SS 2012 25. April 2012 ### In-class Exercises to the Lecture Logics Sheet 1 Jun.-Prof. Dr. Roland Meyer Discussion on 26./27. April 2012 #### Exercise 1.1 [Compactness Theorem] Prove the corollary of the Compactness Theorem: For a set Σ of formulae and a formula A, we have $\Sigma \vDash A$ if and only if there is a finite subset $\Sigma_0 \subseteq \Sigma$ with $\Sigma_0 \vDash A$. #### Exercise 1.2 [Compactness Theorem] Let $\Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \cdots$ be a sequence of finite satisfiable sets of formulae. Show that $\Sigma = \bigcup_{i \ge 0} \Sigma_i$ is satisfiable as well. ## Exercise 1.3 [Normal forms] A *literal* is a formula of the form p or $\neg p$, where p is an atomic formula. A *clause* or dual clause is a formula of the form $$L_1 \vee \cdots \vee L_n$$ or $L_1 \wedge \cdots \wedge L_n$, respectively, where L_1, \ldots, L_n are literals. A formula is in *conjunctive normal form* (CNF) or disjunctive normal form (DNF), if it is of the form $$K_1 \wedge \cdots \wedge K_n$$ or $K_1 \vee \cdots \vee K_n$ where K_1, \ldots, K_n are clauses or dual clauses, respectively. Shortly: - a formula in CNF is a conjunction of disjunctions of literals. - a formula in DNF is a disjunction of conjunctions of literals. Devise a method that, given a truth table, constructs a formula in - a) DNF - b) CNF with the given truth table. # Exercise 1.4 [Satisfiability checks] The *satisfiability problem* asks for a given formula whether it is satisfiable or not. It is generally conjectured that there is no efficient method to solve this problem. - a) Present an efficient method to decide whether a given formula in DNF is satisfiable or not. - b) In Exercise 1.3 you saw that it is possible to construct an equivalent formula in DNF for any given formula. Explain why the following is not an efficient algorithm for the satisfiability problem: - 1. Calculate an equivalent formula in DNF. - 2. Use the efficient method from a) to check for satisfiability.