Exercises to the lecture Logics Sheet 2

Jun.-Prof. Dr. Roland Meyer

Due 15. Mai 2012 12:00 Uhr

Exercise 2.1 [Recursive decidability]

A set M is called *recursively decidable* if there is an algorithm that, given w as input, halts after a finite amount of time and

- outputs ",1" if $w \in M$ and
- outputs ",0" if $w \notin M$.

A set M is called *recursively enumerable*, if there is an algorithm that outputs a (possibly infinite) sequence in which each element occurs if and only if it is contained in M.

Let Ax and R be recursively decidable sets of formulae in the calculus $\mathcal{F} = \mathcal{F}(Ax, R)$. Show that

a) the set of proofs in the calculus (Ax, R) is decidable and

b) $T(\mathcal{F})$ is recursively enumerable.

Here, a short description of the involved algorithms (e.g. using bullet points) is sufficient. Note: \mathcal{F} is not necessarily the same as \mathcal{F}_0 .

Exercise 2.2 [Inconsistency]

Show that $\Sigma \vdash_{\mathcal{F}_0} A$ if and only if $\Sigma \cup \{\neg A\}$ is inconsistent.

Exercise 2.3 [Proving in \mathcal{F}_0]

Prove the following statements without relying on the completeness of \mathcal{F}_0 . You can, however, use Exercise 2.2, the deduction theorem (for \mathcal{F}_0) and the theorems from "Beispiel 1.22" on the slides.

a) $\vdash_{\mathcal{F}_0} (A \to \neg A) \to \neg A.$ b) If B is an axiom in \mathcal{F}_0 , then $\vdash_{\mathcal{F}_0} (A \to \neg B) \to \neg A.$ c) $\vdash_{\mathcal{F}_0} \neg (A \to B) \to (B \to A).$

Exercise 2.4 [Complete sets of connectives]

Using structural induction, show that $\{\rightarrow, \neg\}$ is a complete set of connectives.

Delivery: until 15. Mai 2012 12:00 Uhr into the box next to room 34/401.4