In-class Exercises to the Lecture Logics
 Sheet 5

Jun.-Prof. Dr. Roland Meyer
Discussion on 21./22.6.2012

Exercise 5.1 [MSO on words]

Let Σ be an alphabet and Φ be the set of formulae in second order predicate logic in which only the following predicates occur:

- p_{a}, a unary predicate, for each $a \in \Sigma$,
- <, a binary predicate, and
- suc, a binary predicate.

To each word $w \in \Sigma^{+}$, we associate the interpretation $I^{w}=\left(D^{w}, I_{c}^{w}, I_{v}^{w}\right)$, where

- $D^{w}=\{1, \ldots,|w|\}$ is the set of positions in w,
- for each $a I^{w}\left(p_{a}\right)$ is the set of positions that contain an a,
- $I^{w}(x<y)=1$ if and only if $I^{w}(x)<I^{w}(y)$,
- $I^{w}(\operatorname{suc}(x, y))=1$ if and only if $I^{w}(y)=I^{w}(x)+1$.

For example, let $\Sigma=\{a, b\}$ and $w=a b$. Then $D^{w}=\{1,2\}, I^{w}\left(p_{a}\right)=\{1\}$ and $I^{w}\left(p_{b}\right)=$ $\{2\}$. In this situation, we have

$$
I^{w} \vDash \exists x \exists y\left(x<y \wedge p_{a}(x)\right) \wedge \neg \exists x \exists y \exists z(x<y \wedge y<z)
$$

The language defined by $A \in \Phi$ is

$$
L(A)=\left\{w \in \Sigma^{+} \mid I^{w} \models A\right\} .
$$

The logic defined this way is also known as Monadic Second Order Logic on words.
a) Present a formula A with $L(A)=\{a\}^{+}\{b\}^{+}, \Sigma=\{a, b\}$.
b) Present a formula A with $L(A)=\Sigma^{*}\{a\} \Sigma^{*}\{b\}, \Sigma=\{a, b\}$.
c) Suppose you have symbols r, a, and i in Σ, where r, a, and i represent a request, an acknowledge, and an internal event, respectively. Present a formula A such that $L(A)$ is the set of words such that: after each request event, at least one acknowledge event follows eventually.

Exercise 5.2 [MSO on graphs]
a) Describe, similar to Exercise 5.1,

- a collection of predicates,
- an interpretation for each graph,
such that you can define sets of graphs using formulae.
b) Present a formula that defines precisely the set of connected graphs.

Exercise 5.3 [Undecidability]
A context-free grammar is called linear if in each rule, the right-hand side contains at most one occurrence of a nonterminal symbol. Show that the following problem is undecidable: Given linear context-free grammars G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing$?

Exercise 5.4 [Formulae in predicate logic]
a) Let $A \equiv \forall x \exists y p(x, y)$ and $B \equiv \exists y \forall x P(x, y)$. Which of these formulas is deducible from the other? Are they equivalent?
b) Is the formula $\forall x p(x) \rightarrow \exists x p(x)$ a tautology?

