to use the images I1, . . . , In of the functions zi to prove Lemma 22 be-
low. From this lemma follows in particular that Check(γ,K, q) ∈ Attr

(k+1)

A,# . Then, by

Lemma 18 (4.), it follows that v ∈ IterateAttr(Attr
(k)

A,#, 1). We can prove that than also

v ∈ Attr
(k+1)

A,# . Towards a contradiction, assume there exists node v′ = Verify(X,K ′, q) ∈

IterateAttr(Attr
(k)

A,#, 1) s.t. v′ � v. If there are several such nodes, we take the �-minimal

one. Then, v′ ∈ Attr
(k+1)

A,# and we can use Lemma 19 to get that K ′ ⊆ K ∈ σ(k+1)
q,X . But

then K could not have been contained in the reduced formula σ(k+1)
q,X .

Thus, the claim that v ∈ Attr
(k+1)

A,# follows.

Lemma 22
For i = 1, . . . , n+ 1, it holds that

Check(γ[i,n],K, qi−1) ∈ Attr
(k+1)

A,# for qi−1 ∈ Ii−1.

Proof. We prove this by reverse induction over i. Let u = Check(γ[i,n],K, qi−1) be the
check-node of interest.

Base case: i = n+ 1

In this case, u is of form Check(ε,K, qn). Its unique successor
in GGC is the test-node t = Test(qn,K)( see Figure 22). As
we assumed that qn ∈ In, we get that qn ∈ K. Therefore,
t ∈ Attr

(0)

A,# ⊆ Attr
(k+1)

A,# . As t is no verify-node, it follows by

Lemma 18(2.) that u ∈ Attr
(k+1)

A,# .

u = Check(ε,K, qn)

t = Test(qn,K)

Figure 48.
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Induction step: (i→ i− 1)

We have to consider two cases, one for γi ∈ T and one for γi ∈ N .

• γi ∈ T .
In this case, u is of the form Check(aγ[i+1,l],K, qi−1)
with qi−1 ∈ Ii−1. As γi ∈ T , the (unique) successor
of u is u′ = Check(γ[i+1,l],K, qi) with qi−1

a−→ qi
( Figure 22). From γi ∈ T it also follows that
σ
(k)
qi−1,γi contains exactly one clause, namely {q |
qi−1

a−→ q}. Making use of the fact that the au-
tomaton A is deterministic, we get that q = qi and
thus qi ∈ Ii. It follows by the induction hypothesis
that u′ ∈ Attr

(k+1)

A,# and thus by Lemma 18(2.) also

u ∈ Attr
(k+1)

A,# .

u = Check(γ[i,n],K, qi−1)

u′ = Check(γ[i+1,n],K, qi)

Figure 49.

• γi ∈ N .

In this case, u has multiple successor nodes, more precisely one claim-node per
possible prediction P ⊆ 2Q (see Figure 50).

u = Check(γ[i,n],K, qi−1)

cl = Claim(γ[i,n], zi(qi−1),K, qi−1)Claim(. . . )

. . .

v′ = Verify(γi, zi(qi−1)) u′ = Check(γ[i+1,n],K, qi)Check(. . . )

. . .

one check node for each qi ∈ zi(qi−1)

Figure 50.

Thus, there will also be a succeeding claim-node with P = zi(qi−1) ⊆ 2Q namely
cl = Claim(γ[i,n], zi(qi−1),K, qi−1). We consider this claim-node and show that

cl ∈ Attr
(k+1)

A,# . Then also u ∈ Attr
(k+1)

A,# by Lemma 18(2.).

Let us first investigate the verify-node v′ = Verify(γi, zi(qi−1), qi−1). By defini-
tion of the functions zi, zi(qi−1) ∈ σ(k)qi−1,γi (reduced). By applying the induction
hypothesis of the theorem (γi ∈ N), we get that v′ = Verify(γi, zi(ρi−1)) ∈ Attr

(k)

A,#.

Now we consider the succeeding check-nodes. There is one check-node u′ =
Check(γ[i+1,n],K, qi) for qi ∈ zi(qi−1). Then, it follows by the induction hypothesis

that u′ ∈ Attr
(k+1)

A,# .

As v ∈ Attr
(k)

A,# and all check-nodes u′ ∈ Attr
(k+1)

A,# , it follows by Lemma 18(3.) that

also cl ∈ Attr
(k+1)

A,# and thereby u ∈ Attr
(k+1)

A,# .

This concludes the case X ∈ #.

2. X ∈ �X ∈ �X ∈ �
Let K ∈ σk+1A. Because X ∈ �, we can write K as
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K =

{ ⋃
X→γ

K(γ) | K(γ) =
{ ⋃
p1∈z(γ)1 (q)

⋃
q2∈z(γ)2 (q1)

. . .
⋃

qn−1∈z(γ)n−1(qn−2)

z(γ)n (qn−1)
}}

for some z(γ)1 , . . . , z
(γ)
n with

z
(γ)
i :I

(γ)
i−1 →

⋃
p∈Q

σ(k)p,γi

p 7→ C(γi)
p ∈ σ(k)p,γi

where n = |γ| for each γ s.t. X → γ.

To prove that v = Verify(X,K, q) ∈ Attr
(k+1)

A,# , we first show that all its successor nodes

are included in the attractor Attr(k+1)

A,# . Then, by Lemma 18(4.), v ∈ IterateAttr(Attr
(k)

A,#, 1).

But we argued in the case for X ∈ # that in this case also v ∈ Attr
(k+1)

A,# follows.

All succeeding nodes are check-nodes of shape Check(γ,K, q), one for each rule X → γ.

In order to show that the check-nodes are included in Attr
(k+1)

A,# , we use the following
lemma which is similar to Lemma 22.

Lemma 23
Let γ be s.t. X → γ. For i = 1, . . . , n, it holds that

Check(γ[i,n],K, qi−1) ∈ Attr
(k+1)

A,# for qi−1 ∈ I(γ)i−1.

Proof. The proof is conducted similarly to the proof of Lemma 22 by reverse induction.
Only the base case needs a slight adaptation, the induction step is the same (use z(γ)i

instead of zi).

Let thus be i = n + 1 and u = Check(ε,K, qn) with qn ∈ I(γ)n . Node u has an edge to
test-node t = Test(qn,K). From the assumption, we get that qn ∈ I(γ)n = K(γ) ⊆ K.
Thus t ∈ Attr

(k+1)

A,# and therefore also u ∈ Attr
(k+1)

A,# by Lemma 18 (2.).

This concludes the proof of Lemma 21.

With the two Lemmata at hand, we can finally reestablish the condition that the formulas
are reduced and thus show Theorem 9. Recall the claim:
Let X ∈ N .

1. If Verify(X,K, q) ∈ Attr
(k)

A,# then K ∈ σ(k)q,X (reduced).

2. If K ∈ σ(k)q,X (reduced) then Verify(X,K, q) ∈ Attr
(k)

A,# given that Verify(X,K, q) ∈ V.

Proof.

1. Let K be s.t. Verify(X,K, q) ∈ Attr
(k)

A,#. By Lemma 19, we get that K ∈ σ(k)q,X . Assume

now that there exists K ′ ⊂ K in σ(k)q,X . Then, by Lemma 21, Verify(X,K ′, q) ∈ Attr
(k+1)

A,#
contradicting the fact that the attractor contains only antichains.

2. Directly be Lemma 21.
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Despite the non-symmetric directions of the statement of Theorem 9, it suggests a strong
relation between the formula σq,X and the verify-nodes Verify(X,K, q) in the antichain at-
tractor. We already hinted the intuition behind the result. If formula σq,X contains clause K,
refuter can enforce the derivation of a terminal word w from X s.t. q w−→ p ∈ K. On the other
hand, refuter wins from node v = Verify(X,K, q) if the prediction K is correct for X and q,
i.e. refuter can enforce the derivation of a terminal word w with q w−→ p ∈ K. As refuter wins
from v, the node is contained in the attractor. The �-minimality of v is guaranteed by the
fact that we only consider clauses from the reduced formula σq,X and vice versa.
However, this does not yet explain why the intermediary formulas σ(k)q,X correspond to the

verify-nodes Verify(X,K, q) in the k-th attractor set Attr(k)A,#. Recall that, ifK ∈ σ(k)q,X , refuter
can enforce a play s.t. it ends in a terminal word w with q w−→ p ∈ K and that has at most
k applications of rules in each branch of the parse tree. We will argue that the same holds if
Verify(X,K, q) ∈ Attr

(k)

A,#. But before we explain why this is the case, we describe how the
plays are composed in the game graph GGC.
In the proof of Theorem 9, we used the functions zi of the set representation of K ∈ σ(k)q,X

to define a winning strategy for refuter from the verify-node v = Verify(X,K, q) ∈ Attr
(k)

A,#.
More precisely, the zi defined predictions for the claim-nodes that are encountered on the
paths conform to the winning strategy. The predictions are s.t. refuter would win the verify-
branch following each claim-node. Thus, we only had to consider the skip-branches. But for
them, we had to take every possible choice of prover into account. Therefore, the zi define
a tree rooted at v consisting of only check- and claim-nodes. All the nodes in the tree are
contained in the attractor Attr(k)A,#. We call the tree the composition tree of verify-node v.
The successor(s) of the root are check-node(s) of shape Check(γ,K, q) if there is a grammar
rule X →G γ, depending on whether X ∈ # or X ∈ �.

In general, the check-nodes in the tree are of shape c = Check(γ[i,n],K, q
′) where γ[i,n] is a

suffix of γ. The check-nodes c represent the composition of the plays starting from γ1, . . . , γi−1
and q. The states q′ in the check-nodes track the target states of the terminal words w that
are derived by the composed plays from q on, i.e. q w−→ q′. Thus, the composition of the plays
is executed by the paths in the composition tree.
However, we do not compose arbitrary plays starting from γi with each other. We only

compose plays of γi s.t. the resulting (composed) plays end in a terminal word w with q w−→ K
and the parse trees of the plays have at most k applications of rules in each branch. This is
possible because Verify(X,K, q) ∈ Attr

(k)

A,# (we comment on this below). Refer to Figure 51
for an example of such a composition tree and the corresponding composition of plays.
Although this way of composing plays by a tree seems very different to the composition by

paths in the saturation method, they follow the same idea. The main difference is that in
the composition tree of Verify(X,K, q), we only consider the path q γ−−→

∗
A K leading up to

clause K ∈ σ(k)q,X . We actually get exactly this path if we merge all states of check-nodes in the
same layer of the tree. This, the inner check-nodes of the tree coincide with the intermediary
states of the path q γ−−→

∗
A K.

The formula σ
(k)
q,X captures maximal plays from X that have at most k applications of

grammar rules in each branch of their parse tree. By the following inductive reasoning, one
can see that the same holds true for the verify-nodes Verify(X,K, q) ∈ Attr

(k)

A,#. In the

attractor set Attr
(0)

A,#, no verify-nodes are contained at all. Indeed, no maximal plays from
any non-terminal X exist s.t. their parse tree has at most 0 application of rules in each
branch. Suppose the claim holds true for the verify-nodes in Attr

(k)

A,#. Let us consider a

verify-node v = Verify(X,K, q) ∈ Attr
(k)

A,#. For the sake of simplicity, assume that X ∈ #,
the arguments for the case of X ∈ � are similar. Then, there exists a grammar rule X →G α
s.t. Check(γ,K, q) succeeds v in the composition tree. Consider now all γi ∈ N . For all
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Verify(Z,K, q)

Check(XY,K, q)

Claim(XY,G1,K, q)Verify(X,G1, q)

Check(Y,K, q1)

Claim(Y, F1,K, q1)Verify(Y, F1, q1)

Check(ε,K, p1) Check(ε,K, p2)

Check(Y,K, q2)

Claim(Y,H1,K, q2) Verify(Y,H1, q2)

Check(ε,K, p4) Check(ε,K, p5)

Figure 51.: Example of a composition tree and the corresponding composition of plays in
the game graph GGC. Suppose there exists a grammar rule Z →G XY and that
Z ∈ #. Furthermore, let v = Verify(Z,K, q) ∈ Attr

(k+1)

A,# . If we have the following
formulas, the composition tree of v is of the shape depicted in the figure. (1)
K = {p1, p2, p4, p5} ∈ σ(k+1)

q,Z

(2) σ(k)q,X = {G1, G1} where G1 = {q1, q2}, G1 = {q3}
(3) σ(k)q1,Y

= {F1, F2} where F1 = {p1, p2}, F2 = {p3}
(4) σ(k)q2,Y

= {H1, H2} where H1 = {p4, p5}, H2 = {p6}

the claim-nodes Claim(γi,K
′,K, q′) it holds that they are contained in Attr

(k)

A,#. But then,

by Lemma 18 (3.), the verify-nodes succeeding them are contained in Attr
(k−1)
A,# . Thus, if we

compose plays starting at γ1, . . . , γn in the tree, we know that the composing plays have either
at most k− 1 applications in each branch of the parse tree (if γi ∈ N) or 0 (if γi ∈ T ). Thus,
the resulting play has a parse tree with at most k applications in each branch.

The result of Theorem 9 furthermore confirms the statement that we made in Subsection 9
about the system of equations of the alternative summary algorithm. We are only interested
in the value of σq0,S for q0 the starting state of the deterministic automaton Adet and S the
initial symbol of S. All other formulas σ(k)q,X for state q and non-terminal X are only used
to compute σq0,S . But as we compute the formulas in a bottom-up manner, we do not know
which formulas are actually needed and which ones are superfluous. But as we discussed above,
the game graph GGC is constructed top-down and excludes some verify-nodes Verify(X,K, q)
where no derivation process from S to wXα with q0

w−→ q exists. Unfortunately, not all
superfluous verify-nodes are excluded and may still appear in the attractor.

9.2.2. Comparison: Box-based Summarization vs. Guess & Check

Suppose now that we used the box automaton AM of A as base to construct the game graph
GGC. Then, we can apply Theorem 7, linking the formulas σ(k)ρ,X to the formulas ρ;σ

(k)
X , to the

statement of Theorem 9. Then, we get the following result.

Theorem 10
Let X ∈ N be a non-terminal and ρ ∈ B(A) a box.

1. If Verify(X,K, ρ) ∈ Attr
(k)

A,# then K ∈ ρ;σ
(k)
X (reduced).

2. If K ∈ ρ;σ
(k)
X (reduced) then Verify(X,K, ρ) ∈ Attr

(k)

A,# given that Verify(X,K, ρ) ∈ V.
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Although we again get a strong relation between the formulas and the verify-nodes in the
attractor, the theorem also hints that the Guess & Check approach does not make use of the
power of the boxes and computes the same information is several times.
The reason is the following. Suppose we have grammar rule S →G XY and we want to

compute the plays starting from S. For the sake of simplicity, assume that this is the only
rule with left-hand side X. In the box-based summary approach, we compute the formula σS
by composing the formulas σX and σY with the composition operator. The formulas σX and
σY were computed independently of each other.
In the Guess & Check approach, we have to consider the composition trees of verify-nodes

Verify(S,K, ρε) that are contained in the attractor. In each tree, we have one claim-node
of shape Claim(XY,K1,K, ρε) and one node Claim(Y,K2,K, ρ), ρ ∈ K ′ for each branch
created by the first claim-node. Each of the claim-nodes for Y has a succeeding verify-node
Verify(Y,K2, ρ) for which we had to compute whether it is contained in the attractor in a
previous step. From Theorem 9, we get that these K2 are of shape ρ;K ′ for a clause K ′ ∈ σX .
In most cases, there will be some ρ, ρ′ s.t. both Verify(Y, ρ;K ′, ρ) and Verify(Y, ρ′;K ′, ρ′)
for any K ′ ∈ σX are contained in some (not necessarily the same) of the composition trees.
In fact this always happens if σX either contains at least two clauses or one clause with at
least two atomic propositions. Thus contrary to the summary approach, the Guess & Check
method computes the information of the plays from Y dependent on the plays from X.
In the example of Figure 52, the verify-nodes v1 = Verify(Y, {ρac} = ρa; {ρc}, ρa) and v2 =

Verify(Y, {ρbc} = ρb; {ρc}, ρb) are even contained in the same composition tree. Both verify-
branches are nearly identical. It would actually be possible to conclude from v1 ∈ AttrA,# that
also v2 ∈ AttrA,# or vice versa if we made use of the box composition. Intuitively, v1 ∈ AttrA,#
means that refuter can enforce the derivation of a word w s.t. ρa

w−→ ρac = ρa; {ρc}. But then
for word w also holds that ρb

w−→ ρb; {ρc} = ρbc. Therefore, we could conclude v2 ∈ AttrA,#.

9.2.3. Alternative Guess & Check algorithm

Although the Guess & Check algorithm that we defined in Section 5 can not make use of
the power of the boxes, it is possible to adapt the algorithm s.t. it can make proper use of
the boxes. The reason why this is possible is that the predictions are held very general, they
can be any set of boxes. In the regular Guess & Check algorithm, the predictions that are
made at claim-nodes c = Claim(Xα,P ′, P, ρ) should capture the target state τ in AM of the
words w derivable from X from ρ on. In this setting, we only use the automaton AM as a
deterministic automaton that captures state changes of derivable words. However, we do not
make use of the meaning of the paths in AM , namely that ρ w−→ τ if τ = ρw; ρ.
However, with this property in mind, we can change the meaning of the prediction P ′ at

claim-node c. Prediction P ′ should capture the target state ρw of the words w derivable from
X from state ρε on. In other words, it should capture the boxes of the derivable words. This
means that the succeeding verify-node is of shape Verify(X,P ′, ρε) and does not depend on
ρ anymore. As we are still interested in the state changes that the derivable words w induce
from ρ on in Adet, we compose the boxes ρw ∈ P ′ with ρ in the check-nodes Check(α, P, ρ; ρw)
succeeding c. Actually, we get the same check-nodes if we used the prediction as in Section 5.
Formally, the game graph of the alternative Guess & Check algorithm is defined as follows.

Definition 29
Let GGC= (V, E, v0) be the game graph constructed in the regular Guess & Check algorithm
using the box automaton AM as base. Then, the game graph GGC’ = (V ′, E ′, v0) of the
alternative Guess & Check algorithm (based on AM as well) is defined as follows.

• The set of nodes V ′ contains only verify-nodes with state ρε. Otherwise it is similar to
V, i.e. V ′ = V \ {Verify(X,P, ρ) | ρ 6= ρε}
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Verify(S,K, ρε)

Check(XY,K, ρε)

Claim(XY, {ρa, ρb},K, ρε)Verify(X, {ρa, ρb}, ρε)

Check(Y,K, ρa)

Claim(Y, {ρac},K, ρa)

v1 = Verify(Y, ρa; {ρc}, ρa)

Check(c, ρa; {ρc}, ρa)

Check(ε, ρa; {ρc}, ρa; ρc)

Test(ρa; ρc, ρa; {ρc})

Check(ε,K, ρac)

Test(ρac,K)

Check(Y,K, ρb)

Claim(Y, {ρbc},K, ρb)

v2 = Verify(Y, ρb; {ρc}, ρb)

Check(c, ρb; {ρc}, ρb)

Check(ε, ρb; {ρc}, ρb; ρc)

Test(ρb; ρc, ρb; {ρc})

Check(ε,K, ρbc)

Test(ρbc,K)

Figure 52.: Example of the composition tree of Verify(S,K, ρε) ∈ AttrA,#. In the example,
we have grammar rules S# →G XY , X� →G a | b and Y� →G c. For the sake of
simplicity, we do not specify the automaton of the context-free game. We simply
assume that ρa 6= ρb. Note that the verify-branches at v1 resp. v2 are nearly
identical.

• The set of transitions E ′ is similar to E except for the transitions with a claim-node as
left-hand side. We redefine them by

Claim(Xα,P ′, P, ρ)
(verify)−−−−→ Verify(X,P ′, ρε)

Claim(Xα,P ′, P, ρ)
skip (τ∈P ′)−−−−−−−→ Check(α, P, ρ; τ).

For the example in of Figure 52, the game graph GGC’ would have verify-nodes v1 = v2 =
Verify(Y, ρc, ρε) succeeding the claim-nodes Claim(Y, {ρac},K, ρa) resp. Claim(Y, {ρbc},K, ρb).
Thus, the verify-branches following the two claim-nodes would coincide. The check-nodes suc-
ceeding the claim-nodes are analogue to the one in GGC, i.e. Check(ε,K, ρa; ρc) = Check(ε,K, ρac)
resp. Check(ε,K, ρbc)
The correctness proof of the alternative Guess & Check algorithm is analog to the correct-

ness proof for the regular algorithm stated in Section 5.
For the comparison of the box-based summary algorithm with the alternative Guess &

Check algorithm, we can make a similar statement as in Theorems 9 and 10. We leave the
theorem without proof, but it is similar to the proof of Theorem 10.

Theorem 11
Let X ∈ N be a non-terminal and ρ ∈ B(A) a box.

1. If Verify(X,K, ρε) ∈ Attr
(k)

A,# then K ∈ σ(k)X (reduced).

108



2. If K ∈ σ(k)X (reduced) then Verify(X,K, ρ) ∈ Attr
(k)

A,# given that Verify(X,K, ρ) ∈ V.

Note that the restriction in the second direction is now less strong. If a non-terminal X
is reachable from S i.e. there exists a derivation process from S to some wXα, then the
corresponding verify-node Verify(X,K, ρε) is contained in the game graph GGC’, independent
of the terminal prefix w of wXα. By a simple preprocessing on the grammar, we could
eliminate the rules whose left-hand sides are unreachable from S. Then, we could drop the
restriction in the theorem.
The statement of the theorem show that there is a one-to-one relation of the formulas σ(k)X

and the verify-nodes Verify(X,K, ρε). The predictions K in these nodes correspond to the
clauses of the formula.
Although the alternative Guess & Check algorithm now makes use of the power of the

boxes, it still can not avoid the upfront determinization of the automaton A into the box
automaton AM . But this was the reason why we used the boxes in the summary algorithm.
The alternative Guess & Check algorithm remains a top-down approach for which the whole
state space of AM needs to be known. As in most cases, the box automaton is much larger
than the minimal determinized automaton recognizing L(A), the game graph GGC’ will be
larger than a game graph GGC based on the minimal deterministic automaton, even though
the game graph GGC’ may have less verify-nodes. Thus, it is preferable to use the minimal
deterministic automaton in combination with the regular Guess & Check algorithm.
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10. Conclusion

Recapitulation In the first part of the thesis, we introduced three approaches to solve
context-free games: The summary, saturation and Guess & Check approach. For the latter
two, we also proved the correctness of the algorithms as they were adapted from algorithms
for pushdown game systems.
In the second part, we conducted a detailed comparison of the methods. We focused on

three aspects.
First, we examined whether the approaches separate the task of computing the possible

plays from the task of determining the winning ones (for refuter) among them. Both the
summary and the saturation approach first compute the possible plays in form of formulas
resp. a saturated automaton. Only after this step it is determined whether refuter can enforce
a winning play, by evaluating the formula resp. deciding whether the saturated automaton
accepts the starting symbol S of the grammar. In the Guess & Check approach however the
game graph includes both information.
At the claim-nodes of shape Claim(S, P, Prej, ρε), refuter only wins if she can enforce a play

ending in w with ρw ∈ P , which represent the possible plays, and if the derived words w are
not accepted by the automaton. With the attractor, we check both conditions, the first in
the verify-branch and the second in the skip-branches.
Second, we studied how the three approaches deal with a non-deterministic automaton on

the right-hand side of the inclusion. Both the saturation and the Guess & Check approach
do not get around an upfront determinization of the automaton as they need the whole state
space of the automaton before at the beginning of their computations. The summary approach
however determinizes the automaton on-the-fly along the terminal words that are derivable in
the grammar. Key to this ability are the separate computation of the possible resp. winning
plays, the bottom-up computation of the plays and the proper use of the power of the boxes.
Finally, we compared the intermediary information computed by the respective fixed-point

iterations of the three approaches.
First, we related the formulas σ(k)q,X of the alternative summary algorithm to the transitions

q
X−−−→

∗
A

k

K that were added to the alternating automaton during the saturation. The right-

hand sides of the transitions correspond to the clauses K of the formulas σ(k)q,X . If the box
automaton of A is used as base for the saturation algorithm, the right-hand sides of the
transitions ρ X−−−→

∗
A

k

K correspond to the clauses of formula ρ;σ
(k)
X . This result furthermore

showed that composition of plays by paths in the saturation algorithm does not allow to make
use of the power of the boxes.
Second, we related the formulas σ(k)q,X resp. σ(k)X to the verify-nodes of shape Verify(X,K, q)

resp. Verify(X,K, ρ) (if we use the box automaton as base for the construction of the game
graph) that are contained in the k-th fixed-point approximants of the attractor. The predic-
tions K correspond to the clauses of the formulas σ(k)q,X resp. ρ;σ

(k)
X .

At the end, we presented an adaptation of the Guess & Check algorithm that makes use of
the ;-operator to compose the plays. This allows us to only keep verify-nodes Verify(X,K, ρε)
in the game graph.

Future Work For future work, we would first like to include the work of Ong and Kobayashi [6],
and Vardi [7] into our comparison by adapting their algorithms to context-free games.
Second, we intend to extend the comparison to liveness synthesis, where the program tem-

plate is given by a context-free game and the specification by a Büchi automaton. The
liveness synthesis problem asks to solve whether prover can enforce the derivation of an ω-
word that is accepted by the Büchi automaton. Actually, both the works of Cachat [1] and
Walukiewicz [10] already consider pushdown game systems with a Büchi resp. parity automa-
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ton on the right-hand side of the inclusion. In [8], the summary algorithm has been lifted to
liveness.
Finally, we would like to lift the left-hand side of the inclusion to higher-order recursion

schemes and adapt the algorithms to solve the resulting synthesis problem.
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