In-class Exercises to the Lecture Logics Sheet 5

Jun.-Prof. Dr. Roland Meyer

Discussion on 21./22.6.2012

Exercise 5.1 [MSO on words]

Let Σ be an alphabet and Φ be the set of formulae in *second order* predicate logic in which only the following predicates occur:

- p_a , a unary predicate, for each $a \in \Sigma$,
- <, a binary predicate, and
- suc, a binary predicate.

To each word $w \in \Sigma^+$, we associate the interpretation $I^w = (D^w, I_c^w, I_v^w)$, where

- $D^w = \{1, \dots, |w|\}$ is the set of positions in w,
- for each $a I^w(p_a)$ is the set of positions that contain an a,
- $I^w(x < y) = 1$ if and only if $I^w(x) < I^w(y)$,
- $I^{w}(suc(x, y)) = 1$ if and only if $I^{w}(y) = I^{w}(x) + 1$.

For example, let $\Sigma = \{a, b\}$ and w = ab. Then $D^w = \{1, 2\}$, $I^w(p_a) = \{1\}$ and $I^w(p_b) = \{2\}$. In this situation, we have

$$I^w \vDash \exists x \exists y (x < y \land p_a(x)) \land \neg \exists x \exists y \exists z (x < y \land y < z).$$

The language defined by $A \in \Phi$ is

$$L(A) = \{ w \in \Sigma^+ \mid I^w \models A \}.$$

The logic defined this way is also known as *Monadic Second Order Logic* on words.

- a) Present a formula A with $L(A) = \{a\}^+ \{b\}^+, \Sigma = \{a, b\}.$
- b) Present a formula A with $L(A) = \Sigma^* \{a\} \Sigma^* \{b\}, \ \Sigma = \{a, b\}.$
- c) Suppose you have symbols r, a, and i in Σ , where r, a, and i represent a request, an *acknowledge*, and an *internal* event, respectively. Present a formula A such that L(A) is the set of words such that: after each request event, at least one acknowledge event follows eventually.

Exercise 5.2 [MSO on graphs]

- a) Describe, similar to Exercise 5.1,
 - a collection of predicates,
 - an interpretation for each graph,

such that you can define sets of graphs using formulae.

b) Present a formula that defines precisely the set of connected graphs.

Exercise 5.3 [Undecidability]

A context-free grammar is called *linear* if in each rule, the right-hand side contains at most one occurrence of a nonterminal symbol. Show that the following problem is undecidable: Given linear context-free grammars G_1 and G_2 , is $L(G_1) \cap L(G_2) = \emptyset$?

Exercise 5.4 [Formulae in predicate logic]

- a) Let $A \equiv \forall x \exists y p(x, y)$ and $B \equiv \exists y \forall x P(x, y)$. Which of these formulas is deducible from the other? Are they equivalent?
- b) Is the formula $\forall xp(x) \rightarrow \exists xp(x)$ a tautology?