
Logic

Roland Meyer

TU Kaiserslautern

Summer Term 2014

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 1 / 189

Logic

Lecture:
Mi 11.45 - 13.15 Uhr 52-207

Informations
http://concurrency.informatik.uni-kl.de/teaching.html

The lecture is based on the German script Einführung in die Logik

Links to English lecture notes can be found on the lecture website

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 2 / 189

Organizational Matters

Exercise sheets:

One sheet every two weeks
Sheets are handed out on Wednesday, and are to be handed in on
Friday (one week later) in the box near room 401 and the SoftTech
workgroup
Groups of three people, first sheet is handed out today

Exercises:

Alternating sheet exercises and presence exercises
First exercise: next week (presence exercise)
Registration starting 14:00 today, via the STATS system
Tutors: Martin Köhler, Jonathan Kolberg, Elisabeth Neumann, Albert
Schimpf

Requirements for admission to the final exam:

Participation in the exercises (mandatory)
At least 60% of the exercises on the sheets solved with +
Presentation of one solution at the blackboard
Passed the midterm exam (in the 1st or 2nd try)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 3 / 189

Contents

1 Foundations of Propositional Logic
Syntax
Semantics
Compactness Theorem of Propositional Logic

2 Deductive Perspective on Propositional Logic
Deductive Systems
The Deductive System F0

Sequent Calculus

3 Algorithmic Perspective on Propositional Logic
Semantic Tableaux
Normal Forms
Davis-Putnam Algorithms
Resolution

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 4 / 189

4 Foundations of Predicate Logic
Syntax
Semantics
Substitution
Normal Forms
Herbrand Theory
Semi-Decidability of Validity
Lower Bound for Validity
Compactness Theorem of First-Order Logic

5 Deductive Perspective on Predicate Logic
Logical Consequence
The Deductive System F
First Order Theories
Axiomatization

6 Algorithmic Perspective on Predicate Logic
Semantic Tableaux
Unification
Resolution

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 5 / 189

Introduction

Methods for solving problems with the help of computers
Formalization

Logic: Science of sound reasoning or Science of the formal relations
between thought contents.

Central questions: Truth and provability of statements
mathemathical logic.

Logic in computer science:
◮ Propositional logic: Boolean algebra. Logical circuits (control

systems), optimization. SAT can be found everywhere.
◮ Predicate logic: Reasoning about data (AI, IS, SE).
◮ Modal and temporal logic: Specification and verification (hardware,

since 2000 software).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 6 / 189

Logic in Computer Science

1 Semantics of programming languages (Hoare logic).

2 Specification of functional properties.

3 Verification process in software development.
Proofs of program properties.

4 Representation of data (Predicate Abstraction).

5 Dedicated programming languages (PROLOG)

Automation of logical reasoning

1 Mechanized proofs (Methods,...)
2 Foundations of information systems (Processing of knowledge,

reasoning,. . .)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 7 / 189

Requirements

1 Mathematical foundations. Sets, relations, functions.
Formalizations: Mathematical proofs, mathematical language, i.e.
usage and meaning of the common operators of näıve logic. Also the
meaning of not, and, or, if . . . then, if and only if, exists, for all

2 Foundations for the description of formal languages. Grammars
or more generally calculi (set of objects and rules for the generation
of new objects from existing objects), generation of sets, relations and
functions, closure operators (closure of sets with respect to relations).

3 Concepts of calculability, i.e. decidable, and recursively enumerable
sets, existence of undecidable sets and uncalculable functions.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 8 / 189

Computation Models / Programming Languages

Algorithmical unsolvability?

General solvability
↓

Efficient solvability
↓

Algorithmic design
↓

P : Program in a high-level PL

x Problem
Specification

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 9 / 189

Syntactic and Semantic Verification

Syntactic analysis
Chomsky hierarchy of languages
Context-free languages
Grammars / production process

Program verification
Does P work as expected?
(Requirements) specification and (program) verification.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 10 / 189

Typical Expressions

(x + 1)(y − 2)/5 Terms as identifiers of objects.

3 + 2 = 5 Equations as special formulae

”‘29 is (not) a prime”’ Statement.

”‘3 + 2 = 5 and 29 is not a prime”’ Statement.

”‘if 29 is not a prime, then 0 = 1 is true”’ Statement.

”‘every even number larger than two is the sum of two primes”’
Statement.

2 ≤ x and (∀y ∈ N)
((2 ≤ y and y + 1 ≤ x) → not(∃z ∈ N)y ∗ z = x) Statement.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 11 / 189

Typical Expressions (Cont.)

(∀X ⊆ N)(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x + 1 ∈ X) → X = N)
Principle of mathemathical induction.

(∀X ⊆ N)(X 6= ∅ → X has a minimal element)
Every nonempty set of natural numbers contains a minimal element.

Binary logic Every statement is either true or false.

There are also other options (many-valued logic).

First-order predicate logic (PL1): Only properties of elements and
quantification of element variables are allowed.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 12 / 189

Chapter I

Propositional Logic

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 13 / 189

Propositional Logic

Structure of propositions Syntax

Meaning of propositions Semantics true (1), false (0)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 14 / 189

Syntax of Propositional Logic

Definition 1.1 (Syntax)

Consider the alphabet Σ = V ∪O ∪ K with

V = {p1, p2, ...} a countable set of propositional variables,

O = {¬/1,∧/2,∨/2,→ /2,↔ /2} operators with arities
(connectives),

K = {(,)} brackets (auxiliary symbols).

The set of statement forms (formulae of propositional logic) F ⊆ Σ∗ is
inductively defined by:

1 V ⊆ F set of atomic propositions

2 If A,B ∈ F then (¬A), (A ∧ B), (A ∨ B), (A → B), (A ↔ B) ∈ F .

Inductive definitions implicitly use the hull operator: F is the smallest set
that contains V and satisfies 2. This addendum is often omitted.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 15 / 189

Structural Induction

Properties of elements in F are proven by structural induction, i.e.
induction over the structure of formulae.

Let for example f : F × N → N be defined by

f (A, i) := Number of opening (minus number of closing

brackets) in the first i letters of A.

The following statement can be proven via structural induction:

Lemma 1.2

For every formula A ∈ F and for all 1 ≤ i < |A| it is f (A, i) > 0.
Moreover, f (A, |A|) = 0.

Corollary 1.3

Let A ∈ F and B ∈ Σ∗ a true prefix of A. Then B /∈ F .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 16 / 189

Theorem 1.4 (Uniqueness Theorem)

Every formula A ∈ F is either atomic or can be uniquely represented as
A ≡ (¬A1) or A ≡ (A1 ∗ A2) with ∗ ∈ {∧,∨,→,↔} and A1,A2 ∈ F .

Here ≡ ⊆ Σ∗ ×Σ∗ is the syntactical equality of words, so the formulae are
identical letter for letter.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 17 / 189

Conventions: Abbreviations and Priorities

Examples for formulae in proposition logic are

p1, p101, (((p1 → p2) ∧ (¬p2)) → (¬p1)), (p1 ∨ (¬p1))

Omit outer brackets

For improved readability: Priorities: ¬,∧,∨,→,↔

A ∧ B → C stands for ((A ∧ B) → C)

A ∨ B ∧ C stands for (A ∨ (B ∧ C))

¬A ∨ B ∧ C stands for ((¬A) ∨ (B ∧ C))

A ∨ B ∨ C stands for ((A ∨ B) ∨ C) (left-first bracketing).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 18 / 189

Semantics

Definition 1.5 (Valuation)

A valuation of propositional formulae is a function ϕ : F → B := {0, 1},
so that:

ϕ(¬A) = 1− ϕ(A)

ϕ(A ∨ B) = max(ϕ(A), ϕ(B))

ϕ(A ∧ B) = min(ϕ(A), ϕ(B))

ϕ(A → B) =

{

0 if ϕ(A) = 1 and ϕ(B) = 0

1 else

ϕ(A ↔ B) =

{

0 if ϕ(A) 6= ϕ(B)

1 if ϕ(A) = ϕ(B)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 19 / 189

Assignments and Valuations (Cont.)

We say: A is false under ϕ, if ϕ(A) = 0
A is true under ϕ or ϕ satisfies A, if ϕ(A) = 1.

Notation of valuations using truth tables:

A ¬A
1 0
0 1

A B A ∨ B A ∧ B A → B A ↔ B

0 0 0 0 1 1
0 1 1 0 1 0
1 0 1 0 0 0
1 1 1 1 1 1

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 20 / 189

Assignments and Valuations (Cont.)

An assignment of the variables V is a function ψ : V → B.

Every valuation induces a unique assignment: ψ(pi) := ϕ(pi).

Lemma 1.6

Every assignment ψ : V → B can be extended to a valuation ϕ : F → B in
exactly one way. In particular, every valuation is uniquely determined by
the values of V .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 21 / 189

Assignments and Valuations (Cont.)

Consequence 1.7

The valuation of a statement form A ∈ F depends only on the values of
the propositional variables from V that occur in it. I.e. if one wants to
compute ϕ(A), it suffices to know the values ϕ(p) for all propositional
variables p occurring in A.

Example: Let ϕ(p) = 1, ϕ(q) = 1, ϕ(r) = 0. ϕ(A) can be computed
iteratively:

A ≡ ((p
︸︷︷︸

1

→ (q
︸︷︷︸

1

→ r
︸︷︷︸

0

)

︸ ︷︷ ︸

0

)

︸ ︷︷ ︸

0

→ ((p
︸︷︷︸

1

∧ q
︸︷︷︸

1

)

︸ ︷︷ ︸

1

→ r
︸︷︷︸

0

)

︸ ︷︷ ︸

0

)

︸ ︷︷ ︸

1

So ϕ(A) = 1.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 22 / 189

Assignments and Valuations (Cont.)

Which values does ϕ(A) attain, when ϕ runs through all assignments?

A defines a boolean function fA : Bn → B.

Is ϕ(A) = 1 for all assignments ϕ?

It suffices to check the finitely many assignments of the variables
occurring in A.

If n variables occur in A, there are 2n different assignments.

Example: For the three variables p, q and r from the example above,
there are 8 assignments that must be considered.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 23 / 189

Assignments and Valuations (Cont.)

p q r q → r p ∧ q p → (q → r) (p ∧ q) → r A
0 0 0 1 0 1 1 1
0 0 1 1 0 1 1 1
0 1 0 0 0 1 1 1
0 1 1 1 0 1 1 1
1 0 0 1 0 1 1 1
1 0 1 1 0 1 1 1
1 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1

A is true independently of the values of p, q, r , i.e. for every valuation ϕ.
Other such formulae are:
(A → (B → A)), (A → (B → C)) → ((A → B) → (A → C)) or
((¬A → ¬B) → (B → A)).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 24 / 189

Important Terms

Definition 1.8

Let A ∈ F , Σ ⊆ F .

1.(a) A is called tautology (valid), if ϕ(A) = 1 for every valuation ϕ.
(Notation |= A)

(b) A is satisfiable, if there is a valuation ϕ so that ϕ(A) = 1.

(c) A is contradictory, if ϕ(A) = 0 for every valuation ϕ.

(d) TAUT := {A ∈ F | A is tautology} the set of tautologies.

(e) SAT := {A ∈ F | A is satisfiable} the set of satisfiable formulae.
Note that TAUT ⊆ SAT.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 25 / 189

Definition (Cont.)

2.(a) Σ is satisfiable, if there is a valuation ϕ with ϕ(A) = 1 for all A ∈ Σ.
(ϕ satisfies Σ)

(b) Semantic notion of inference: A is logical consequence of Σ, if
ϕ(A) = 1 for every valuation ϕ that satisfies Σ.

We write Σ |= A. Also A1, . . . ,An |= A, if Σ = {A1, . . . ,An}.

(c) The set Cons(Σ) of consequences of Σ is defined by:

Cons(Σ) := {A ∈ F | Σ |= A}.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 26 / 189

Examples

Example 1.9

1 (p ∨ (¬p)), ((p → q)∨ (q → r)), p → (q → p), (p → p), (p → ¬¬p)
and A from consequence 1.7 are tautologies.

2 (p ∧ (¬p)) is contradictory.

3 (p ∧ q) is satisfiable, but neither a tautology nor a contradiction.

4 Let Σ = {p} and A = p ∨ q. Then Σ |= A, because if ϕ(p) = 1, then
also ϕ(p ∨ q) = 1. Every valuation that satisfies Σ, also satisfies A.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 27 / 189

Consequences

Lemma 1.10

(a) A valid iff ¬A contradictory.

(b) ∅ |= A iff A is a tautology: Cons(∅) = TAUT.

(c) If Σ is not satisfiable, then Σ |= A for all A ∈ F : Cons(Σ) = F . In
particular, Σ |= A and Σ |= ¬A for A ∈ F .

(d) Let Σ ⊆ Σ′. If Σ′ is satisfiable, then Σ is also satisfiable.

(e) Σ ⊆ Cons(Σ) and Cons(Cons(Σ)) = Cons(Σ).

(f) If Σ ⊆ Σ′, then Cons(Σ) ⊆ Cons(Σ′).

(g) Σ |= A iff Σ ∪ {¬A} unsatisfiable.

(h) If Σ is finite, then it is decidable whether Σ is satisfiable, and the set
Cons(Σ) ist decidable.

(i) The sets TAUT,SAT are decidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 28 / 189

Deduction Theorem and Modus Ponens

Lemma 1.11

a) Deduction theorem (semantic version):

Σ,A |= B iff Σ |= (A → B).

(Σ,A is shorthand for Σ ∪ {A})

b) Modus ponens:

{A,A → B} |= B .

In particular, B is a tautology if A and (A → B) are tautologies.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 29 / 189

Compactness Theorem of Propositional Logic

Theorem 1.12 (Compactness Theorem)

Σ ⊆ F is satisfiable iff every finite subset of Σ is satisfiable.
Σ ⊆ F is unsatisfiable iff there is an unsatisfiable finite subset of Σ.

Corollary 1.13

Σ |= A iff there is a finite subset Σ0 ⊆ Σ with Σ0 |= A.

The second part of the theorem is the basis for proof methods for
Σ |= A. This is the case, if Σ ∪ {¬A} is unsatisfiable.

Proofs by contradiction try to systematically find a finite set Σ0 ⊆ Σ
so that Σ0 ∪ {¬A} is unsatisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 30 / 189

Applications for the Compactness Theorem

Example 1.14

Let Σ ⊆ F . If for every valuation ϕ there is a A ∈ Σ with ϕ(A) = 1, then
there are A1, ...,An ∈ Σ (n > 0) with |= A1 ∨ ... ∨ An.

• Consider the set Σ′ = {¬A ∈ F | A ∈ Σ}, which is unsatisfiable.
Hence there is a finite nonempty subset {¬A1, ...,¬An} of Σ′ that is
unsatisfiable.
Thus, for every valuation ϕ there is an i with ϕ(¬Ai) = 0.
So we have ϕ(Ai) = 1 and thus ϕ(A1 ∨ ... ∨ An) = 1.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 31 / 189

Logical Equivalence

Definition 1.15 (Logical Equivalence)

Formulae A,B ∈ F are called logically equivalent, A |==|B , if for every
valuation ϕ we have ϕ(A) = ϕ(B).

Examples of logically equivalent formulae:

(Involution) A |==|¬(¬A)

(Idempotence) A |==|A ∧ A A |==|A ∨ A

(Commutativity) A ∧ B |==|B ∧ A A ∨ B |==|B ∨ A

(Associativity) A ∧ (B ∧ C) |==|(A ∧ B) ∧ C

A ∨ (B ∨ C) |==|(A ∨ B) ∨ C

(Distributivity) A ∧ (B ∨ C) |==|(A ∧ B) ∨ (A ∧ C)

A ∨ (B ∧ C) |==|(A ∨ B) ∧ (A ∨ C)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 32 / 189

Logical Equivalence (Cont.)

(De Morgan) ¬(A ∧ B) |==|¬A ∨ ¬B ¬(A ∨ B) |==|¬A ∧ ¬B

A → B |==|¬A ∨ B A ↔ B |==|(A → B) ∧ (B → A)

A ∧ B |==|¬(A → ¬B) A ∨ B |==|¬A → B

Lemma 1.16

Logical equivalence |==| ⊆ F × F is an equivalence relation, that means it
is reflexive, symmetric and transitive.

It is even a congruence: if one replaces a subformula B in formula A by
C |==|B, the result is A′ |==|A.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 33 / 189

Logical Equivalence (Cont.)

Lemma 1.17

The following statements are equivalent:

|= A ↔ B A |==|B

A |= B and B |= A Cons(A) = Cons(B)

Lemma 1.18

For every formula A ∈ F there are B ,C ,D ∈ F with

1 A |==|B, B contains only → and ¬ as connectives

2 A |==|C , C contains only ∧ and ¬ as connectives

3 A |==|D, D contains only ∨ and ¬ as connectives

Results from the equivalences above.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 34 / 189

Logical Equivalence (Cont.)

Definition 1.19 (Complete Sets of Operators)

A set OP ⊆ {¬,∨,∧,→,↔} is called complete, if for every A ∈ F there
is a logically equivalent formula B ∈ F (OP). Here F (OP) is the set of
formulae with connectives from OP .

Complete sets of operators for propositional logic are f.ex.:
{¬,→}, {¬,∨}, {¬,∧}, {¬,∨,∧}, {false,→}.

Here false is a constant with ϕ(false) = 0 for every valuation ϕ.
Obviously ¬A |==|(A → false).

Normal forms: DNF (Disjunctive normal form), CNF (Conjunctive
normal form), CDNF, CCNF (Canonical forms).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 35 / 189

Boolean Functions

Every formula A(p1, . . . , pn) can be considered a boolean function
fA : Bn → B, defined as fA(b1, ..., bn) := ϕb(A) where ϕb(pi) := bi .

It can be shown that every boolean function f : Bn → B (n > 0) in
the above form can be represented by a formula A(p1, . . . , pn),
provided that the set of operators is complete.

Boolean algebra has as its usual set of operators true, false, not, or,
and.

For other sets of operators, containing f.ex. nand, nor, see the digital
logic. It favors nand and nor gates, as they require only two
transistors.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 36 / 189

Boolean Functions: Example

A patient monitoring system gets certain data about a patient’s condition:
temperature, blood pressure, pulse rate. The threshold values for the data
are as follows:

Conditions
In/Outputs Meaning

A Temperature outside 36-39 degrees C.
B Blood pressure outside 80-160 mm.
C Pulse rate outside 60-120 beats per minute.
O Alarm activation is necessary

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 37 / 189

Boolean Functions: Example (Cont.)

The requirements, i.e. which combinations of values necessitate alarm
activation, are determined by the medical expert. They are given in the

following table:

I/O table
A B C O
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Logical Design: Consider the
columns in which O has the
value 1 and construct the
CDNF:

(¬A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ C)∨

(A ∧ B ∧ ¬C) ∨ (A ∧ B ∧ C)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 38 / 189

Boolean Functions: Example (Cont.)

As a realization one could take the following combinatorial circuit:

AND

AND

OR

OR

AND

INPUTS

A

B

C

1

2

3

4

5

OUTPUT

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 39 / 189

Deductive Perspective on Propositional Logic

This section deals with an axiomatic construction of propositional logic by
means of a deductive system or proof calculus.

A syntactically correct formula in a deductive system is called theorem, if
it can be derived by purely mechanical applications of the system’s rules to
its axioms.

There are deductive systems in which propositional formulae are theorems
if and only if they are also tautologies.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 40 / 189

Deductive Systems

Definition 2.1 (Deductive System)

A deductive system F(Ax,R) consists of

an alphabet ∆,

a set of formulae F ⊆ ∆⋆,

a set of axioms Ax ⊆ F and

a set R of rules of the form
A1, . . . ,An

A
with n > 0 and

A1, ...,An,A ∈ F .

The sets F ,Ax and R are typically decidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 41 / 189

Deductive Systems (Cont.)

Definition 2.2

The set T = T (F) of theorems is inductively defined by:

1 Ax ⊆ T all axioms are theorems

2 If A1, . . . ,An ∈ T and
A1, . . . ,An

A
in R , then A ∈ T .

Write A ∈ T (F) as ⊢F A or ⊢ A and say A is derivable in F .

Deductive notion of inference: Let Σ ⊆ F , A ∈ F . Then A in F is
derivable from Σ, short Σ ⊢F(Ax ,R) A, if ⊢F(Ax∪Σ,R) A. Also:

ConsF (Σ) := {A ∈ F | Σ ⊢F(Ax ,R) A}.

Σ is called consistent, if there is no formula A ∈ F so that Σ ⊢ A and
Σ ⊢ ¬A.
If such a formula exists, then Σ is called inconsistent.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 42 / 189

Proofs

Note 2.3

Formula A is derivable in F if there is a finite sequence of formulae
B1, . . . ,Bn with A ≡ Bn and for 1 ≤ i ≤ n we have:

Bi ∈ Ax or there are i1, . . . , il < i and
Bi1 . . .Bil

Bi
∈ R.

The sequence B1, . . . ,Bn is also called proof for A in F .

A finite sequence B1, . . . ,Bn is called abbreviated proof for Σ ⊢ Bn, if for
1 ≤ j ≤ n we have:

Σ ⊢ Bj or there are j1, . . . , jr < j with Bj1, . . . ,Bjr ⊢ Bj .

Lemma 2.4
1 ⊢ A iff there is a proof for A.

2 There is a proof for Σ ⊢ A iff there is an abbreviated proof for Σ ⊢ A.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 43 / 189

Note

Note 2.5

Properties of elements of T are proven by structural induction.

The set T of theorems is recursively enumerable, since Ax and R are
decidable and therefore enumerable.

The set of proofs

Proof := {B1, . . . ,Bn ∈ F+ | B1, . . . ,Bn is a proof}

is decidable.

If Σ is decidable, the statements are correspondingly true. In
particular, ConsF (Σ) is enumerable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 44 / 189

Note (Cont.)

Lemma 2.6

If Σ ⊢ A, the definition of derivation implies that there is a finite
subset Σ0 ⊆ Σ with Σ0 ⊢ A.
(This corresponds to the compactness theorem for |= .)

If Σ is inconsistent, there is a finite subset Σ0 ⊆ Σ which is
inconsistent.

If Σ ⊆ Γ, then ConsF (Σ) ⊆ ConsF (Γ).

Σ ⊢ A and Γ ⊢ B for all B ∈ Σ implies that Γ ⊢ A.
If Σ ⊆ ConsF (Γ), then ConsF (Σ) ⊆ ConsF (Γ).
(Proofs can be composed.)

If Σ ⊢ A, then {Σ,¬A} is inconsistent.
(Is the inverse true as well?)

T (F) ⊆ ConsF (Σ) for every set Σ.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 45 / 189

Schemata

Is there a deductive system F0 so that

⊢F0 A iff |= A?

For this purpose, Ax and R are often finitely described by means of
schemata.
For example, the schema A → (B → A) describes the set

{A0 → (B0 → A0) | A0,B0 ∈ F}

The schema A,A → B
B

describes the set of rules

{
A0,A0 → B0

B0
| A0,B0 ∈ F}.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 46 / 189

The Deductive System F0

Introduced by Stephen Cole Kleene (1909 — 1994).

Definition 2.7 (The deductive system F0)

The deductive system F0 for propositional logic consists of the set F0 of
formulae in V ,¬,→, (and). The set of axioms Ax is described by the
following axiom schemata:

Ax1: A → (B → A)

Ax2: (A → (B → C)) → ((A → B) → (A → C))

Ax3: (¬A → ¬B) → (B → A)

The set of rules R is described by the rule schema

MP:
A, (A → B)

B
(modus ponens).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 47 / 189

Notes on the Deductive System F0

Ax1, Ax2 and Ax3 describe disjoint sets of formulae.

Ax and R are decidable.

All axioms are tautologies. Since those are closed under modus
ponens, all theorems are tautologies: T (F0) ⊆ Taut(F0).

The modus ponens rule is not unambiguous:
A,A → B

B
and

A′,A′ → B
B

derive the same formula. Makes it harder to find proofs.

It suffices to consider only axioms for formulae in → and ¬. Other
formulae are logically equivalent to these.

For proofs in the entire F , additional axioms are required, such as:

Ax1∧ :(A ∧ B) → ¬(A → ¬B) Ax2∧ :¬(A → ¬B) → (A ∧ B)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 48 / 189

Example

Example 2.8

For all A ∈ F0 we have ⊢ (A → A), so (A → A) ∈ T (F0)

Proof:

B0 ≡ (A → ((A → A) → A)) →
((A → (A → A)) → (A → A)) Ax2

B1 ≡ A → ((A → A) → A) Ax1
B2 ≡ (A → (A → A)) → (A → A) MP(B0,B1)
B3 ≡ A → (A → A) Ax1
B4 ≡ A → A MP(B2,B3)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 49 / 189

Deduction Theorem

How to find proofs in the system F0?

Only clue: if target formula B is not an axiom, it must occur in the form
(A1 → . . . (An → B) . . .). Choose fitting A.

Helpful:

Theorem 2.9 (Deduction Theorem (syntactic version))

Let Σ ⊆ F0 and A,B ∈ F0. Then

Σ,A ⊢ B iff Σ ⊢ (A → B).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 50 / 189

Applications of the Deduction Theorem

Example 2.10

To show ⊢ ¬¬A → A, it suffices to show ¬¬A ⊢ A.

Proof:

B1 ≡ ¬¬A
B2 ≡ ¬¬A → (¬¬¬¬A → ¬¬A) Ax1
B3 ≡ ¬¬¬¬A → ¬¬A MP
B4 ≡ (¬¬¬¬A → ¬¬A) → (¬A → ¬¬¬A) Ax3
B5 ≡ ¬A → ¬¬¬A MP
B6 ≡ (¬A → ¬¬¬A) → (¬¬A → A) Ax3
B7 ≡ ¬¬A → A MP
B8 ≡ A MP

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 51 / 189

Applications of the Deduction Theorem (Cont.)

Lemma 2.11

The following formulae are theorems in F0:

(Transitivity of implication) ⊢ (A → B) → ((B → C) → (A → C)) (1)

(Implication from inconsistency) ⊢ ¬B → (B → A) (2)

(Double negation) ⊢ B → ¬¬B (3)

(Contraposition) ⊢ (A → B) → (¬B → ¬A) (4)

(Implication) ⊢ B → (¬C → ¬(B → C)) (5)

(Auxiliary lemma 1) ⊢ (A → B) → ((A → ¬B) → (A → ¬Ax)) (E1)

(Auxiliary lemma 2) ⊢ (A → ¬Ax) → ¬A (E2)

(Negation from inconsistency) ⊢ (A → B) → ((A → ¬B) → ¬A) (6)

(Elimination of assumptions) ⊢ (B → A) → ((¬B → A) → A) (7)

Σ ⊢ A iff Σ ∪ {¬A} is inconsistent.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 52 / 189

Soundness and Completeness of F0

Question: Can all tautologies be derived as theorems in the system F0?

Theorem 2.12 (Soundness and Completeness of F0)

Let A ∈ F0 a formula of propositional logic.

a) Soundness: ⊢F0 A implies |= A, only tautologies can be derived as
theorems in F0.

b) Completeness: |= A implies ⊢F0 A, all tautologies can be derived in F0.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 53 / 189

Soundness and Completeness of F0 (Cont.)

As a tool we use:

Lemma 2.13

Consider A(p1, . . . , pn) ∈ F0 with n > 0. Let ϕ be a valuation. With

Pi :=

{
pi , if ϕ(pi) = 1
¬pi , if ϕ(pi) = 0

A′ :=

{
A, if ϕ(A) = 1
¬A, if ϕ(A) = 0

we have P1, . . . ,Pn ⊢ A′.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 54 / 189

Consequence

Consequence 2.14

Let Σ ⊆ F0,A ∈ F0.

Σ ⊢F0 A iff Σ |= A.

Σ is consistent iff Σ is satisfiable.

If Σ is finite and A ∈ F0, then Σ ⊢F0 A is decidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 55 / 189

Proof

Proof:

Σ ⊢F0 A

2.6
⇐⇒ There are A1, . . . ,An ∈ Σ with A1, . . . ,An ⊢F0 A

D.T.
⇐⇒ There are A1, . . . ,An ∈ Σ with

⊢F0 (A1 → (A2 → . . . (An → A) . . .))

2.12
⇐⇒ There are A1, . . . ,An ∈ Σ with

|= (A1 → (A2 → . . . (An → A) . . .))

D.T.
⇐⇒ There are A1, . . . ,An ∈ Σ with A1, . . . ,An |= A

C.T.
⇐⇒ Σ |= A

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 56 / 189

Proof (Cont.)

Proof:

Σ is consistent

⇐⇒ There is no A with Σ ⊢ A and Σ ⊢ ¬A

⇐⇒ There is no A with Σ |= A and Σ |= ¬A

⇐⇒ Σ is satisfiable. (Lemma 1.10(c)).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 57 / 189

Sequent Calculus

There are other sound and complete deductive systems.
The following system is due to Gerhard Gentzen (1909 — 1945).
It is especially suited for automating proofs.

Definition 2.15 (Gentzen Sequent Calculus)

Let Γ,∆ ⊆ F finite sets of formulae. A sequent is a character sequence of
the form Γ ⊢G ∆.

Semantic interpretation of sequents: For every valuation ϕ there is a
formula A ∈ Γ with ϕ(A) = 0 or there are B ∈ ∆ with ϕ(B) = 1.

If Γ = {A1, . . . ,An} and ∆ = {B1, . . . ,Bm}, then the sequent Γ ⊢G ∆
corresponds to the formula

(A1 ∧ · · · ∧ An) → (B1 ∨ · · · ∨ Bm).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 58 / 189

Sequent Calculus (Cont.)

Definition 2.15 (Gentzen Sequent Calculus (Cont.))

The calculus for objects of the form Γ ⊢G ∆ is defined by the axioms:

(Ax1) Γ,A ⊢G A,∆ (Ax2) Γ,A,¬A ⊢G ∆ (Ax3) Γ ⊢G A,¬A,∆

The rules of the sequent calculus are as follows:

R∧,∨:
Γ,A,B ⊢G ∆
Γ,A ∧ B ⊢G ∆

Γ ⊢G A,B ,∆
Γ ⊢G A ∨ B ,∆

R→:
Γ,A ⊢G ∆,B

Γ ⊢G A → B ,∆
Γ ⊢G A,∆ ; Γ,B ⊢G ∆

Γ,A → B ⊢G ∆

R¬:
Γ,A ⊢G ∆
Γ ⊢G ¬A,∆

Γ ⊢G A,∆
Γ,¬A ⊢G ∆

R∧′ : Γ ⊢G A,∆ ; Γ ⊢G B ,∆
Γ ⊢G A ∧ B ,∆

R∨′ :
Γ,A ⊢G ∆ ; Γ,B ⊢G ∆

Γ,A ∨ B ⊢G ∆

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 59 / 189

Sequent Calculus (Fort.)

A sequent Γ ⊢G ∆ is called derivable, if there is a finite sequence of
sequents Γ1 ⊢G ∆1, . . . , Γr ⊢G ∆r with Γr ≡ Γ, ∆r ≡ ∆ and

Every Γj ⊢G ∆j with 1 ≤ j ≤ r is an axiom or follows from previous
sequence elements due to a rule.

Theorem 2.16

The sequent calculus is

sound: Γ ⊢G ∆ implies Γ |= ∆

complete: Γ |= ∆ implies Γ ⊢G ∆.

Here Γ |= ∆ with ∆ ⊆ F is finitely defined as Γ |=
∨

B∈∆ B.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 60 / 189

Example

Proofs in sequent calculus are constructed bottom-up and tree-like:

Example 2.17

p ∨ q,¬p ∨ r ⊢G q ∨ r

Proof:

q,¬p ∨ r ⊢ q, r Ax1
p, r ⊢ q, r Ax1
p,¬p ⊢ q, r Ax2
p,¬p ∨ r ⊢ q, r R∨′

p ∨ q,¬p ∨ r ⊢ q, r R∨′

p ∨ q,¬p ∨ r ⊢ q ∨ r R∨

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 61 / 189

We consider methods to decide whether Σ |= A is true for a given finite
set Σ ⊆ F and A ∈ F .

The previously considered methods check all assignments of the variables
occurring in the formulae, or enumerate the theorems of a suitable
deductive system. This is very expensive.

Use satisfiability checker:

Σ |= A iff Σ ∪ {¬A} unsatisfiable.

The complexity of satisfiability stays large: SAT is NP-complete.

Look for methods, which are faster than the brute force method when
provided with usual input.

Semantic Tableaux Davis-Putnam Resolution.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 62 / 189

Semantic Tableaux: Example

Show that ¬((p ∨ (q ∧ r)) → ((p ∨ q) ∧ (p ∨ r))) is unsatisfiable.

Satisfiability check: ¬((p ∨ (q ∧ r)) → ((p ∨ q) ∧ (p ∨ r)))

p ∨ (q ∧ r)

¬((p ∨ q) ∧ (p ∨ r))

p

¬(p ∨ q)

¬q

¬p

¬(p ∨ r)

¬p

¬r

q ∧ r

q

r

¬(p ∨ q)

¬p

¬q

¬(p ∨ r)

¬p

¬r

Since all branches lead to contradictions, the formula is unsatisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 63 / 189

Semantic Tableaux: Example (Cont.)

Find all valuations that fulfill A ≡ (p → q) ∨ (¬q → r):

(p→ q) ∨ (¬q → r)

p→ q

¬p q

¬q → r

¬¬q

q

r

Thus, {ϕ : F → B | ϕ(p) = 0 oder ϕ(q) = 1 oder ϕ(r) = 1} is the set
of all valuations that satisfy A

At the leaves, a logically equivalent DNF can be read: ¬p ∨ q ∨ r

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 64 / 189

Intuition for Tableaux

The satisfying validations of the root formula are the union of the
satisfying valuations of all branches.

For every satisfying valuation of the root formula, there is a branch in
the tableau so that all its formulae are satisfied by that valuation.

Conversely, every satisfiable branch defines satisfying validations of
the root formula.

Trick: If the formulae are maximally unfolded (the tableau is complete),
satisfying valuations or contradictions are immediately visible.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 65 / 189

Definition of Tableaux

Two kinds of formulae: β-formulae cause branching, α-formulae do not
cause branching:

α-formulae with components α1 and α2 lead to child nodes with
markings α1 and α2:

α ¬¬A A1 ∧ A2 ¬(A1 ∨ A2) ¬(A1 → A2)

α1 A A1 ¬A1 A1

α2 (A) A2 ¬A2 ¬A2

β-formulae with components β1 and β2 lead to branches with node
markings β1 and β2:

β

β1 β2

¬(A1 ∧ A2)

¬A1 ¬A2

A1 ∨ A2

A1 A2

A1 → A2

¬A1 A2

Note: Every formula is a literal (p or ¬p with p ∈ V), an α- or a
β-formula, and exactly one of these three types.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 66 / 189

Definition of Tableaux (Cont.)

Definition 3.1 (Tableau)

Tableaux are binary trees whose nodes are marked with formulae in F .
The set of tableaux TA for A ∈ F is inductively defined by:

(a) τA ∈ TA, where τA has one node labeled with A:

A

(b) If τ ∈ TA and δ the marking of a leaf of τ , then τ can be extended to
a tableau τ ′ ∈ TA as follows:

(α) Add two subsequent nodes to δ that are marked with α1 and α2 if the
α-formula α occurs on the branch to δ:

α

δ

α1

α2

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 67 / 189

Definition of Tableaux (Cont.)

Definition 3.1 (Tableau (Cont.))

(β) Add in τ ′ as successors of δ two nodes that are marked with the
components β1 and β2 of a β-formula β if β occurs on the branch to
δ:

β

δ

β1 β2

In the following, branches in τ ∈ TA are identified with their formula set
Θ ⊆ F .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 68 / 189

Properties of Tableaux I: Semantics

Lemma 3.2

Let A ∈ F a formula and τ ∈ TA a tableau for A. Then

A is satisfiable iff ∃ branch Θ ∈ τ : Θ is satisfiable.

The lemma follows from a stronger statement. For every valuation ϕ:

ϕ satisfies A iff ∃ branch Θ ∈ τ : ϕ satisfies Θ.

The satisfying valuations of the branches are exactly the satisfying
valuations of the root formula.

Tableaux are not unique, but Lemma 6.2 has the following consequence:
Either every tableau τ ∈ TA has a satisfiable branch or none of them.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 69 / 189

Complete and Closed Sets and Tableaux

The notion of branch satisfiability is of semantical nature.
The goal of tableaux is to
ccemphautomatically check the satisfiability of formulae.
For this purpose, satisfiability must be characterized synctactically.

Definition 3.3

A set of formulae Θ ⊆ F is called complete if for α ∈ Θ we also have
{α1, α2} ⊆ Θ and for β ∈ Θ also β1 ∈ Θ or β2 ∈ Θ.

A tableau τ is called complete if every branch Θ ∈ τ is complete.

A set of formulae Θ is called closed if there is a formula B ∈ F so
that {B ,¬B} ⊆ Θ. Otherwise the set is called open.

A tableau τ is called closed if every branch Θ ∈ τ is closed.

Every tableau can be extended to a complete tableau.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 70 / 189

Properties of Tableaux II: Syntax

Lemma 3.4 (Hintikka)

Let Θ ⊆ F complete. Then Θ is satisfiable iff Θ is open.

Closed sets are per definition unsatisfiable.

For the converse direction let Θ be a complete and open set. Define

ϕ(p) :=

{

0 ¬p ∈ Θ

1 otherwise.

Valuation ϕ is well-defined.

Show via induction over the size of Θ that ϕ(A) = 1 for all A ∈ Θ.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 71 / 189

Soundness and Completeness of Tableaux

Theorem 3.5

A formula A ∈ F is unsatisfiable iff there is a closed tableau τ ∈ TA.

There is a closed tableau for A iff all complete tableaux for A are closed.

The tableau method is due to Evert Willem Beth (1908 — 1964).

Complete and open formula sets are Hintikka sets, due to Jaakko Hintikka
(∗1929). Hintikka’s lemma shows that they are satisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 72 / 189

Soundness and Completeness of Tableaux (Cont.)

Proof (of Theorem 3.5)

Let A be unsatisfiable.
Every tableau can be extended to a complete tableau. Hence, for A there
is a complete tableau τ ∈ TA.
By lemma 6.2, all branches Θ ∈ τ are unsatisfiable.
By lemma 6.4, all branches Θ ∈ τ are closed.
Hence, there is a closed tableau τ ∈ TA.

For the converse direction let τ ∈ TA be closed.
Closed branches are unsatisfiable.
With lemma 6.2, formula A is unsatisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 73 / 189

Tableaux for Sets of Formulae

Let Σ ⊆ F a possibly infinite set of formulae.
The set TΣ of the tableaux for Σ is defined as before, with the difference
that

the construction begins with a formula A ∈ Σ and

in every step, σ ∈ Σ may be appended to a leaf δ.

The tableau τ ∈ TΣ is called complete if in addition to the previous
requirements every branch Θ ∈ τ contains the set Σ, so Σ ⊆ Θ.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 74 / 189

Tableaux for Sets of Formulae (Cont.)

Lemma 3.6

Let Σ ⊆ F and τ ∈ TΣ with Σ ⊆ Θ for every branch Θ ∈ τ . Then:

Σ is satisfiable iff ∃ branch Θ ∈ τ : Θ is satisfiable.

Theorem 3.7

A set of formulae Σ ⊆ F is unsatisfiable iff TΣ contains a closed tableau.

The old proof still works, minding the following changes:
Lemma 6.2 is to be replaced by lemma 3.6.
For the completeness, the following lemma is required.

Lemma 3.8

For every set of formulae Σ ⊆ F there is a complete tableau τ ∈ TΣ.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 75 / 189

Systematic Construction of Tableaux

Proof of lemma 3.8 Let Σ be infinite. Given here is a non-terminating
method that constructs a sequence of tableaux

τ0 ⊆ τ1 ⊆ . . . with τ :=
⋃

i∈N

τi complete.

Since Σ ⊆ F , Σ is countable, hence Σ = {A0,A1, . . .}.

Use a FIFO worklist WL := ∅ to store nodes.
Use a counter j := 0, to iterate through Σ.

τ0 := τA0
. If A0 is not a literal, push the node of A0 into WL.

τn+1 is generated from τn as follows.

If WL 6= ∅, pop WL. Let the node be labeled with Y ∈ F .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 76 / 189

Systematic Construction of Tableaux (Cont.)

If Y is an α-formula, extend every branch that passes the node of Y
by the subformulae α1 and α2:

α1

α2

If α1 or α2 aren’t literals, add all new nodes labeled with α1 bzw. α2

to the worklist.

If Y is a β-formula, extend every branch that passes Y by

β1 β2

If the subformulae β1, β2 aren’t literals, add the corresponding nodes
to the worklist.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 77 / 189

Systematic Construction of Tableaux (Cont.)

If WL = ∅, increment j and select Y := Aj .

Add nodes labeled with Y to all branches.
If Y isn’t a literal, add the nodes to the worklist.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 78 / 189

Systematic Construction of Tableaux (Cont.)

Claim: τ is complete.
To be more precise: Every branch Θ ∈ τ is complete and contains Σ.

Proof (Sketch):
Let α ∈ Θ be an α-formula.
Then it was added to the worklist when generated.
Due to the FIFO order it was processed at some point.
Hence, {α1, α2} ⊆ Θ.

Consider Ai ∈ Σ.
At some point j = i .
Assume that this is not the case.
Then there is an index for which the worklist was never emptied.
This has to be false.
With the removal of a formula A ∈ F finitely many formulae were added
to the worklist, but they were all smaller.

Exercise: Why does termination follow?

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 79 / 189

Decidability and Semi-Decidability

To derive the semi-decidability of unsatisfiability from the systematic
construction of tableaux, adapt the method as follows:

Do not add nodes to closed branches.

Lemma 3.9

(1) The systematic construction of tableaux terminates for finite Σ ⊆ F .

(2) Let Σ ⊆ F be infinite and unsatisfiable. The the modified tableau
construction algorithm terminates with a closed tableau.

Note: The compactness theorem follows from the second statement.
If Σ is unsatisfiable, then TΣ contains a finite closed tableau.
Hence, a finite subset of Σ is unsatisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 80 / 189

Decidability and Semi-Decidability (Cont.)

Lemma 3.10 (König)

Let T be an infinite tree with finite outdegree.
Then there is an infinite path in T .

Show lemma 3.9(2):

In the case of termination, the resulting tableau is closed,
since closedness is the only termination condition.

It remains to show termination.
Assume the modified method doesn’t terminate.
Then it constructs an infinite tableau τ . Since the tableau has a finite
outdegree, with König’s lemma there is an infinite path Θ ∈ τ .
As in lemma 3.8 the path contains Σ, is complete and open.
With Hintikka’s lemma, Θ is satisfiable.
So Σ is also satisfiable. Contradiction.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 81 / 189

Decidability and Semi-Decidability (Cont.)

Note 3.11

The tableau method is a semi-decision procedure for the
unsatisfiability of enumerable sets of formulae Σ ⊆ F .

The tableau method is a decision procedure for the satisfiability of
finite sets of formulae Σ ⊆ F .

For the decidability, it should be noted that for an enumerable set the
addition of a formula Ai ∈ Σ to a tableau is effective.
Moreover, the test for closedness is decidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 82 / 189

Normal Forms

Advantages:
The simpler structure of a normal form allows the use of special algorithms
for the solution of certain problems.

The transformation should not be too expensive, otherwise the effort
would not be worthwhile.

Examples:

From a DNF, all satisfying assignments can be read immediately.

From a minimal DNF one can easily derive combinatorial circuits
(with AND, OR, NOT gates).

The systematic construction of tableaux allows reading these normal
forms immediately from a complete tableau.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 83 / 189

Normal Forms (Cont.)

One can transform a formula into a

logically equivalent formula: A |==|T (A)

equisatisfiable formula: A satisfiable iff. T (A) satisfiable

We cover three of these normal forms:

Negation normal form (NNF) Form in ¬,∨,∧

Conjunctive normal form (CNF) Form in ¬,∨,∧

Disjunctive normal form (DNF) Form in ¬,∨,∧

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 84 / 189

Negation Normal Form

A formula A ∈ F is in Negation normal form (NNF) if every negation is
placed directly before a variable and there are no two directly subsequent
negations.

Definition 3.12 (NNF)

The set of formulae in NNF is inductively defined by

For p ∈ V , p and ¬p are in NNF.

If A,B are in NNF, then (A ∨ B) and (A ∧ B) are also in NNF.

Lemma 3.13

For every formula A ∈ F ({¬,∧,∨,→,↔}) there is a B ∈ F (¬,∨,∧) in
NNF with A |==|B and |B | ∈ O(|A|).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 85 / 189

Conjunctive Normal Form

Definition 3.14 (Clause)

A formula A ≡ (L1 ∨ ... ∨ Ln) with literals L1, . . . , Ln is called clause.

If all literals are negative, it is a negative clause.

If all literals are positive, it is a positive clause.

Clauses containing at most one positive literal are called Horn
clauses.

A is called k-clause if A contains at most k ∈ N literals.

1-clauses are also called unit clauses.

A formula A ≡ (A1 ∧ ... ∧ Am) is in CNF if A is a conjunction of clauses
A1, . . . ,Am.

If all of them are k-clauses, A is in k-CNF.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 86 / 189

Conjunctive Normal Form (Cont.)

Example 3.15

A ≡ (p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q) is in 2-CNF.

If one considers clauses as sets of literals, then formulae in CNF can be
represented as sets of sets of literals. For example A:

{{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}}.

Lemma 3.16

For every formula A ∈ F there is a formula B in CNF with A |==|B and
|B | ∈ O(2|A|).

The bound is strict:
There is a sequence of formulae (An)n∈N with |An| = 2n, so that every
logically equivalent formula Bn in CNF is at least of length 2n.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 87 / 189

Disjunctive Normal Form

Definition 3.17 (DNF)

A formula A ∈ F is in DNF if A is a disjunction of conjunctions of literals:

A ≡ (A1 ∨ . . . ∨ Am) mit Ai ≡ (Li1 ∧ ... ∧ Lini).

Definition 3.18 (Dual Formula)

The dual formula d(A) of a formula A ∈ F is defined as:

d(p) ≡ p für p ∈ V

d(¬A) ≡ ¬d(A)

d(B ∨ C) ≡ d(B) ∧ d(C)

d(B ∧ C) ≡ d(B) ∨ d(C).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 88 / 189

Relationships between the Normal Forms

Lemma 3.19

For every formula A ∈ F :

(1) If A is in CNF, then NNF(¬A) is in DNF.

(2) If A is in CNF, then d(A) is in DNF and vice versa.

Lemma 3.20

For every formula A ∈ F :

(1) If one sets ψ(p) := 1− ϕ(p), then ψ(d(A)) = 1− ϕ(A).

(2) A is a tautology iff d(A) is a contradiction.

(3) A is satisfiable iff d(A) is not a tautology.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 89 / 189

Davis-Putnam Algorithms

Idea: Reduce satisfiability for a formula with n ∈ N variables to the
satisfiability problem for formulae with at most n− 1 variables.

Approach: Search for a satisfying valuation by iterative choice of the
values of single variables — Bottom-Up Method.

Algorithms using this idea, heuristics and other refinements are referred to
as Davis-Putnam algorithms, due to Martin Davis (∗1928) and Hilary
Putnam (∗1926).

Requirement: Formula in NNF over ¬,∧,∨.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 90 / 189

Davis-Putnam Algorithms (Cont.)

Example 3.21 (Visualization of the processing as tree)

A ≡ ¬p ∨ ((¬q ∨ r) ∧ (q ∨ s) ∧ ¬r ∧ ¬s ∧ (p ∨ q))

(¬q ∨ r) ∧ (q ∨ s) ∧ ¬r ∧ ¬s

1

r ∧ ¬r ∧ ¬s s ∧ ¬r ∧ ¬s

r ∧ ¬r s ∧ ¬s

0 0 0 0

p = 1 p = 0

q = 1 q = 0

¬s = 1 ¬r = 1

r = 1 r = 0s = 1 s = 0

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 91 / 189

Substitution

Definition 3.22 (Substitution)

Let Formula A ∈ F in NNF and p ∈ V .
Define A[p/1] as the result of the following substitution process:

(1) Replace every occurrence of p in A by 1.

(2) Execute the following rules as long as possible:

• If a subformula ¬1 occurs, replace it by 0.
• Replace ¬0 by 1.
• Subformulae B ∧ 1 and B ∨ 0 are replaced by B.
• Subformulae B ∨ 1 are replaced by 1.
• Subformulae B ∧ 0 are replaced by 0.

A[p/0] is defined analogously, with p being replaced by 0.

In general, use A[l/1] or A[l/0] for literals l .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 92 / 189

Substitution (Cont.)

Lemma 3.23

A[p/1] and A[p/0] are well-defined.

The formula A[p/i] with i ∈ B is:

a formula in NNF or CNF if A had this form,

the empty formula, which is interpreted as true, notation A[p/i] = 1,

the empty clause, which is interpreted as false, notation A[p/i] = 0.

The variable p ∈ V does not occur in A[p/i] any more.

Example 3.24

For A in CNF and literal l :
A[l/1] is created by removing all clauses in A that contain literal l , and
removing all occurrences of ¬l in the other clauses.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 93 / 189

Soundness of Davis-Putnam Algorithms

Lemma 3.25

A formula A in NNF is satisfiable iff A[p/1] = 1 or A[p/0] = 1 or one of
the formulae A[p/1],A[p/0] is satisfiable.

The lemma follows from the fact that for every valuation ϕ

ϕ(A) = ϕ(A[p/i]), where i = ϕ(p).

By testing the formulae A[p/1] and A[p/0], which no longer contain
p ∈ V , the satisfiability of A can be decided recursively.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 94 / 189

Rule-based Definition of Davis-Putnam

Definition 3.26 (Rules for Formulae in NNF)

Pure-Literal rule If a variable p ∈ V occurs only positive or only negative
in a formula A, assign 1 to p or 0 to p, respectively, and reduce the
formula.

A is equisatisfiable to A[p/1] or A[p/0], respectively.

Splitting rule If a variable p ∈ V occurs positive as well as negative in A,
create the two reduced formulae A[p/1] und A[p/0].

A is satisfiable iff one of the reduced formulae is 1 or satisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 95 / 189

Rule-based Definition of Davis-Putnam (Cont.)

Definition 3.27 (Rules for Formulae in CNF)

Unit rule

Let A be in CNF and it contains a
unit clause Ai ≡ l .

Create A[l/1]:

A satisfiable iff A[l/1] satisfiable.

(¬q ∨ r) ∧ (q ∨ s) ∧ ¬r ∧ ¬s

¬q ∧ (q ∨ s) ∧ ¬s

s ∧ ¬s

0

¬r = 1

¬q = 1

s = 1

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 96 / 189

Rule-based Definition of Davis-Putnam (Cont.)

Clause A1 subsumes clause A2, notation A1 ⊆ A2 if every literal in A1

also occurs in A2.

From the satisfiability of a clause A1, the satisfiability of all the clauses A2

it subsumes follows directly: A1 ⊆ A2

Definition 3.27 (Rules for formulae in CNF (Cont.))

Subsumption rule Let A in CNF. Remove all clauses from A that are
subsumed by others: function Subsumption Reduce(A).

Also remove tautological clauses that contain p and ¬p for a p ∈ V .

Since clauses are connected conjunctively, only those have to be
considered that are not subsumed by others.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 97 / 189

procedure DPA — Davis-Putnam Algorithm

Input: A in CNF
Output: Boolean Value for satisfiability {0,1}

begin
if A ∈ {0, 1} then return(A);
p:=pure(A,s);

//returns variable and assignment if only positive
//or negative occurrences, otherwise null

if p 6= null then return(DPA(A[p/s]));
p:=unit(A,s);

//Unit clause with assignment, otherwise null
if p 6= null then return(DPA(A[p/s]));
A:=Subsumption Reduce(A); //removes subsumed clauses
p:=split(A); //returns variable in A
if DPA(A[p/1]) = 1 then return(1);
return(DPA(A[p/0]));
end

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 98 / 189

Selection Criteria for the Splitting Rule

Choose the first variable that occurs in the formula.

Choose the variable that occurs the most often in the formula.

Choose the variable with
∑

p in Ai

|Ai | minimal.

Choose the variable that occurs the most often in the shortest clauses.

Comoute the number of positive and negative occurrences in the
shortest clauses and select the variable with the largest difference.

Other heuristics can be found in implementations.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 99 / 189

Resolution

Idea: From clauses (A ∨ l) and (B ∨ ¬l) the new clause (A ∨ B) is
generated, since

(A ∨ l) ∧ (B ∨ ¬l) |==|(A ∨ l) ∧ (B ∨ ¬l) ∧ (A ∨ B).

Here let ¬l ≡ ¬p if l ≡ p with p ∈ V . If l ≡ ¬p then ¬l ≡ p.

Goal: Generating the empty clause ⊔ to show unsatisfiability.

Resolution works on formulae in CNF. Here it is practical to consider
clauses as sets:

(p ∨ ¬q ∨ p) considered as {p,¬q}.

Resolution is due to John Alan Robinson (∗1928).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 100 / 189

Resolution (Cont.)

Definition 3.28 (Resolvent)

Let K1, K2 be clauses and l a literal with l ∈ K1 and ¬l ∈ K2. Then

R ≡ (K1 \ {l}) ∪ (K2 \ {¬l})

is the resolvent of K1 and K2 on l .

Note: The resolvent can be the empty clause ⊔.

Adding resolvents leads to equivalent formulae.

Lemma 3.29

Let A be in CNF and R a resolvent of two clauses from A. Then

A |==|A ∪ {R}.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 101 / 189

Resolution (Cont.)

Definition 3.30 (Derivations)

Let A be in CNF and K a clause. A sequence K1, . . . ,Kn of clauses with
Kn ≡ K is a derivation of K from A, A ⊢

Res
K if for 1 ≤ k ≤ n:

Kk ∈ A or Kk is a resolvent of two Ki , Kj with i , j < k.

Lemma 3.31

As a calculus, resolution is sound but not complete:

A ⊢
Res

K implies A |= K. The converse is not true.

Theorem 3.32 (Soundness and Refutation Completeness, Robinson)

A formula A in CNF is unsatisfiable iff A ⊢
Res

⊔.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 102 / 189

Visualization

Visualization of the resolvent of two clauses A,B on l :

A B

(A \ {l}) ∪ (B \ {¬l})

Visualization of derivations as directed acyclic graph (DAG):

⊔

{¬p}

{p}
{q}

{p, q} {p,¬q} {¬p, q} {¬p,¬q}

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 103 / 189

Resolution Method: Heuristics

Strong derivations: Let A be in CNF and unsatisfiable.
Then there is a derivation K1, . . .Kn ≡ ⊔ so that

1 no clause occurs more than once in the derivation,

2 no tautology occurs in the derivation,

3 no already subsumed clause occurs in the derivation:
There are no Ki ,Kj with i < j and Ki ⊆ Kj .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 104 / 189

Resolution Method: Heuristics (Cont.)

Stepwise strategy (resolution closure)
(all satisfying valuations)

Set-of-support restriction
(prefer unit clauses)

P-(N-)resolution

Linear resolution (SL resolution, PROLOG inference machine).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 105 / 189

Resolution Method: Heuristics (Cont.)
Example: A ≡ {{¬p,¬q,¬r}, {p,¬s}, {q,¬r}, {r ,¬t}, {t}}
Steps:

0 1 2 3
1. {¬p,¬q,¬r} 6. {¬q,¬r ,¬s}(1,2) 11. {¬r ,¬s} (6,3) 21. {¬s,¬t} (11,4)
2. {p,¬s} 7. {¬p,¬r} (1,3) 12. {¬q,¬s,¬t} (6,4) 22. {¬s} (11,10)

3. {q,¬r} 8. {¬p,¬q,¬t}(1,4) 13. {¬p,¬t} (7,4)
...

4. {r ,¬t} 9. {q,¬t} (3,4) 14. {¬p,¬r ,¬t} (8,3)
5. {t} 10. {r} (4,5) 15. {¬p,¬q} (8,5)

16. {q} (10,3)
17. {¬r ,¬s,¬t} (6,9)
18. {¬q,¬s} (6,10)
19. {¬p} (7,10)
20. {¬p,¬t} (8,9)

Get the satisfying valuation

ϕ(q) = 1, ϕ(p) = 0, ϕ(s) = 0, ϕ(r) = 1, ϕ(t) = 1.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 106 / 189

Chapter II

First-Order Predicate Logic (with Equality)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 107 / 189

Foundations of Predicate Logic

Goal: Formulation and inference of relations between elements of a data
domain.

Applications:

Solution of queries on datasets in AI or information systems.

Formulation of integrity constraints on data: loop invariants of a
program, constraints on XML files or data base entries.

Solution of constraint systems in testing or planning.

Logical programming.

Syntax of the predicate logic 1879 in the article “Begriffsschrift” (concept
notation) by Gottlob Frege (1848 — 1925).

Semantics 1934 by Alfred Tarski (1901 — 1983).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 108 / 189

Foundations of Predicate Logic (Cont.)

Semantically: Elements of a data domain, functions on these elements
and relations between these elements.

Syntactically:

Terms describe elements of the data domain.
For describing elements: constants and variables.
For calculating further elements: function symbols.

Formulae make statements about the elements: true or false.
For describing relations between elements: predicate symbols.
Operations on the resulting truth values via logical connectives and
quantifiers.

Function and predicate symbols depend on the application, so they are
parameters of the syntax definition.

Logical symbols are fixed.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 109 / 189

Foundations of Predicate Logic (Cont.)

Example 4.1 (Description of Mathematical Relations)

Syntax: Constants 1, 2, 3, function symbols +, /, variables x , y , z ,
predicate <, connectives →, ∧, quantifiers ∀, ∃

Terms: 1, 1 +
2

3
, x +

3

2
Formulae: x < 3, ∀x∀y(x < y → ∃z(x < z ∧ z < y))

Semantics: Data domain Q, constants 1 to predicate < have the usual
meaning.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 110 / 189

Foundations of Predicate Logic (Cont.)

Example 4.2 (Description of Relations between Data)

Syntax: Variables x , y , function travelDistance(−), predicates isDog(−),
isFish(−), <, quantifier ∀.

Formula:

∀x∀y
(
(isDog(x) ∧ isFish(y)) → travelDistance(x) < travelDistance(y)

)

Semantics: Data domain {Lassie,Nemo} ∪N ∪ {⊥}.

The function travelDistance(x) returns the travel distance of an animal
from the data domain and ⊥ if no animal is entered.

The predicate isFish(x) returns true if x is a fish.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 111 / 189

Syntax of First-Order Logic

Definition 4.3 (Signature)

A signature is a pair S = (Func,Pred) with

Func a set of function symbols f , g , . . . ∈ Func and

Pred a set of predicate symbols p, q, . . . ∈ Pred.

Every function and predicate symbol has an arity k ∈ N.
Notation as f/k ∈ Func or p/k ∈ Pred if f resp. p has an arity of k .
Functions and predicates of arity 0 are called constants.

Assumptions:

Func and Pred are decidable, not necessarily finite.

Apart from the signature there is a countable set V of variables.
V , Func, Pred are pairwise disjoint and do not contain

¬,∧,∨,→,↔,∃,∀, , ,= , (,).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 112 / 189

Syntax of First-Order Logic (Cont.)

Definition 4.4 (Syntax of First-Order Logic)

Let S = (Func,Pred) be a signature.
The set Term(S) of all terms over S is inductively defined as

t ::= x p f (t1, . . . , tk), where x ∈ V and f/k ∈ Func.

The set FO(S) of the first-order formulae over S is inductively defined as

A ::= t1 = t2 p p(t1, . . . , tk) p

(¬A) p (A1 ∧ A2) p (A1 ∨ A2) p (A1 → A2) p (A1 ↔ A2) p

(∃xA) p (∀xA)

with t1, t2, . . . , tk ∈ Term(S), p/k ∈ Pred and x ∈ V .

t1 = t2 and p(t1, . . . , tk) are also referred to as atomic formulae.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 113 / 189

Syntax of First-Order Logic (Cont.)

For increased readability:

Omit outer braces.

Priorities: ¬,∧,∨,→,↔

∀x1, . . . , xnA stands for ∀x1(. . . (∀xnA) . . .)
∃x1, . . . , xnA stands for ∃x1(. . . (∃xnA) . . .)

For binary predicate and function symbols, one can also use infix
notation. For example, write t1 < t2 instead of < (t1, t2).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 114 / 189

Syntax of First-Order Logic (Cont.)

Definition 4.5 (Free and Bound Variables)

In a formula (QxA) with Q ∈ {∃,∀}, A is referred to as the scope of Qx .

An occurrence of a variable x ∈ V in a formula is called bound if it occurs
in the scope of a quantifier Qx .

Other occurrences of a variable are called free.

Formulae without free occurrences are called closed.

The set V (A) contains the variables in A ∈ FO(S). Similarly, FV (A) and
GV (A) contain the variables that occur bound and freely, respectively, in
A.

Lemma 4.6

(a) If S is decidable, then Term(S) and FO(S) are also decidable.

(b) Compound terms and formulae can be uniquely decomposed.

(c) Free and bound occurrences can be effectively determined.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 115 / 189

Semantics of First-Order Logic

Terms and formulae are syntactic objects without meaning.

What does a term mean? What does a formula mean?

Definition 4.7 (Structure)

Let S = (Func,Pred) be a signature. A structure of the signature S , also
referred to as S-structure, is a pair M = (D, I) consisting of

a non-empty set D, the domain,

and an interpretation I of the function and predicate symbols in S .
Here I maps every f/k ∈ Func to a k-ary function

I (f) : Dk → D (Notation also f M instead of I (f))

and every p/k ∈ Pred to a k-ary predicate:

I (p) : Dk → B (Notation also pM instead of I (p)).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 116 / 189

Semantics of First-Order Logic (Cont.)

Assumption: Structures are chosen to fit the signatures.

Note: Equality is a logical symbol, not part of the signature.
Is not interpreted by the structure.

Definition 4.8 (Assignment)

An assignment of the variables in M = (D, I) is a mapping

σ : V → D.

The modification σ{x/d} of σ is the assignment with

σ{x/d}(y) :=

{

d , if y = x

σ(y), otherwise.

The set of all assignments is denoted by DV .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 117 / 189

Semantics of First-Order Logic (Cont.)

Definition 4.9 (Semantics of Terms)

The semantics of a term t ∈ Term(S) in M = (D, I) is a function

M[[t]] : DV → D,

that is defined inductively as follows:

M[[x]](σ) := σ(x)

M[[f (t1, . . . , tk)]](σ) := f M(M[[t1]](σ), . . . ,M[[tk]](σ)).

Here M[[t]](σ) is the value of t in M under the assignment σ.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 118 / 189

Semantics of First-Order Logic (Cont.)

Definition 4.10 (Semantics of Formulae)

The semantics of a formula A ∈ FO(S) in M = (D, I) is a function

M[[A]] : DV → B,

that is defined inductively as follows:

M[[t1 = t2]](σ) := 1 iff M[[t1]](σ) = M[[t2]](σ)

M[[p(t1, . . . , tk)]](σ) := pM(M[[t1]](σ), . . . ,M[[tk]](σ))

¬,∧,∨,→,↔ as in propositional logic: M[[¬A]](σ) := 1−M[[A]](σ) etc.

M[[∃xA]](σ) := 1 iff exists d ∈ D with M[[A]](σ{x/d}) = 1

M[[∀xA]](σ) := 1 iff for all d ∈ D we have M[[A]](σ{x/d}) = 1.

Here M[[A]](σ) is the truth value of A in M under assignment σ.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 119 / 189

Semantics of First-Order Logic (Cont.)

Lemma 4.11 (Coincidence Theorem)

Consider A ∈ FO(S), M = (D, I) and σ1, σ2 ∈ DV . If σ1(x) = σ2(x) for
all x ∈ FV (A), then

M[[A]](σ1) = M[[A]](σ2).

In particular, the semantics M[[A]](σ) of closed formulae A ∈ FO(S) is
independent of the assignment σ ∈ DV :

either A is satisfied under all assigments or under none.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 120 / 189

Semantics of First-Order Logic (Cont.)

Definition 4.12 (Satisfiability, Tautology)

Let A ∈ FO(S), M = (D, I) and σ ∈ DV .

A is satisfied in M under σ, notation M, σ |= A if M[[A]](σ) = 1.

If A is closed, the assignment is irrelevant due to theorem 4.11.
Write M |= A and say M is a model of A.

A is a tautology or valid, notation |= A, if for all S-structures and all
assignments σ ∈ DV : M, σ |= A.

A is satisfiable if there is a S-structure M and an assignment σ ∈ DV

with M, σ |= A.

Lemma 4.13

The formula A ∈ FO(S) is valid iff ¬A is unsatisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 121 / 189

Semantics of First-Order Logic (Cont.)

Definition 4.14 (Logical Equivalence)

The formulae A,B ∈ FO(S) are called logically equivalent, notation
A |==|B , if for all structures M and all assignments σ

M[[A]](σ) = M[[B]](σ).

Lemma 4.15

Logical equivalence is a congruence: if a subformula B of a formula
A ∈ FO(S) is replaced by C |==|B, the result is A′ |==|A.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 122 / 189

Semantics of First-Order Logic (Cont.)

Lemma 4.16 (Logical Equivalences)

Let A,B ∈ FO(S). Then

¬∀xA |==|∃x¬A ¬∃xA |==|∀x¬A (8)

∀xA ∧ ∀xB |==|∀x(A ∧ B) ∃xA ∨ ∃xB |==|∃x(A ∨ B) (9)

∀x∀yA |==|∀y∀xA ∃x∃yA |==|∃y∃xA. (10)

If additionally x /∈ FV (B), then

QxA op B |==|Qx(A op B) with Q ∈ {∀,∃} and op ∈ {∧,∨}. (11)

Note: The equivalences (8), (9) and (11) move quantifiers outwards.

Take care when using logical equivalences:

∀xA ∨ ∀xB 6|==|∀x(A ∨ B) ∃xA ∧ ∃xB 6|==|∃x(A ∧ B).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 123 / 189

Substitution

Susbtitutions replace variables with terms.

They are the syntactic counterpart of the semantic notion of assignments,
more precisely: their modification.

Definition 4.17 (Substitution)

A substitution of the signature S is a finite mapping

θ : V → Term(S).

Substitutions are often directly denoted as θ = {x1/t1, . . . , xn/tn}.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 124 / 189

Substitution (Cont.)

Using substitutions on terms and formulae avoids introducing new
bindings.

Definition 4.18 (Application of Substitutions)

The application of θ on t ∈ Term(S) yields a new term tθ ∈ Term(S),
which is inductively defined as follows:

xθ := θ(x) f (t1, . . . , tn)θ := f (t1θ, . . . , tnθ).

For A ∈ FO(S) the application of θ yields the formula Aθ ∈ FO(S) with

(t1 = t2)θ := t1θ = t2θ (¬A)θ := ¬(Aθ)

p(t1, . . . , tn)θ := p(t1θ, . . . , tnθ) (A op B)θ := Aθ op Bθ

(Qx .A)θ := Qy(A{x/y}θ),

where y /∈ V (A) ∪ Dom(θ) ∪ Ran(θ).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 125 / 189

Substitution (Cont.)

The relation between substitutions and the modification of assignments is
the following:

Lemma 4.19 (Substitution Lemma)

M[[A{x/t}]](σ) = M[[A]](σ{x/M[[t]](σ)}).

Proof via induction over the structure of terms and formulae.

Corollary 4.20

i) If A ∈ FO(S) is valid, then so is A{x/t}.

ii) The formula ∀x .A → A{x/t} is valid.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 126 / 189

Substitution (Cont.)

Similar to the substitution lemma one gets:

Lemma 4.21 (Bound Renaming preserves Logical Equivalence)

QxA |==|Qy(A{x/y}).

Note: Bound renaming can make the occurrences of bound variables in a
formula unique.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 127 / 189

Normal Forms

Generate formulae of simpler structure, for which statements are easier to
prove and more efficient algorithms can be designed.

Prenex normal form: All quantifiers are at the front of the formula (up to
logical equivalence).
Skolem normal form: Prenex normal form and uses only universal
quantifiers
(up to equisatisfiability).

Lemma 4.22 (Existential and Universal Closure)

Consider A ∈ FO(S) with FV (A) = {x1, . . . , xn}. Then

A is valid iff ∀x1 . . . ∀xn.A is valid

A is satisfiable iff ∃x1 . . . ∃xn.A is satisfiable.

The formula ∀x1 . . . ∀xn.A is the universal closure of A.
The formula ∃x1 . . . ∃xn.A is the existential closure of A.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 128 / 189

Normal Forms (Cont.)

A formula A ∈ FO(S) is called cleansed if

i) no variable occurs freely and bound and

ii) every variable is bound at most once.

By repeated application of bound renaming in Lemma 4.21 every formula
can be turned into a cleansed formula.

Lemma 4.23

For every formula A ∈ FO(S) there is a cleansed formula B ∈ FO(S) with
A |==|B.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 129 / 189

Normal Forms (Cont.)

Next goal: Move quantifiers outwards.
Trick: Use the equivalences from Lemma 4.16.

Definition 4.24

A formula of the shape A ≡ Q1y1 . . .Qnyn.B is in prenex normal form,
where Q1, . . . ,Qn ∈ {∀,∃} and B quantifier-free.

We say A ∈ FO(S) is in CPF if A is cleansed and in prenex normal form.

Theorem 4.25

For every formula A ∈ FO(S) there is a formula B ∈ FO(S) in CPF with
A |==|B.

The proof (see blackboard) is based on a recursive algorithm.
Try to work out this algorithm on your own as an exercise.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 130 / 189

Normal Forms (Cont.)

Final step: Eliminate existential quantifiers.

Trick: Turn the nesting of the quantifiers for all y1 . . . yn exists a z into a
function z = f (y1, . . . , yn):

∀y1 . . . ∀yn∃z .A yields ∀y1 . . . ∀yn. (A{z/f (y1, . . . , yn)}) .

Here f/n is a fresh function symbol from the set Sko of Skolem functions.
Fresh means Sko is disjoint from S .

The introduction of skolem functions for existentially quantified variables is
called skolemization.

Skolemization preserves only equisatisfiability, logical equivalence is lost.

Skolemization is due to Thoralf Albert Skolem (1887 – 1963).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 131 / 189

Normal Forms (Cont.)

Definition 4.26 (Skolem Formula)

For a formula A ∈ FO(S) in CPF, the Skolem formula B ∈ FO(S ⊎ Sko)
(again in CPF) is defined by the following method:

while A has existential quantifiers do
Let A ≡ ∀y1 . . . ∀yn∃z .B with B in CPF
Let f /n ∈ Sko be a Skolem symbol not in B
Set A ≡ ∀y1 . . . ∀yn(B{z/f (y1, . . . , yn)})

end while

Note: Skolem functions are introduced from outside to inside.

Theorem 4.27 (Skolem)

For every formula A ∈ FO(S) in CPF and the corresponding Skolem
formula B ∈ FO(S ⊎ Sko):

A is satisfiable iff B is satisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 132 / 189

The Problem of Validity

Consider computability of the problem of validity:

Given: A formula A ∈ FO(S).
Question: Is A valid?

Goal: Validity is complete in the class of semi-decidable problems.
More precisely:

Upper bound:
Validity is semi-decidable.

Lower bound:
The problem of validity is hard in the class of semi-decidable problems.

In particular, validity is undecidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 133 / 189

Herbrand Theory

To show semi-decidability of validity, use

A ∈ FO(S) is valid iff ¬A is unsatisfiable.

Goal: Unsatisfiability is semi-decidable.

Problem: When choosing M = (D, I), the domain is arbitrary.

No statement about the cardinality of D.

No information about the structure of I .

How to enumerate structures and check for model property?

Core idea: The search for models can be restricted to canonical
structures.
To find a model for A, it suffices to search in the following domain:

DH = All variable-free terms over signature S .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 134 / 189

Herbrand Theory (Cont.)

Assumption: FO 6=(S) with S = (Func,Pred), where Func contains a
constant.

Definition 4.28 (Herbrand Structure)

A structure H of S is called Herbrand structure if H = (DH, IH).
Here DH is the smallest set that satisfies:

i) If a/0 ∈ Func, then a ∈ DH

ii) If f/n ∈ Func and t1, . . . , tn ∈ DH, then f (t1, . . . , tn) ∈ DH.

The interpretation IH(f) : D
n
H → DH of the function symbols f/n ∈ Func

is defined as

IH(f)(t1, . . . , tn) := f (t1, . . . , tn).

The interpretation of the predicate symbols is still open, a Herbrand
structure only needs to satisfy these two restrictions.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 135 / 189

Herbrand Theory (Cont.)

Consider a closed formula A ∈ FO 6=(S). A Herbrand structure H with
H |= A is also called Herbrand model of A.

Theorem 4.29 (Herbrand)

Let A ∈ FO 6=(S) be a closed formula in Skolem normal form. Then

A is satisfiable iff A has a Herbrand model.

Corollary 4.30 (Löwenheim-Skolem Theorem)

Let A ∈ FO(S) be satisfiable. Then A has a model M = (D, I) with a
countable domain D.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 136 / 189

Semi-Decidability of Validity

Definition 4.31 (Herbrand Expansion)

Let A ≡ ∀y1 . . . ∀yn.B ∈ FO 6=(S) be closed and in Skolem normal form.
Then the Herbrand expansion E (A) of A is defined as

E (A) := {B{y1/t1} . . . {yn/tn} | t1, . . . , tn ∈ DH}.

So, all variables in B are replaced by terms in DH

Observation:

The formulae in E (A) can be treated like propositional formulae, as
they do not contain variables.

Consider Herbrand structure for interpreting the formulae in E (A).

It gives truth values for the propositional variables in E (A).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 137 / 189

Semi-Decidability of Validity (Cont.)

Theorem 4.32 (Gödel-Herbrand-Skolem)

For a closed formula A ∈ FO 6=(S) in Skolem normal form:

A is satisfiable iff E (A) is satisfiable in propositional logic.

Intuition: The predicate formula A is approximated by the propositional
formulae in E (A).

Combine Theorem 4.32 with the compactness theorem of propositional
logic.

Corollary 4.33

A closed formula A ∈ FO 6=(S) in Skolem normal form is unsatisfiable iff
there is a finite subset of E (A) which is unsatisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 138 / 189

Semi-Decidability of Validity (Cont.)

From this follows the semi-decidability of validity:

A ∈ FO(S) is valid iff ¬A is unsatisfiable.

Transform ¬A into a closed formula B ∈ FO 6=(S ⊎ Sko) in Skolem normal
fom.

Above argumentation yields Gilmore’s algorithm, which semi-decides the
unsatisfiability of B .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 139 / 189

Semi-Decidability of Validity (Cont.)

Gilmore’s Algorithm:

Input: A ∈ FO 6=(S ⊎ Sko) closed and in Skolem normal form.
Let E (A) = {A1,A2, . . .} be an enumeration of E (A).

n:=1
while A1 ∧ . . . ∧ An is propositionally satisfiable do
n:=n+1

end while
return unsatisfiable

With corollary 4.33:
Terminates and returns correct result on unsatisfiable formulae.
Does not terminate on satisfiable formulae.

Theorem 4.34

The problem of validity is semi-decidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 140 / 189

Semi-Decidability of Validity (Cont.)

Note that the semi-decidability of validity does not imply the decidability
via negation of the formula.

6|= A is not equivalent to |= ¬A.

Only the latter can be checked via Herbrand expansion.

Now, show undecidability of validity.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 141 / 189

Lower Bound for Validity

Goal: The problem of validity is hard in the class of semi-decidable
problems.

I.e. every semi-decidable problem has a many-one reduction to validity.

Consequence: Validity is undecidable (halting problem).

Definition 4.35 (Many-one Reduction)

A many-one reduction of a problem P1 to a problem P2 is a total and
computable function f : P1 → P2, which maps instances of P1 to instances
of P2 so that

Instance K of P1 has a solution iff instance f (K) of P2 has a solution.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 142 / 189

Lower Bound for Validity (Cont.)

How to prove Hardness of validity? It is a universally quantified
statement.

Consider a problem that is already known to be hard. Here we choose the
Post correspondence problem (PCP).

Give a many-one reduction of PCP to validity.

Why does this reduction show hardness of validity?

Let P be a semi-decidable problem and fP its reduction to PCP. The
reduction fP exists, since PCP is hard.

Let f be the reduction of PCP to validity that is yet to be found.

Then:

P
fP−→ PCP

f
−→ Validity implies P

f ◦fP−−→ Validity.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 143 / 189

Post Correspondence Problem

Given: A finite sequence of word pairs

((x1, y1), . . . , (xn, yn)) mit xi , yi ∈ {0, 1}+.

Question: Is there a non-empty sequence i1, . . . , ik ∈ {1, . . . , n} with

xi1 . . . xik = yi1 . . . yik .

A given sequence of word pairs is a PCP instance K .
A sequence of indices i1, . . . , ik that satisfies the equality above is called
solution of the instance K .

Theorem 4.36 (Post 1946)

PCP is complete in the class of semi-decidable problems, so

(a) PCP is semi-decidable and

(b) every semi-decidable problem has a many-one reduction to PCP. In
particular, PCP is undecidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 144 / 189

Lower Bound for Validity (Cont.)

Theorem 4.37 (Church)

The problem of validity is hard — and with theorem 4.34 complete — in
the class of semi-decidable problems.

Corollary 4.38

The problem of validity is undecidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 145 / 189

Compactness Theorem of First-Order Logic

Definition 4.39 (Semantics of Sets of Formulae)

Let S be a signature, Σ ⊆ FO(S), M = (D, I) and σ ∈ DV .

(i) Σ is satisfied in M under σ, notation M, σ |= Σ if for all A ∈ Σ we
have M[[A]](σ) = 1.

(ii) Σ is satisfiable if there are M and σ with M, σ |= Σ.

Theorem 4.40 (Compactness Theorem)

A set of formulae Σ ⊆ FO(S) is satisfiable iff every finite subset of Σ is
satisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 146 / 189

Logical Consequence

Definition 5.1 (Logical Consequence)

The formula A ∈ FO(S) is a logical consequence of Σ ⊆ FO(S), notation
Σ |= A, if for all M and σ:

M, σ |= Σ implies M, σ |= A.

The set of consequences of Σ is

Cons(Σ) := {A ∈ FO(S) | Σ |= A}.

Sets of formulae Σ ⊆ FO(S) and Γ ⊆ FO(S) are equivalent, notation
Σ |==|Γ, if

Σ |= A for all A ∈ Γ and Γ |= B for all B ∈ Σ.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 147 / 189

Logical Consequence (Cont.)

Note 5.2

(a) Σ |= A iff Σ ∪ {¬A} not satisfiable.

(b) ∅ |= A iff |= A, so A is valid.

(c) Σ not satisfiable iff Σ |= A for all A ∈ FO(S).

(d) If Γ ⊆ Σ and Γ |= A, then Σ |= A.

(e) If Γ |==|Σ, then Γ is satisfiable iff Σ is satisfiable.

(f) If Γ |==|Σ, then Cons(Γ) = Cons(Σ).

(g) A |==|B iff A |= B and B |= A iff |= A ↔ B iff
M[[A]](σ) = M[[B]](σ) for all M, σ.

(h) If A |==|B, then Σ |= A iff Σ |= B.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 148 / 189

Examples

Example 5.3

i) ∀xA |= A
Special case of ∀xA → A{x/t} valid.

ii) In general, A |= ∀yA with y ∈ FV (A) not valid.

Let A ≡ p(y) and M = ({0, 1}, I) with I (p)(a) = 1 iff. a = 0.
Choose σ(y) = 0, then M[[A]](σ) = 1.
But M[[∀yA]](σ) = 0 with σ{y/1}.

iii) |= ∃x(p(x) → ∀xp(x))
Let M = (D, I). We have M[[∃x(p(x) → ∀xp(x))]] = 1 if

there is a d ∈ D with I (p)(d) = 0 or
for all d ∈ D we have I (p)(d) = 1.

One of both has to be true.

iv) ∀x(A → B) |= ∀xA → ∀xB

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 149 / 189

Logical Consequence (Cont.)

Theorem 5.4 (Important Theorems)

Let Γ ⊆ FO(S) and A,B ∈ FO(S).

Deduction theorem Γ,A |= B iff Γ |= A → B

Modus Ponens rule Γ |= A and Γ |= A → B, then Γ |= B

Contraposition rule Γ,A |= ¬B iff Γ,B |= ¬A

Generalization theorem
If x ∈ V does not occur freely in any formula of Γ, then

Γ |= A iff Γ |= ∀x A
In particular: A |= ∀x A or |= A → ∀x A,

if x does not occur freely in A.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 150 / 189

Logical Consequence (Cont.)

Example 5.5 (Application of Theorems)

a) |= ∃x∀yA → ∀y∃xA
iff ∃x∀yA |= ∀y∃xA Deduction theorem
iff ∃x∀yA |= ∃xA Generalization theorem
iff ¬∀x¬∀yA |= ¬∀x¬A Note 5.2 (logical equivalence)
iff ∀x¬A |= ∀x¬∀yA Contraposition rule
iff ∀x¬A |= ¬∀yA Generalization theorem
iff {∀x¬A,∀yA} not satisfiable

b) Variant of congruence
A′ is created from A via permitted (consider quantifiers) replacement
of some occurrences of x with y . Then

|= ∀x∀y(x = y → (A ↔ A′)).

Example: ∀x∀y(x = y → (f (x , y) = g(x) ↔ f (y , y) = g(x))

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 151 / 189

The Deductive System F

Goal: Construct a suitable deductive system F(Ax ,R) for first order logic.

Suitable: Soundness (⇒) and completeness (⇐)

⊢
F
A iff |= A

Σ ⊢
F
A iff Σ |= A

The definition of system F together with the proof of completeness is a
great contribution by Kurt Gödel (1906 — 1978).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 152 / 189

The Deductive System F (Cont.)

Let FO0(S) the subset of formulae from FO(S) over ¬,→,∀,=.

Definition 5.6 (Deductive Systems)

The deductive system F(Ax ,R) for FO0(S) consists of the axioms that
can be generated as generalizations of the formulae which are described by
the following schemata:

Ax1: Propositional tautologies
Ax2: ∀x A → A{x/t}
Ax3: ∀x (A → B) → (∀x A → ∀x B)
Ax4: A → ∀x A if x /∈ FV (A)
Ax5: x = x
Ax6: x = y → (A → A′), where A′ is created from A via replacement of

some free occurrences of x with y (if permitted).

The only rule schema is Modus Ponens:
A,A → B

B

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 153 / 189

The Deductive System F (Cont.)

Definition 5.7 (and Note)

Let A ∈ FO(S) and {x1, . . . , xn} ⊆ FV (A). The formula

∀x1 . . . ∀xn.A

is a generalization of A.

With theorem 2.12 all propositional tautologies can be derived from three
axiom schemata via Modus Ponens.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 154 / 189

Deduction Theorem and Generalization Theorem

Theorem 5.8

Let Γ ⊆ FO(S) and A,B ∈ FO(S).

a) Deduction theorem

Γ ⊢
F
A → B iff Γ,A ⊢

F
B

b) Generalization theorem:

If Γ ⊢
F
A and x does not occur freely in Γ, then Γ ⊢

F
∀x A

c) Contraposition theorem:

Γ,A ⊢ ¬B iff Γ,B ⊢ ¬A.

Hence, the theorems known from the deductive system F0 of propositional
logic are valid for system F .

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 155 / 189

Consistency

Definition 5.9

A set of formulae Γ ⊆ FO(S) is called consistent if there is no A ∈ FO(S)
with Γ ⊢

F
A and Γ ⊢

F
¬A.

Note 5.10

Γ is consistent iff every finite subset of Γ is consistent.

If Γ is inconsistent, then Γ ⊢
F
A for every formula A.

If Γ ⊢
F
A, then Γ ∪ {¬A} is inconsistent.

If Γ is inconsistent, then Γ is not satisfiable.

The set of valid formulae is consistent.

The set of theorems of F is consistent.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 156 / 189

The Deductive System F (Cont.)

Theorem 5.11 (Soundness and Completeness of F , Gödel)

Let A ∈ FO(S) and Σ ⊆ FO(S), then:

a) ⊢
F
A iff |= A.

b) Σ ⊢
F
A iff Σ |= A.

c) Σ consistent iff Σ satisfiable.

The Theorem of Predicate Logic!

Proof:

Soundness: Ax contains only valid formulae and (MP) does not lead out
of the set of valid formulae.

Completeness: See Enderton.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 157 / 189

First Order Theories

Consider closed formulae from FOclosed(S).

Definition 5.12

Let S be a signature. A set of formulae Γ ⊆ FOclosed(S) is called a first
order theory if Γ is closed under logical consequence:

A ∈ FOclosed(S) and Γ |= A implies A ∈ Γ.

Use T as identifier for theories.

Alternative definitions in literature:

Γ set of formulae from FO(S) instead of FOclosed(S), closed under
logical consequence.

Γ theory if Γ closed under MP and generalization.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 158 / 189

First Order Theories (Cont.)

Note 5.13

Let S be a signature.

a) TS = {A ∈ FOclosed(S) | A valid} is a theory.

b) Let Σ ⊆ FOclosed(S). Then TΣ = {A ∈ FOclosed(S) | Σ |= A} is
the theory generated by Σ oder theory defined by the axioms Σ.

c) Let M be a structure of the signature S. Then

TM = {A ∈ FOclosed(S) | M |= A}

is the theory of M. Th(M) is also commonly used as symbol.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 159 / 189

First Order Theories (Cont.)

Lemma 5.14 (and Definition)

(i) If T is a theory and A ∈ FOclosed(S), then

T ⊢
F
A iff A ∈ T .

(ii) A theory T is called inconsistent if there is a formula
A ∈ FOclosed(S) with T ⊢

F
A and T ⊢

F
¬A. In this case

T = FOclosed(S).

(iii) TM is consistent for every structure M.

(iv) TS ist contained in each theory over S.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 160 / 189

First Order Theories (Cont.)

Definition 5.15

Let T be a first order theory over signature S .

a) T is called complete if for every formula A ∈ FOclosed(S) we have:
A ∈ T oder ¬A ∈ T .

b) T is called (finitely, enumerably) axiomatizable if there is a (finite,
enumerable) subset Σ ⊆ FOclosed(S) with

TΣ = T .

c) T is called decidable if T is a decidable subset of FOclosed(S).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 161 / 189

First Order Theories (Cont.)

Note 5.16

(a) TM is complete for every structure M.
With lemma 5.14 TM is also consistent and complete.

(b) T is satisfiable iff T is consistent.

(c) If T is enumerably axiomatizable, then T is enumerable.

(d) If T is complete and enumerably axiomatizable, then T is
decidable.

(e) If T is complete and consistent, then T = TM for a structure M.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 162 / 189

Axiomatization

Goal: Find Axiomatizations of important theories.

In particular: When is TM = TΣ for enumerable Σ.

Motivation: Decidability!

Problem: When is TΣ complete for enumerable Σ?

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 163 / 189

Axiomatization (Presburger)

Consider the signature of the arithmetic without multiplication:

SPA = ({0/0, 1/0,+/2}, {=/2}).

The corresponding structure MPA = (N, IPA) with the usual interpretation
is called Presburger arithmetic.

Let ΣPA the set of the following axioms, with (induction) a schema:

∀x : ¬(x + 1 = 0) (zero)

∀x : x + 0 = x (plus zero)

∀x∀y : x + 1 = y + 1 → x = y (successor)

∀x∀y : x + (y + 1) = (x + y) + 1 (plus successor)

A(0) ∧ (∀x : A(x) → A(x + 1)) → ∀x : A(x), (induction)

where A ∈ FO(SPA) is a formula with a free variable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 164 / 189

Axiomatization (Presburger)

Theorem 5.17 (Complete Axiomatization of Presburger Arithmetic)

It is TMPA
= TΣPA

. Since ΣPA is enumerable, TMPA
is decidable.

Completeness of the axiomatization is involved.
Decidability follows with note 5.16(d).

Hence, closed formulae from FO(SPA) can be checked automatically for
satisfaction in Presburger arithmetic.

For example:

∀w∀x∃y∃z : x + 2y + 3w = z + 13 ?

Consider the quantifiers and compare with Gauss elimination.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 165 / 189

Axiomatization (Gödel and Peano)

Consider the signature of the full arithmetic:

SArith = ({0/0, 1/0,+/2, ·/2}, {=/2}).

The corresponding structure MArith = (N, IArith) with the usual
interpretation is called (first order) arithmetic.

Theorem 5.18 (Gödel)

TMArith
is not decidable.

Consequence 1: TMArith
is not enumerably axiomatizable

Consequence 2: Every enumerable system of axioms for TMArith
is

incomplete.

The consequences follow from note 5.16(a) und (d).

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 166 / 189

Axiomatization (Gödel and Peano)

In particular the Peano axioms ΣPeano are not a complete axiomatization
of TMArith

:

∀x : ¬(x + 1 = 0) (zero)

∀x : x + 0 = x (plus zero)

∀x∀y : x + 1 = y + 1 → x = y (successor)

∀x∀y : x + (y + 1) = (x + y) + 1 (plus successor)

A(0) ∧ (∀x : A(x) → A(x + 1)) → ∀x : A(x) (induction)

∀x : x · 0 = 0 (times zero)

∀x∀y : x · (y + 1) = x · y + x (times successor)

So there are closed formulae A ∈ FO(SArith) with MArith |= A, for which
ΣPeano |= A is not true.

How can this be? TΣPeano
has non-standard models!

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 167 / 189

Axiomatization (Arrays)

Given are functions for read and write accesses on arrays:

SMcC = ({read/2,write/3}, {=/2}).

Consider McCarthy’s array axioms ΣMcC :

∀x : x = x (Reflexivity)

∀x∀y : x = y → y = x (Symmetry)

∀x∀y∀z : x = y ∧ y = z → x = z (Transitivity)

∀a∀i∀j : i = j → read(a, i) = read(a, j) (Array congruence)

∀a∀v∀i∀j : i = j → read(write(a, i , v), j) = v (Read-Write 1)

∀a∀v∀i∀j : i 6= j → read(write(a, i , v), j) = read(a, j). (Read-Write 2)

Theorem 5.19

TΣMcC
is not decidable, in particular not complete.

Decidable fragments are an active area of research, Aaron Bradley’06.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 168 / 189

Algorithms of Predicate Logic

Goal: Practical semi-decision procedures for unsatisfiability.

Applications:

Validity: |= A iff ¬A unsatisfiable.

Logical Consequence: Σ |= A iff Σ ∪ {¬A} unsatisfiable.

Idea: Systematic version of Gilmore’s algorithm.

Specifically generate ground formulae to derive contradictions.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 169 / 189

Semantic Tableaux

Consider closed formulae in FO 6=(S), i.e. formulae without =.

Definition 6.1

Formulae from FO 6=(S) can be divided into classes:

(Negated) atomic formulae: p(t1, . . . , tn), ¬p(t1, . . . , tn).

α-formulae: A ∧ B , ¬(A ∨ B), ¬(A → B), ¬¬A.

β-formulae: ¬(A ∧ B), (A ∨ B), (A → B).

γ-formulae: ∀xA, ¬∃xA.

δ-formulae: ∃xA, ¬∀xA.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 170 / 189

Semantic Tableaux (Cont.)

Tableau Construction:

α, β-formulae: as usual.

γ-formulae:

γ ∀x A ¬∃x A

γ[t] A{x/t} ¬A{x/t},

where t is a ground term, so it contains no variables.

δ-formulae:
δ ∃x A ¬∀x A

δ[c] A{x/c} ¬A{x/c},

where c is a function constant and fresh for that branch.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 171 / 189

Semantic Tableaux (Cont.)

Notes regarding the construction:

δ-formulae Must be “satisfied” only once.

Solutions of δ-formulae must not be restricted:
an x with property A does not have to function as y with
property B .

γ-formulae Must be satisfied for all objects that are introduced. They
have to be considered always.

Intuition: Systematic construction of a Herbrand model:

δ-Formeln are skolemized.
Introduce as many constants as necessary.

Choose the terms over constants as domain.

If the signature contains no function symbols,
those are just the constants.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 172 / 189

Semantic Tableaux (Const.)

The proofs of soundness and completeness are analog to those of
propositional logic.

Lemma 6.2

Let A ∈ FO 6=(S) be closed and τ a tableau for A. Then

A is satisfiable iff ∃ branch Γ ∈ τ : Γ is satisfiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 173 / 189

Semantic Tableaux (Cont.)

Definition 6.3

A set of closed formulae Γ ⊆ FO(S) is called complete if

1 for every α-formula in Γ we have α1, α2 ∈ Γ

2 for every β-formula in Γ we have β1 ∈ Γ or β2 ∈ Γ

3 for every γ-formula in Γ we have γ[t] ∈ Γ for all t ∈ DH(S)

4 for every δ-formula in Γ there is a t ∈ DH(S) with δ[t] ∈ Γ.

The set is called closed if there is a B ∈ FO(S) with B ,¬B ∈ Γ.
Otherwise Γ is called open.

Note: Introduced constants are contained in the signature S and thus also
in the terms DH(S).

Lemma 6.4 (Hintikka)

Let Γ ⊆ FO 6=(S) be complete. Then Γ is satisfiable iff Γ is open.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 174 / 189

Semantic Tableaux (Cont.)

Theorem 6.5

Let A ∈ FO(S) and Σ ⊆ FO(S).

a) |= A iff there is a closed tableau for ¬A.

b) Σ |= A iff there is a closed tableau for Σ ∪ {¬A}.

A systematic tableau construction guarantees that all branches are
complete (possibly infinite).

Idea of a systematic tableau construction:
Σ, α, δ, γ, β

Assuming such a systematic tableau construction, we get a semi-decision
procedure for validity.

Theorem 6.6

If A ∈ FO(S) is valid, the systematic tableau construction generates a
closed tableau for ¬A.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 175 / 189

Semantic Tableaux (Cont.)

Tableaux are not a decision procedure for validity.

See undecidability in theorem 4.37.

Since the procedure is sound and complete, it possibly will not
terminate.

DH(S) can be infinite: Function symbols.

Heuristic for the construction of finite models:

Weaken the requirement fresh for the δ-formulae.

Use existing constants first.

If this choice leads to contradictions, introduce new constants.

Otherwise model has been found.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 176 / 189

Examples for Reuse of Constants

Are there models for {∃x ¬p(x , x),∀x∃y p(x , y)}?

∃x ¬p(x, x)

∀x∃y p(x, y)

¬p(a, a)

∃y p(a, y)

p(a, b)

∃y p(b, y)

p(b, c)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 177 / 189

Examples for Reuse of Constants (Cont.)

Reuse constant a:

∃x ¬p(x, x)

∀x∃y p(x, y)

¬p(a, a)

∃y p(a, y)

p(a, b)

∃y p(b, y)

p(b, a)

So there is a structure with two elements {a, b} that is a model.
Interpretation of the predicate:

p(x , y) a b

a 0 1
b 1 ∗

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 178 / 189

Examples for Reuse of Constants (Cont.)

Is |= ∀x(p(x) ∨ q(x)) → (∀xp(x) ∨ ∀xq(x)) ?

¬(∀x (p(x) ∨ q(x)) → (∀x p(x) ∨ ∀x q(x)))

∀x (p(x) ∨ q(x))

¬(∀x p(x) ∨ ∀x q(x))

¬∀x p(x)

¬∀x q(x)

¬p(a)

¬q(b)

p(a) ∨ q(a)

p(b) ∨ q(b)

p(a)
q(a)

p(b) q(b)

M = ({a, b}, I (p)(a) = I (q)(b) = 0, I (p)(b) = I (q)(a) = 1)

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 179 / 189

Idea of Predicate Logical Resolution

Goal: Practical semi-decision procedure for unsatisfiability based on
Gilmore’s algorithm:

To show unsatisfiability of A ≡ ∀x1 . . . ∀xn.B ∈ FO(S) in Skolem normal
form, show unsatisfiability of the Herbrand expansion E (A).

Example: Let A ≡ ∀x .p(x) ∧ ¬p(f (x)) over S = ({a/0, f/1}, {p/1}).
Then

E (A) = {p(a) ∧ ¬p(f (a)), p(f (a)) ∧ ¬p(f (f (a))), . . .}.

Observation: Since A ≡ ∀x1 . . . ∀xn.B with B in CNF, unsatisfiability of
E (A) can be checked via propositional resolution:

{p(a)} {¬p(f (a))} {p(f (a))} {¬p(f (f (a)))}
ց ւ

⊔

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 180 / 189

Idea of Predicate Logical Resolution (Cont.)

Observation: The substitutions {x/a} and {x/f (a)} already yield an
unsatisfiable set of formulae.

But here two clauses are being generated which aren’t needed for
deriving the empty clause ⊔.

Idea: Generate fitting substitution for every clause in B — individually.

Apply the substitution only to this clause, not the entire B .

Example:

Clauses in B {p(x)} {¬p(f (x))}

Ground substitutions ↓ {x/f (a)} ↓ {x/a}

Corresponding ground instances {p(f (a))} {¬p(f (a))}
of the clauses in B ց ւ

⊔

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 181 / 189

Idea of Predicate Logical Resolution (Cont.)

Problem: Algorithmic search for ground instances for the derivation of the
empty clause ⊔.

Systematic testing of ground substitutions — expensive.

Predictive decision for ground substitutions to enable resolutions that
are needed later — hard.

Approach: Apply substitutions reluctantly — only if they
are needed for the next resolution step.

Example:

{p(x),¬q(g(x))} {¬p(f (y))}

ց ւ {x/f (y)}

{¬q(g(f (y)))}

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 182 / 189

Idea of Predicate Logical Resolution (Cont.)

Example:

{p(x),¬q(g(x))} {¬p(f (y))}

ց ւ {x/f (y)}

{¬q(g(f (y)))}

What happens?
Generate predicate logical resolvent from predicate logical clauses.

Resolution step comes with substitution, which makes literals in initial
clauses complementary.

Apply substitutions reluctantly, no need for ground substitutions.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 183 / 189

Unification

Goal: Compute unifier — a substitution that makes a set of literals
identical.

Example: For {p(x), p(f (y))} are

Θ1 = {x/f (y)} and Θ2 = {x/f (a), y/a}

unifiers. But Θ2 substitutes more than necessary.

Definition 6.7 (Unifier)

A substitution Θ : {x1, . . . , xn} → {t1, . . . , tn} is unifier of a set of
literals {L1, . . . , Ln} if

L1Θ ≡ . . . ≡ LnΘ.

If Θ exists, the set of literals is called unifiable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 184 / 189

Unification (Cont.)

Definition 6.7 (Unifier (Cont.))

A unifier Θ of {L1, . . . , Ln} is called most general unifier if for every
unifier Θ′ of {L1, . . . , Ln} there is a substitution Θ̃ so that

Θ′ = ΘΘ̃.

Visually, the following is true for a most general unifier:

A
Θ
−→ AΘ

Θ′ ց ↓ Θ̃ for every formula A ∈ FO(S).

AΘ′ ≡ AΘΘ̃

Theorem 6.8 (Unification, Robinson)

Every unifiable set of literals has a most general unifier.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 185 / 189

Unification Algorithm

Input: {L1, . . . , Ln}.

Θ := {}
while ∃i , j : LiΘ 6≡ LjΘ do
go through literals L1Θ, . . . , LnΘ from left to right,
until first position is found where LkΘ 6≡ LmΘ.
if none of the symbols is a variable then
return not unifiable

end if
let x = the variable
let t = the term in the other literal
if x ∈ V (t) then //Occur Check
return not unifiable

end if
Θ := Θ{x/t}

end while
return Θ

When the algorithm terminates positively, Θ is a most general unifier.
Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 186 / 189

Resolution

Definition 6.9 (Resolvent)

Let K1,K2 be predicate logical clauses with disjoint variables.
If there are literals L1, . . . , Lm ∈ K1 and L′1, . . . , L

′
n ∈ K2, so that

{L1, . . . , Lm, L
′
1, . . . , L

′
n}

is unifiable with the most general unifier Θ, then

R :=
(
(K1 \ {L1, . . . , Lm}) ∪ (K2 \ {L

′
1, . . . , L

′
n})

)
Θ

is called the predicate logical resolvent of K1 and K2.

Notation: K1,K2 ⊢
Res

R or

K1 K2

ց ւ Θ

R

Note: Propositional resolu-
tion is a special case with
m = n = 1 and Θ = {}.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 187 / 189

Resolution (Cont.)

Example:

{p(f (x)),¬q(z), p(z)} {¬p(y), r(g(y), a)}

ց ւ Θ = {z/f (x), y/f (x)}

{¬q(f (x)), r(g(f (x)), a)}

Theorem 6.10 (Soundness and Refutation Completeness, Robinson)

Let A ≡ ∀x1 . . . ∀xn.B ∈ FO(S) be in Skolem normal form with B in CNF .
Then A is unsatisfiable iff B ⊢

Res
⊔.

Note: The procedure does not necessarily terminate.
Unsatisfiability is undecidable.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 188 / 189

Regarding the Proof of Refutation Completeness

Proof approach: Reduce predicate logical resolution to propositional
ground resolution (as introduced above).

Technique: Propositional resolutions of ground instances can be lifted in
predicate logical resolutions:

If K1 K2, then K1 K2

↓ ↓ ց ւ
K ′
1 K ′

2 R
ց ւ ↓

R ′ R ′

Lemma 6.11 (Lifting Lemma)

Let K1,K2 predicate logical clauses and K ′
1,K

′
2 ground instances with

propositional resolvent R ′.
Then there is a predicate logical resolvent R from K1,K2 so that R ′ is a
ground instance of R.

Roland Meyer (TU Kaiserslautern) Logic Summer Term 2014 189 / 189

	Propositional Logic
	Foundations of Propositional Logic
	Syntax
	Semantics
	Compactness Theorem of Propositional Logic

	Deductive Perspective on Propositional Logic
	Deductive Systems
	The Deductive System F0
	Sequent Calculus

	Algorithmic Perspective on Propositional Logic
	Semantic Tableaux
	Normal Forms
	Davis-Putnam Algorithms
	Resolution

	First-Order Predicate Logic (with Equality)
	Foundations of Predicate Logic
	Syntax
	Semantics
	Substitution
	Normal Forms
	Herbrand Theory
	Semi-Decidability of Validity
	Lower Bound for Validity
	Compactness Theorem of First-Order Logic

	Deductive Perspective on Predicate Logic
	Logical Consequence
	The Deductive System F
	First Order Theories
	Axiomatization

	Algorithmic Perspective on Predicate Logic
	Semantic Tableaux
	Unification
	Resolution

