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Zusammenfassung. Die Annahme, dass alle Komponenten fehlerfrei arbeiten und
immer verfügbar sind, wird häufig in der Verifikation von Systemen getroffen, obwohl
sie erwiesenermaßen falsch ist: Im Internet und in Client-Server-Anwendungen sind
Paketverluste und Serverausfälle nur allzu bekannte Phänomene.

Üblicherweise wird die Verfügbarkeit eines Systems als der Quotient aus der Zeit, in
der das System korrekt arbeitet, über dem Zeitraum, in dem das System betrachtet wird,
definiert [Tri82]. Von diesem Begriff ausgehend, gelang es [HMO10] Verfügbarkeit unter
dem Begriff der Verfügbarkeitssprachen (engl. availability languages) im Diskreten zu
fassen. Es konnte eine Charakterisierung dieser Sprachen über eine Erweiterung reg-
ulärer Ausdrücke (regular availability expressions) und ein gleichmächtiges Automaten-
modell angegeben werden.

Diese Arbeit stellt nun auch eine logische Charakterisierung vor. Dazu wird eine
Erweiterung von MSO Logik eingeführt, die wir im Folgenden als Verfügbarkeitslogik
(availability logic) bezeichnen. Das Hauptresultat der Arbeit besteht in einer effizienten
Übersetzungsvorschrift, um Verfügbarkeitsausdrücke in Verfügbarkeitslogik zu überset-
zen.

Die Untersuchung der Verfügbarkeitslogik gründet sich zum einen auf der Hoffnung,
durch sie Antworten auf offene Entscheidbarkeitsfragen für Verfügbarkeitsausdrücke zu
erhalten, zum anderen bietet sie einen Zugang zum Model Checking. Als ersten Schritt
hin zu entscheidbaren Unterklassen der Verfügbarkeitslogik erläutern wir Techniken,
um die Anzahl der Mengenvariablen erheblich zu reduzieren.

Abstract. Approaches to system verification usually assume that all components
work perfectly and are available all the time. However, this is no valid assumption
e.g. for most client-server application since packet loss and downtimes are well-known
phenomena.

The availability of a system is typically defined as the ratio of correct functioning and
the considered time interval [Tri82]. Inspired by this notion a discrete characterisation
of availability via availability languages has been introduced by [HMO10] to include the
aspect of availability in verification. The authors gave a characterisation via regular
availability expressions and a corresponding automata model.

This thesis introduces a characterisation of availability languages via availability logic,
an extension of MSO logic. Our main result is an effective translation algorithm from
regular availability expressions into availability logic.

The study of availability logic is motivated by open decidability problems for avail-
ability languages that we hope to settle by a logical account. A second application can
be seen in model checking. We present techniques to reduce the number of second-order
quantifiers significantly as a first step towards decidable fragments.
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1 Introduction

Today the internet is used for almost all kinds of applications. We chat and mail, do
online banking and buy things in online shops. We expect all of these applications to
guarantee a high reliability and a quick execution of the necessary steps. No one would
use amazon if half of the purchases were dropped and no one would rely on google if
they would usually need half an hour to answer a request.

Therefore, the reliability of the applications is a crucial issue. This reliability does
not only depend on the work within the application but also on the reliability of the
communication towards the server which performs the necessary actions and even on
the availability of the server itself. A formal characterisation is necessary to take the
system’s availability into account when we investigate certain properties.

Availability is usually defined as the ratio of correct functioning and the considered
time interval in a continuous setting[Tri82].

[HMO10] presents that availability can already be studied in the easier discrete setting
of words, since availability can be expressed as the ratio of letters encoding "good"
functioning to the number of letters at all.

The authors introduce the model of availability languages which allows to check spec-
ified availabilities on nearly arbitrary subparts of a word. Availability languages are
characterised via an extension of regular expressions with cardinality constraints called
regular availability expressions and via the corresponding availability automata.

In opposition to weighted automata [DKV09] and Presburger regular expressions
[SSMH04] the measurements of the cardinality constraints in availability expressions
affect the further acceptance of the word. As pointed out in [HMO10] their model also
allows an unbound number of check positions whereas Presburger regular expressions
only have a finite number of arithmetic constraints.

Reliability properties are usually investigated in the context of model checking.
The model checking problem is defined as the question whether a system A satisfies a
specification ϕ. Availability languages can either be used as a specification e.g. if we
want to guarantee that a server is available at least 50% of its life or they can be included
in the system description if we want to prove reliability properties like "each request is
answered within 5 seconds" for a system like the google servers for which we know that
the availability of each server is smaller than 100%.

Usually the system is given in the form of an automaton while the specification is given
as a formula. Therefore a logical characterisation of availability languages is necessary
to extend the model checking approach to availability languages.

Furthermore, there are open decidability problems like the emptyness problem for
regular availability expressions. We hope that those problems can be settled by the
help of a logical account.

This thesis establishes a logical characterisation of availability languages based on an
extension of MSO logic which we call availability logic.
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We recapitulate basic terms and results for formal languages and mathematical
logic with a special stress on regular expressions and MSO logic on words in chapter
2. In chapter 3 regular availability expressions are investigated closer. We present
definitions and properties to capture the discovered peculiarities. These notions ease
the understanding of the construction in chapter 4. This chapter introduces our main
result, an effective translation algorithm from regular availability expressions into
availability logic. We then reduce in chapter 5 the number of second-order quantifiers in
the constructed formulas using a trick which was already proposed in [EF95, page 112]
and some new modifications dealing with the extensions to MSO.

As shown by Büchi in 1960 MSO logic has the same expressiveness regular expressions
have [Lib04, page 124] and is thus decidable.

Decidability and undecidability results have been proven for different extensions of
MSO. Weighted logic [DG07] corresponding to weighted automata has a decidable lan-
guage equivalence problem. The extension of MSO with cardinality constraints on ar-
bitrary second-order sets [KR03] has decidable and undecidable fragments depending
on the number and kind of the second-order quantifiers. The decidability of their Σ1

1

fragment of MSO with cardinalities has motivated our transformations in chapter 5.
The study of availability logic can also be seen as a first step towards a study of

different extensions of MSO logic with cardinality constraints.
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2 Preliminaries

We shortly recapitulate formal languages and regular expressions in section 2.1 and
present some basic properties of regular expressions. Section 2.2 on page 11 introduces
the basic terms of mathematical logic which are necessary to understand the definition
of MSO logic given in section 2.3.

2.1 Words and languages

An alphabet is a non-empty finite set of symbols, which we usually denote by Σ. The
elements of an alphabet are called letters and finite sequences of the letters are called
words. The sequences of letters are written in one line without withespaces, just like
words in natural languages. The empty sequence without any letters is called empty
word and denoted by ε.

By using the phrase "words over an alphabet" we indicate that the word may only
contain letters which are part of the specified alphabet. However, not all of these symbols
have to be used in the word. An extreme example is the empty word ε, which can be
defined as a word over any alphabet.

It is important to distinguish between words in a natural language and words in the
way we define them. Consider the alphabet Σ � tn, ou, over which we may form the
words on and no, but also words like nnn or onnnno.

There are some functions defined on words which we shall use later on. The length
of a word w is the number of letters it contains. A word’s length is denoted by |w|.

Let w � a1 . . . an be a word with letters a1 to an, then

|w| � |a1 . . . an| � n .

Over Σ � ta, bu we have |ε| � 0 and |ab| � 2.
Let w1 be a word over Σ1, w2 a word over Σ2. The concatenation of w1 and w2 is the

sequence in which the letters of w1 are followed by the letters of w2. The concatenation
is denoted by w1.w2 and is a word over the alphabet Σ1 Y Σ2.

w1.w2 � w1w2 .

The concatenation of w1 � aba and w2 � aba is the word abaaba. A concatenation of
a word w with ε is w again.
Let Σ be an alphabet, A � Σ a subalphabet, and w a word over Σ. The projection

of w onto the alphabet A is written πApwq and defined as the word w1, which is formed
by concatenating all letters in w that are part of A in the order of their appearance in
w.
Consider Σ � ta, bu with the subalphabet A � tau. For the word w1 � ababbba,

πtaupw1q � aaa, while for w2 � bbb, the projection πtaupbbbq is ε.
A language L over Σ is defined as a set of words over a given alphabet Σ.
We characterise languages in two ways, by means of regular expressions and logical

formulas.
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To this end, we first introduce operations on languages. We need them to understand
the semantics of regular expressions.

Let L1,L2 be languages. Their concatenation L1.L2 is the language consisting of
all the concatenations of words from L1 with words from L2.

L1.L2 � tu.v |u P L1, v P L2u .

The languages L1 � tab, abau and L2 � tc, cdu form two different concate-
nations, depending on the order in which they are combined. While L1.L2 �
tabc, abcd, abac, abacdu, L2.L1 � tcab, caba, cdab, cdabau. We shall often omit the dot.
Furthermore there are abbreviations to indicate the concatenation of a language with
itself.

The multiple concatenation of a language L is abbreviated Li, where i P N denotes
the number of concatenations of L with itself. L0 encodes tεu, all other concatenations
are defined inductively:

Li � LLi�1 .

Let L be a language. The Kleene closure or Kleene star of L, L�, is the language
which contains ε,L, and any finite number of concatenations of L with itself.

L� �
8¤

i�0

Li .

The Kleene plus L� excludes L0:

L� �
8¤

i�1

Li � LL�

Note that L� contains ε iff L does.
The operators � and � usually produce an infinite set of words. Only when ap-

plied to tεu, they have no effect. The language that � produces on L1 � tau is
L�1 � tε, a, aa, aaa, . . . u.

Regular expressions offer an efficient way to characterise languages by describing most
common matches on words. We define regular expressions in an inductive way, following
[HU79, page 28].

Definition 1 (Syntax of regular expressions). Let Σ be an alphabet.

• H is a regular expression.

• a with a P Σ is a regular expression.

• ε is one, too.

For regular expressions ρ, τ , the following compound expressions are regular as well:

• ρ� τ ,
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• ρ.τ ,

• and ρ�.

We will sometimes call compound regular expressions recursive regular expres-
sions to indicate that their evaluation requires recursive calls. All other regular expres-
sions are then referred to as non-recursive. In order to reduce the number of necessary
parentheses we give the operators �, ., and � a precedence. The Kleene operator � has a
higher precedence than the concatenation which has a higher precedence than the choice
�.

Definition 2 (Semantics of regular expressions). Let Σ be an alphabet, and ρ, τ be
regular expressions.

• LpHq � H

• For a P Σ, Lpaq � tau.

• Lpεq � tεu.

• Lpρ� τq � Lpρq Y Lpτq.

• Lpρ.τq � Lpρq.Lpτq.

• Lpρ�q � pLpρqq�.

We say that a word w matches a regular expression ρ if it is w P Lpρq. A language
denoted by a regular expression τ is called a regular language, written as Lpτq. Two
regular expressions ρ, τ are called equivalent, denoted by ρ � τ , iff Lpρq � Lpτq.

We will sometimes use the expression ρ� for a regular expression ρ. This is an abbre-
viation for ρ.ρ� which captures the Kleene plus.

The expression a�b� characterises the language Lpa�b�q, consisting of all words over
ta, bu, in which bs are only placed after as, while all the as may only be placed before the
bs and there may also be no as or no bs at all. Words in this language are for example ε,
aaaaaa, b, aaabbb and abbbbb. The language Lpa�b�q also consists of words in which bs
follow as, but excludes the case of no bs or no as. Words are aaabbb, abbbbb or ab, while
ε, b or aaaaaa are excluded.
We introduce some properties of regular expressions which are helpful to simplify a

given expression. We will derive similar properties for regular availability expressions in
chapter 3 on page 23.

Theorem 1 (Properties of regular expressions). Let ρ, τ , and σ encode regular expres-
sions.

Associative property Expressions solely involving union or concatenation are invariant
with respect to the order of operations:

• pρ� τq � σ � ρ� pτ � σq
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• pρ.τq.σ � ρ.pτ.σq

Commutative property The order in which two regular expressions are united does not
matter:

• ρ� τ � τ � ρ

• In general: ρ.τ � τ.ρ

Distributive property The concatenation with a union may be performed as two single
concatenations with the union parts:

• pρ� τq.σ � ρ.σ � τ.σ

• ρ.pτ � σq � ρ.τ � ρ.σ

Zero element An element ν is called zero element under a unary operation � iff ν� � ν.
An element ν is called zero element under a binary operation � if for any element
ξ the equality ν�ξ � ν � ξ�ν holds.

The expression H is zero under concatenation and Kleene’s �, ε is zero under
Kleene’s � and Kleene’s �:

• H.ρ � H � ρ.H

• H� � H

• But: H� � ε � H

• ε� � ε

• ε� � ε

Neutral element An element µ is called neutral element under a binary operation � iff
for any element ξ the equality µ�ξ � ξ � ξ�µ holds. The expression H is neutral
under union, ε is neutral under concatenation:

• H� ρ � ρ � ρ�H

• ε.ρ � ρ � ρ.ε

Proof. We prove the equivalences via the languages where we exploit the commutative
and associative property of the set union.

• pρ� τq � σ � ρ� pτ � σq:
Lppρ� τq � σq � pLpρq Y Lpτqq Y Lpσq � Lpρq Y pLpτq Y Lpσqq � Lpρ� pτ � σqq.

• pρ.τq.σ � ρ.pτ.σq:
Lppρ.τq.σq � Lpρ.τq.Lpσq � pLpρq.Lpτqq.Lpσq � tu.v.w|pu.vq P pLpρq.Lpτqq, w P
Lpσqu � tu.v.w|u P Lpρq, pv.wq P pLpτq.Lpσqqu � Lpρq.pLpτq.Lpσqq � Lpρ.pτ.σqq.

• ρ� τ � τ � ρ:
This follows immediately from the commutative property of the set union.
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• In general: ρ.τ � τ.ρ:
This was already seen in chapter 2.1 on page 8 with Lpab � abaq.Lpc � cdq �
Lpc� cdq.Lpab� abaq.

• H.ρ � H � ρ.H:
Since there is now word v in LpHq, there cannot be a word v.w with v P LpHq, w P
Lpρq, so LpH.ρq � LpHq. The opposite direction can be seen with analogue
arguments starting with Lpρ.Hq.

• H� � H:
LpH�q � LpH.H�q � LpHq.LpH�q and by the previous item this is LpHq.

• But: H� � ε � H:
LpH�q � tεu Y LpH�q � tεu YH � tεu.

• ε� � ε:
Since Lpεq.Lpεq � Lpεq any multiple concatenation is ε again. Furthermore,
Lpεq � tεu and Lpεq0 � tεu. So, Lpε�q � tεu Y tεu Y tεu � tεu.

• ε� � ε:
Lpε�q � Lpεq.Lpε�q � Lpεq.Lpεq � Lpεq.

• H� ρ � ρ � ρ�H:
LpH � ρq � LpHq Y Lpρq � HY Lpρq � Lpρq. Furthermore, Lpρq � Lpρq Y H �
Lpρ�Hq.

• ε.ρ � ρ � ρ.ε:
Lpε.ρq � Lpεq.Lpρq � tu.v|u P Lpεq, v P Lpρqu � tε.v|v P Lpρqu � tv|v P Lpρqu.
The opposite direction can be seen with analogue arguments starting with Lpρ.εq.

There are languages which are not expressible via regular expressions. For example
the language tanbn|n P Nu is not regular. A proof is given in [Sch08, page 33] and in
example 5.3.3 in [EF95, page 114] via a pumping argument. It can be seen with similar
arguments that also matching parentheses tw P Lpb � eq� | the number of bs equals
the number of es and for each prefix of w the number of bs is larger or equal to the
number of esu and tanbncn|n P Nu are not regular.

2.2 Mathematical logic

Mathematical logic has very different forms. We study binary logic which is based on the
two boolean truth values true and false. Formulas are assigned a truth value depending
on the interpretation of the used symbols. We follow [Lib04, page 13 and following] but
concentrate on a subset of logical formulas, consisting of predicate symbols, function
symbols, logical connectives and quantifiers.
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While the evaluation of quantifiers and connectives is fixed by rules, the interpretation
of a predicate or a function symbol is usually definable and is documented as the inter-
pretation of the symbol. Logical connectives connect formulas, we use  ,^,_ and
Ñ as symbols. To avoid a lot of parenthesis, we define  to have the highest priority,
with the other symbols following in the order ^,_, and as last Ñ.
From the viewpoint of the evaluation function e, connectives use boolean values as

input and are assigned a boolean value as output. Let ϕA and ϕB be formulas such that
their evaluation encodes a boolean value P ttrue, falseu.

ep ϕAq = if epϕAq then false else true
epϕA ^ ϕBq = if epϕAq then epϕBq else false
epϕA _ ϕBq = if epϕAq then true else epϕBq
epϕA Ñ ϕBq = if epϕAq then epϕBq else true

We can now already evaluate simple formulas. The evaluation of ϕ _  ϕ is true,
independent of the truth value of ϕ, while epϕ^ ϕq is always false. If we let ϕ1 encode
true and ϕ2 encode false, we can evaluate ϕ0 � ϕ1 Ñ ppϕ2 ^ pϕ1 Ñ ϕ1qq _ pϕ1 _ ϕ2qq
from the outside to the inside as

epϕ0q = if epϕ1q then eppϕ2 ^ pϕ1 Ñ ϕ1qq _ pϕ1 _ ϕ2qq else true
= eppϕ2 ^ pϕ1 Ñ ϕ1qq _ pϕ1 _ ϕ2qq
= if epϕ2 ^ pϕ1 Ñ ϕ1qq then true else epϕ1 _ ϕ2q
= epϕ1 _ ϕ2q
= true .

The smallest formulas are the predicate symbols. Predicate symbols can contain
function symbols as parameters for the evaluation of the predicate towards a boolean
value. This value depends on the interpretation of the predicate itself and on its input
data if such data exists. When evaluating a predicate, we first evaluate its input function
symbols to receive input data we then evaluate the predicate itself under. The predicate
interpretation can be given in the form of a rule like for example evenpxq iff x is a
natural number with x � 0 mod 2, or as the set of input data satisfying the predicate,
which would be even � 2N. The universe or domain of an interpretation delimits
the interpretation of the function symbols. When interpreting function symbols, we
distinguish between first-order symbols abbreviated as FO symbols or and monadic
second order symbols abbreviated as MSO symbols. The interpretation of a FO
symbol is an element of the domain, while the interpretation of an MSO symbol is a set
of elements of the domain.
We define a structure which is also often called a model following [Lib04, page 13].

Definition 3 (Structure). Let ϕ be a formula, P the set of predicate symbols used in ϕ
and F a set containing all function symbols used. Let A be a domain, ipPq be a set of
interpretations for each element of P, ipFq be a set of interpretations which respect A
for each element of F. A structure A is written as

A �  A, ipPq, ipFq ¡ .

Please note that our definition allows to interpret more function symbols than actually
occur in the formula. Any unnecessary interpretation is ignored when evaluating the
formula. We will exploit this fact in the proof of Lemma 4 on page 32.
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Consider the formula ϕ � ppxq. Besides the domain there is the predicate p and the
function x for which we both have to name an interpretation to define a structure. We
will use the natural numbers as a first domain. When we want to use p as true, if its
input is an odd number, we can make ϕ true or false by the interpretation we choose for
x: If we choose for example 3 as interpretation of x, then the formula evaluates to true,
while, if we choose 4, it will be interpreted as false.

By changing the domain to 2N but keeping the interpretation of p as it was before,
we have no longer an option to satisfy ϕ by any interpretation of x we may choose. As
x is fixed to be a part of the domain, it has to be an even number and by that cannot
satisfy our predicate p.
A structure is an important element when determining a formula’s truth value. Com-

bined with the evaluation rules for connectives and quantifiers it will allow us to uniquely
calculate the truth value for any formula. As the evaluation rules will be fixed, the struc-
ture will remain the only variable part. To stress the structure’s impact on the formula’s
truth value, we will usually state that a formula is true or false under a given structure.
To complete our definitions, we now define the evaluation for the quantifiers we use.
Logical quantifiers are expressed over a function symbol. This symbol is then called

a quantified or bound variable and will not be interpreted. Every occurrence of the
variable within the scope of the quantifier is also called bound. The scope of a quantifier
can be defined by the parentheses t, u. This definition, but also the implicitly assumed
scope, must respect the parentheses of the formula. Whenever a new quantifier for the
same variable occurs within the formula, the scope of the old quantifier is intercepted
for the scope of the new one. Variables which are not bound are called free.
We use the existential quantifier D and the universal quantifier @. Their eval-

uation e under a given domain A depends on the interpretation of the formula ϕ over
which the scope of the quantifier ranges.

epDxϕq = true, iff there is at least one interpretation ipxq in A such that ϕ can be
evaluated to true with the restriction that any occurrence of x which is free in ϕ
is interpreted as ipxq.

ep@xϕpxqq = true, iff for all interpretations ipxq in A ϕ can be evaluated to true with
the restriction that any occurrence of x which is free in ϕ is interpreted as ipxq.

This illustrates why we cannot interpret bound variables: their values are controlled by
the quantifier.

Let x and y be FO symbols, and uneq be a predicate which expects two FO symbols
as parameters. We analyse the formula ϕ � @x@y uneqpx, yq under the fixation that
uneq expresses, wether two elements are unequal. As the predicate is fixed and not
interpretable and there do not occur any free variables, we do not have to choose any
predicate or function symbol interpretations. It is sufficient to fix the domain A and use
A �  A,H,H ¡ as a structure.

We use A1 � t1, 2u as a first domain and determine ϕ’s truth value. We have to
evaluate the formula under any value of the domain and choose 1 first. The variable x
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is interpreted as 1 in the remaining formula @y uneqpx, yq so we evaluate @y uneqp1, yq
further. We test y � 2 first and receive true, as 1 � 2, but when evaluating y as 1, the
formula is false. We can stop our evaluation and determine the truth value of ϕ as false
under this domain. In fact, ϕ is false under any domain but the empty set H, as y takes
every domain value and therefore also uses the same value, x just has for any choice of
x. Only if there is no element in the domain, then ϕ is true, as it states a property for
all x, which always holds if there is no x.

This does not work any more if we consider the formula ϕ1 � Dx@y uneqpx, yq. It is
not satisfiable as Dx is only true if there is at least one element in the domain. @y yields
that we will compare the element with itself and therefore receive false.

On the other hand ϕ3 � @xDy uneqpx, yq is true for any domain with two or more
elements, as we can choose any element but the value behind x as value of y. Also, ϕ3

is true under the domain H, as it starts with @x again.
A substitution is a syntactical replacement of one function symbol by another one.

The substitution is applied on every free occurrence of the symbol while any bound
occurrence mustn’t be replaced. In ϕ � x   y ^ Dxx ¡ y the function symbol y only
occurs freely. The substitution of y by z transforms ϕ into ϕ1 � x   z ^ Dx x ¡ z. An
analogue substitution of x by z does only have an effect on the first occurrence of x.
The constructed formula ϕ2 is z   y ^ Dx x ¡ y.

We have seen the impact of quantification on formulas and on the degree of freedom
for our interpretation. These observations are reflected in the following definition.

Definition 4 (Sentences). A formula, in which no variable occurs freely is called a
sentence. A structure A for a sentence ϕ can always omit the interpretation of functions.
Let P be the predicates occuring in ϕ.

A �  A, ipPq,H ¡ .

2.3 FO and MSO logic in word domains

The introduction of FO and MSO logic is based on [Tho97].
A finite word w � a0, a1, . . . , an�1 over an alphabet Σ can be interpreted as a mapping

of positions t0, 1, . . . , n� 1u to letters of the alphabet Σ

w : t0, 1, . . . , n� 1u Ñ Σ,

where a position x maps to a P Σ ("x ÞÑ a") iff the letter at position x is a.
The set of positions in the word is called the word’s word domain dompwq.
For example, the word abbca implies the mapping (0 ÞÑ a, 1 ÞÑ b, 2 ÞÑ b, 3 ÞÑ c, 4 ÞÑ a)

with dompabbcaq � t0, 1, 2, 3, 4u.

Definition 5 (Syntax of FO logic). An FO formula for words over an alphabet Σ consists
of:

• function symbols (x, y, . . . ) as variables for positions
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• logical connectives  ,^,_ and Ñ

• quantifiers @ and D

• predicates Spx, yq, x   y and Qapxq with a P Σ

Further predicates may be introduced if they are abbreviations for FO formulas.

To fill this syntactical definition with semantics we first introduce the word model,
which defines the interpretation of the domain and the predicates with respect to a given
word.

Definition 6 (Word models). Let w be a word, x and y positions in w. The word model
w of w is defined as pdompwq, Sw, w, pQw

a qaPΣq, where the predicates are fixed to the
following interpretation:

Swpx, yq iff position x is directly followed by position y in w
x  w y iff position x is followed (but not necessarily directly followed) by

position y in w
Qw
a pxq iff the letter at position x is a

(The extension w indicates, that the predicate is evaluated according to w.)

We complete our interpretation of FO formulas by fixing the interpretation of free
variables.

Definition 7 (Satisfaction of FO formulas). Let Σ be an alphabet, and w a word over
Σ with p1, . . . , pn P dompwq positions in w. Let ϕpx1, . . . , xnq be a FO formula, in which
x1 to xn occur freely. We say that w satisfies ϕ

pw, p1, . . . , pnq ( ϕpx1, . . . , xnq,

iff ϕpx1, . . . , xnq is true if it is interpreted with the domain and the predicate interpreta-
tion w implies and p1 to pn serve as interpretation for the free variables x1 to xn.

We also state that a formula ϕ accepts a word w to express pw, p1, . . . , pnq (
ϕpx1, . . . , xnq from the viewpoint of the formula. If there are several free variables
the match of a variable x with its interpretation p will be explicitly given to avoid
ambiguities.

Please note that in analogy to the example in 2.2 on the previous page any formula
starting with an existentially quantified position variable is false under ε, since this
formula states that a position x exists. In contradiction a universally quantified formula
is true, since anything is true for all x if no x exists.

Observation 1 (ε as a model). Let ϕpxq be a formula in which at most x occurs freely.
pεq * Dxϕpxq
pεq ( @xϕpxq .

We consider the alphabet ta, bu. The FO formula DxQapxq accepts all words, in which
at least one letter a exists. These words can be summarised as LpΣ�aΣ�q. We call
languages which are definable via FO sentences FO definable languages.
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Definition 8 (FO defined language). The language over an alphabet Σ defined by an
FO sentence ϕ is called Lpϕq and is defined as tw P Σ�|pwq ( ϕu. On the other hand,
a language L is called FO definable iff there is an FO sentence ϕ, so that L � Lpϕq.

By extending FO logic with the ability to formulate sets of positions and quantify
over them, we derive the more powerful monadic second order (short: MSO) logic.

Definition 9 (Syntax of MSO logic). An MSO formula for words over an alphabet Σ
consists of:

• FO function symbols (x, y, . . . ) as variables for positions

• MSO function symbols (X, Y, . . . ) as variables for sets of positions

• logical connectives  ,^,_ and Ñ

• quantifiers @ and D

• predicates Spx, yq, x   y, Qapxq with a P Σ and Xpxq

Further predicates may be introduced if they are abbreviations for MSO formulas.

The newly introduced predicate Xpxq is true iff the set of positions X contains the
position x.
Please note that this fixation removes Xpxq from the set of predicates for which we

may define an interpretation. This implies that no changes in the word model will
be necessary to adjust it to MSO. Furthermore, the definition of satisfaction of MSO
formulas is the same as the one for FO as regards content.

Definition 10 (Satisfaction of MSO formulas). Let Σ be an alphabet, and w a word
over Σ with p1, . . . , pn P dompwq positions in w. Let ϕpx1, . . . , xnq be an MSO formula
the FO and MSO formulas x1 to xn occur freely in. We say that ϕ is satisfied in w

pw, p1, . . . , pnq ( ϕpx1, . . . , xnq,

iff ϕpx1, . . . , xnq is true if it is interpreted with the domain and the predicate interpreta-
tion w implies and p1 to pn serve as interpretation for the free variables x1 to xn.

Like already discussed for FO logic we avoid ambiguities in the match of free variables
and interpretations by explicitly giving the corresponding interpretation to each free
variable as soon as there are at least two.

While we have been able to determine the truth value of any formula starting with an
FO quantifier under ε, we cannot make equivalent statements for second-order quantifi-
cation. As the empty set is a set as well, existential quantifiers and universal quantifiers
both yield the evaluation of the formula with the former bound variable interpreted as
the empty set H.
When reasoning about the decidability of MSO extensions MSO formulas in Σ1

1 form
are of special interest. Our definition follows [EF95, page 39].
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Definition 11 (Σ1
1). An MSO formula ϕ is called in Σ1

1 form if it begins with a block
of second-order quantification without interleaved predicates and has a body B only FO
quantification is done in. The body may also contain predicates which range over the
second-order variables.

ϕ � DX1 . . . DXn B

In analogy to the definition of languages as all the words matching a given regular
expression, we can now define languages as all the words satisfying a closed MSO formula:

Definition 12 (MSO defined language). The language over an alphabet Σ defined by an
MSO sentence ϕ is called Lpϕq and is defined as tw P Σ�|pwq ( ϕu. On the other hand,
a language L is called MSO definable iff an MSO sentence ϕ exists, so that L � Lpϕq.

The following important result was discovered by Büchi in 1960 and characterises the
expressiveness of MSO. It was the reason why we chose to define availability logic on
the basis of MSO.

Theorem 2 (MSO = regular). A language is definable in MSO iff it is regular.

Proof. Theorem and proof in [Lib04, page 124].
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3 Availability expressions

This section establishes a formal and discrete characterisation of availability and in-
troduces a corresponding model. Definition 15 and 16 on the following page, and the
examples of expressible not regular languages are taken from [HMO10], where the model
was introduced. All other results in this section are original.

3.1 Defining availability

Imagine you would measure from time to time the functioning of a system and always
consider the new measurement as the value the system had since your last measurement
point. Each of these measurements is documented by adding a letter encoding the
currently measured value to the finite string which encodes all your measurements so
far. Once you finish measuring you have produced a finite word w.

Definition 13 (availability). Let w be a finite word, in which each symbol a P A � Σ
encodes correct functioning of the system, while each letter b P ΣzA encodes a measure-
ment point in which the system did not work correctly. We express availability as the
ratio of letters a P A in w to the length of w. Hence, the availability of a system is
represented as

|πApwq|

|w|
.

To illustrate the abstraction, we consider the following finite run of a highly unreliable
server:

time

sys

down

up

n0

With Σ :� tup, downu we model w as:

t

sys

down

up

n

w :� up up downdown up up up down up up

Now we can express the availability during the run as |πtupupwq|

|w|
� 7

10
.
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3.2 Regular availability expressions (rae)

Besides calculating the actual availability of a given system run we can also formulate
availability properties of which we would like to express that our system satisfies – or
should satisfy – them. Those properties are referred to as availability constraints.

Definition 14 (availability constraints). Let Σ be an alphabet, w a word over Σ. An
availability constraint is formulated as an inequation

|πApwq| Á k � |w| Á P t¡,¥u

where A is the part of the alphabet Σ encoding correct functioning of the system and
k P r0, 1s is the desired availability.

Please note that also inverse constraints like |πApwq| À k � |w| can be modeled by
|πΣzApwq| Á p1� kq � |w|, so we can safely use them as abbreviations.

We can use the constraints to restrict the languages accepted by a regular expression
further. For example, we could wish a server availability of at least 50%. This can be
modeled as L � ppup�downq�.Xqtupu¥ 1

2
, where p. . . qtupu¥ 1

2
checks the desired availability

|πtupupwq| Á k � |w| at X. The former seen server run is in L, while downupdown R L.

Definition 15 (Syntax of raes). Let Σ be an alphabet with a P Σ and A � Σ, ÁP t¡,¥u
and k P r0, 1s. The set of regular availability expressions (rae) over Σ is inductively
defined as: H, ε, a and X are raes. If A and B are raes, then A � B, A.B, A�, and
pAqAÁk are raes, too.

The two newly introduced expressions X and p. . . qAÁk are closely related. The con-
straint p. . . qAÁk defines by its opening bracket "p" the beginning of the subword, on
which we want to check an availability constraint, and specifies by the closing bracket
"qAÁk" the availability constraint itself as well as its scope of application. Each check
symbol X within the constraint marks the end of a subword on which we check an
availability constraint. If there is no check symbol within a constraint, the specified
availability constraint is never checked. Outside a constraint a check symbol is treated
like a usual letter, although X is never allowed to be part of the original alphabet Σ to
avoid ambiguities.

Definition 16 (Semantics of raes). Let Σ be an alphabet so that X R Σ . It is Lpraeq �
pΣYtXuq�. The semantics of H, ε, a with a P Σ, + , . , and � are not changed for raes.
We define LpXq � tXu and LppρqAÁkq � LAÁkpρq, where LAÁkpρq � tπΣpwq|w P Lpρq
and |πApw1q| Á k � |πΣpw1q| for all w1.X.w2 � wu.

The option to place a check symbol at an arbitrary position within a rae allows to
define availability constraints on subparts of words which are no well-nested subwords
but just prefixes. For example, papXbq�qtau¡ 1

2
on the word w � aXbXb allows to check

the availability constraint on the prefix w � aXbX, although the nesting is appXbqpXbqq.
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When nesting constraints the innermost constraint is the one to be checked at the
included check symbols, any surrounding constraint has to be ignored. This can be seen
at the example σ � ppaXqtau¥ 1

2
qtbu¥ 1

2
for the word aX. We first determine the word

w P LppaXqtau¥ 1
2
which ppaXqtau¥ 1

2
accepts if it is given aX. This word is a since it is

πΣpaXq. Now we evaluate the outer constraint with w � a and since there is no check
symbol, we receive a P Lpσq.
The expressiveness of raes is strictly larger than the expressiveness of regular expres-

sions as some examples of expressible languages which are not regular show:

• Matching parenthesis: pppb� eXq�qtbu¥ 1
2
Xqteu¥ 1

2

Whenever we read an e we have to check that so far at least as many brackets
were opened as closed. Together with the final check that all brackets were closed
we characterise matching parenthesis.

• tanbn |n P Nu: ppa�b�Xqtau¥ 1
2
Xqtbu¥ 1

2

Any word matching pa�b�Xqtau¥ 1
2
has to consist of as and bs, where as form at

least the first half of the word. Combined with the second restriction that at least
half of the letters are bs, the only option left is that one half of the letters are as
and the other are bs. The expression a�b� makes sure that as form the first and bs
form the second half, which leaves us with anbn as the only option.

• tanbncn |n P Nu: pppa�b�c�Xqtau¥ 1
3
Xqtbu¥ 1

3
Xqtcu¥ 1

3

Extending the former construction we can also express analogously formed context-
sensitive languages.

3.3 Properties of raes

This section illustrates strengths and weaknesses of the introduced model. We present
a normal form and properties, which can be used to simplify raes.

First, we investigate the semantics given in definition 16 on the previous page closer.
The definition of LppρqAÁkq � LAÁkpρq, where LAÁkpρq � tπΣpwq|w P Lpρq and
|πApw1q| Á k � |πΣpw1q| for all w1.X.w2 � wu introduces some dynamic aspects. As
we already illustrated in Section 3.2, there are expressions ρ so that the word w1 in Lpρq
is not the same as the word w for which we asked if it is accepted by ρ. The difference
between the words lies in the position of check symbols: In w1 some check symbols of w
are removed via the constraints.

To capture the words w which are accepted by a rae exactly we introduce the model
abrae as a helping construct.

Definition 17 (abrae). The syntax of an abrae is the syntax of a rae, also the semantics
are equal except for LAÁkpρq. For an abrae ρ, LAÁkpρq � tw |w P Lpρq and for each
w1.X.w2, so that there was no constraint checked on the X in ρ, |πApw1q| Á k � |πΣpw1q|u.
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The language of the corresponding abrae to a rae is exactly the set of words which
are accepted by the rae.

Definition 18 (Acceptance in rae). Let ρ be a rae and w a word over Σ Y tXu. The
word w is accepted by the rae ρ if w P Lpρq, where ρ is understood as an abrae.

In opposition to a rae, an abrae accepts a word without changing it. The model can
be imagined like a look-ahead: Before we really change the word by projecting letters
away, we first want to know wether the choices we made for the constraints lead to a
word in the language of the rae.

For one word which is accepted by a rae there can be several choices which lead
to different words in the language of the given rae. We consider the rae ρ �
ppa�b�Xq�qtau¥ 1

2
b�X� and the word aabXbX. We can either match the whole word to the

constraint, so that aabX and bX are two subwords in the Kleene star or we can match
aabX on the constraint and bX on the following b�X�. In the former case, w1 P Lpρq is
aabb, while in the latter case w1 is aabbX.
This shows that there is for a word w accepted by an rae ρ not one deterministically

determined corresponding word but there may be several. The difference lies in the way
the word w is matched onto the expression ρ or more precisely in the way we match the
check symbols. If a check symbol of w is matched onto a check symbol in ρ which is
surrounded by a constraint, then this check symbol will be projected away in w1 P Lpρq,
otherwise the check symbol remains in the word.

Definition 19 (active check). Let ρ a rae. A check symbol X in ρ is called active, if it
is not surrounded by a constraint, otherwise it is called asleep.

We consider the rae ρ � pσqtau¥ 1
2
, where σ � pcXa�qtcu¥ 1

2
X. The last X in σ is active,

since it appears outside the constraint, but if we consider ρ this check is also asleep.

Definition 20 (free check). A check symbol in a word w, which matches an active check
symbol in ρ in one way of ρ to accept w is called free under ρ. The set of all checks
which are free under one given way to accept ρ is called checkset freepw, ρq.

When we apply the former example on the word w � cXaX to determine free checks,
we see that there is only one way for ρ to accept w. So freepw, ρq is uniquely defined.
It is freepw, ρq � H, since there are no active checks in ρ. The checkset freepw, σq
contains the last letter in w since this letter matches the active last check symbol.
The definition gives us a handle on one concrete way to accept the word. Rather than

logging the whole acceptance procedure and with that somehow the derivation we can
limit our knowledge to the matches of the active check symbols since they are the only
ones which would remain in a word w1 P Lpρq produced out of w.
The set freepw, ρq is uniquely defined for a concrete acceptance and a pair pw, ρq,

while there may be several ways to accept w under ρ, which produce the same set of
free check positions. If several different sets can be produced for a given pair pw, ρq the
acceptance can lead to different words.
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The non-determinism which word of the language is produced when accepting a given
word can be avoided if we limit our model onto expressions ρ in which no active check
symbols occur. Since there are no active checks in ρ there cannot be free checks in the
word w accepted by ρ. Hence the word in the language Lpρq contains no checks and is
therefore uniquely defined for each accepted word as its projection to Σ:

Fact 1. Let ρ be a expression in which no active check symbol occurs. The language
Lpρq is tπΣpwq |w accepted by ρu.

It is valid to limit the words in the language of a rae to Σ, since check symbols
in a word encode no system behaviour and hence they carry no information which is
necessary once we know that the word is accepted by the rae. To remove them in a rae
ρ, we can add a constraint, which removes all check symbols, but does not restrict the so
far accepted words further. Such a constraint is p. . . qΣ¥0, since it yields each projection
of a word to Σ to have at least 0 letters from Σ, which is always given.

Definition 21 (Check-closed form). A rae ω is in check-closed form, iff there are no
active checks in ω. Otherwise an expression is called check-open.

For example, paXqtau¡0 is in check-closed form, since the only used check symbol is
surrounded by the constraint p. . . q}au¡0, while aX itself is not in check-closed form. Of
course, any availability expression, in which no check occurs, – especially every regular
expression – is in check-closed form.

Lemma 1 (Closure of the check-closed form). Let ρ, τ be arbitrary raes. The expression
pρqAÁk is always check-closed. The expressions pρq� and pρq� are check-closed iff ρ is
check-closed. The expressions ρ�τ and ρ.τ are check-closed iff ρ and τ are check-closed.

Proof. Since the check-constraint surrounds the whole expression, it also surrounds every
check symbol. So the first claim is true by the definition of the check-closed form.

We proof the second claim in two implications.

"ñ" : Consider ρ not in check-closed form. This means, that there is at least one check
symbol in ρ, which is not guarded by a constraint. Since neither � nor � introduce
a constraint, guarding this check symbol, ρ� and ρ� are also not in check-closed
form.

"ð" : Let ρ be a check-closed expression. Since neither � nor � introduce a check
symbol ρ� and ρ� are also check-closed.

In analogy, the third claim can be shown:

"ñ" : Consider ρ or τ not in check-closed form. This means, that there is at least one
check symbol in ρ or τ , which is not guarded by a constraint. Since neither + nor
concatenation introduce a constraint, guarding this check symbol, ρ � τ and ρ.τ
are also not in check-closed form.
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"ð" : Let ρ and τ be check-closed expressions. Since ρ and τ are check-closed, their
union or concatenation is also check-closed as none of these operators introduces
a new check symbol.

There are some general rules to simplify regular availability expressions, which we
present as a first theorem.

Theorem 3 (Properties of regular availability expressions). Let ρ, τ and σ encode regular
availability expressions.

Associative property Expressions solely involving union or concatenation are invariant
with respect to the order of operations:

• pρ� τq � σ � ρ� pτ � σq

• pρ.τq.σ � ρ.pτ.σq

Commutative property The order in which two availability expressions are united does
not matter:

• ρ� τ � τ � ρ

• In general: ρ.τ � τ.ρ

Distributive property The concatenation with a union may be performed as two sin-
gle concatenations with the union parts, in analogy to the regular case. Also, a
constraint over a union is equivalent to the union of two constraints:

• pρ� τq.σ � ρ.σ � τ.σ

• ρ.pτ � σq � ρ.τ � ρ.σ

• pρ� τqAÁk � pρqAÁk � pτqAÁk

Zero element The expression H is zero under concatenation and Kleene’s �, ε is zero
under Kleene’s � and Kleene �, even if the used expressions are availability expres-
sions. In addition, H and ε are both zero under check constraints:

• H.ρ � H � ρ.H

• H� � H

• But: H� � ε � H

• ε� � ε

• ε� � ε

• pHqAÁk � H
• pεqAÁk � ε
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Neutral element The expression H is neutral under union, ε is neutral under concate-
nation, just like in the regular case.

• H� ρ � ρ � ρ�H

• ε.ρ � ρ � ρ.ε

Proof. Since the semantics of the union, the concatenation, and the Kleene expression
is the same as in the regular case, we can adapt the proof of Theorem 1 on page 9.
Therefore, we only prove the equations, which use special properties of the availability
extensions.

pρ� τqAÁk � pρqAÁk � pτqAÁk :
Lppρ � τqAÁkq � LAÁkpρ � τq � tπΣpwq|w P Lpρ � τq and |πApw1q| Á k � |πΣpw1q|
for all w1.X.w2 � wu � tπΣpwq|w P Lpρq and |πApw1q| Á k � |πΣpw1q| for all
w1.X.w2 � wu Y tπΣpwq|w P Lpτq and |πApw1q| Á k � |πΣpw1q| for all w1.X.w2 �
wu � LAÁkpρq Y LAÁkpτq � LAÁkpρq � LAÁkpτq .

pHqAÁk � H :
LAÁkpHq � tπΣpwq|w P LpHq and |πApw1q| Á k � |πΣpw1q| for all w1.X.w2 � wu.
Since there is no word w in LpHq � H, LAÁk is H as well.

pεqAÁk � ε :
The only word in Lpεq is ε. Since no check symbol occurs in ε, the surrounding
constraint is never checked.

By extending the explanation we already used for pεqAÁk � ε, we derive the following
lemma.

Lemma 2 (Check-closed expressions as zero). A check-closed expression ω is a zero
under the constraint:

pωqAÁk � ω .

Especially, we can define a simplification for check-closed expressions over concatenation:

pρ.ωqAÁk � pρqAÁk.ω .

Proof. The expression ω is check-free and there is no expression following within the
constraint, in which a check symbol occurs. This means, that the constraint information
is never used in the first case and not necessary behind ρ in the second case. Also,
constraint annotations and their range of application over check-free suffixes do not
have any further effect on the acceptance of a word.

On the other hand, the addition of arbitrary constraints – even of those, which are
not satisfiable – to a check-closed expression or in the latter case the extension over
the check-free successor expression never changes the accepted language, since after
analyzing and accepting the subexpressions, there are no check symbols left in the word,
on which one had to test the availability constraint.
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4 Logical characterisation of availability languages

In analogy to the characterisation of availability languages by regular availability expres-
sions we introduce a logical characterisation based on an extension of MSO logic which
we call availability logic. We first present some abbreviations in MSO, then we give a
direct translation of regular expressions into MSO. By the help of the newly introduced
predicate comp to express counting constraints we then translate availability extensions
so that we can prove the following theorem.

Theorem 4 (Lpρq � Lpϕq). For any check-closed availability expression ρ there is an
availability sentence ϕ so that Lpϕq � Lpρq.

The direct translation of regular expressions into MSO formulas was independently
found by [EF95, page 111], who also introduced a transformation into a Σ1

1 formula.
Although we introduce our own construction as it is easier to understand, we relay
on their work when we transform our formulas into Σ1

1 formulas enriched by a slight
modification of the comp predicate in section 5 on page 41.

4.1 Abbreviations

The formerly defined symbols for MSO logic are capable of expressing it completely
[Tho97]. Still, we can ease the understandability of our formulas by defining abbre-
viations for often expressed predicates. For every newly defined abbreviation we will
not only describe the intuitive meaning of the predicate, but also give an MSO for-
mula expressing it. Thus we define the truth value formally and prove the predicate’s
expressiveness in MSO at once.

Definition 22 (x � y).

x � y :�  px   yq ^  py   xq

The predicate checks the equality of the positions not just the equality of the letters.

Definition 23 (x ¥ y).
x ¥ y :�  px   yq

By swapping x and y, x ¡ y and x ¤ y can be defined analogously.

Definition 24 (QApxq). Let A � Σ with Σ the alphabet the words are formed over.

QApxq :� _aPAQapxq .

The predicate allows to check whether any letter of A is placed at a given position x.
Since A is finite, this predicate can be expressed using a finite number of disjunctions of
position variables. This makes it expressible in MSO logic for any given alphabet A.
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Definition 25 (QApXq). Let A � Σ with Σ the alphabet the words are formed over.

QApXq :� @xXpxq Ñ QApxq .

This predicate allows to check wether in all positions x of X a symbol of A is placed.
Relying on QApxq to be an MSO formula, the new formula is in MSO, too. Please note
that this formula is true if X is empty.
Definition 26 (X � Y ).

X � Y :� @xXpxq Ñ Y pxq .

The predicate is true iff X is a subset of Y , while ZpXq expresses wether a given set
X is connected. It states that there is no position y between two positions x1 and x2,
such that the latter are in X while the intermediate y is not.
Definition 27.

ZpXq :�  Dy Xpyq ^ Dx1Dx2Xpx1q ^Xpx2q ^ px1   yq ^ py   x2q .

It is often necessary to capture the first or the last position of a set.
Definition 28 (firstDpxq). Let D be a set variable, x a position variable.

firstDpxq :� Dpxq ^  DyDpyq ^ y   x
lastDpxq :� Dpxq ^  DyDpyq ^ y ¡ x .

4.2 Encoding subdomains

In an inductive approach it is important to delimit a subproblem to the necessary sub-
part of the input data. Our input consists of words which we delimit to subwords by
formulating restrictions on the position variables of the subformula. Their position vari-
ables are no longer freely chosen but have to be part of the subword’s domain, which we
denote by D if no concrete set is given.
The domain for each subformula is determined by the formula for the regular avail-

ability expression above. To define the top-level domain as a set D we need to express
the fact that each position is part of D, which can be done by DD @xDpxq. When we
introduce a new MSO or FO variable in any subformula we restrict it to the current
domain D by requiring it to be part of D. It might happen that the name of the domain
and a freshly introduced variable are the same. We call the situation a name conflict.
It can be resolved by renaming one of the variables in conflict. Name conflicts can be
more generally interpreted as the introduction of a new variable within the scope of an-
other one that has the same name. When translating the check constraints into logic we
will use a name conflict to restrict the checking onto the currently active check symbols.

Below we present the original formula on the left and the formula restricted to the
domain D on the right. We do not deal with free variables, since we have limited
ourselves to sentences by Theorem 4 on the previous page.
Dx ϕ  Dx Dpxq ^ϕ
@x ϕ  @x Dpxq Ñ ϕ
DX ϕ  DX X � D ^ϕ
@X ϕ  @X X � D Ñ ϕ .
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4.3 Transformation of non-recursive regular expressions

The elementary expressions are immediately translated with respect to D. A formula
only satisfied by ε is  DxDpxq, which yields the domain to be empty. A single a is
characterised by DxDpxq ^ Qapxq ^  Dy Dpyq ^  y � x. This expresses that the word
forming a model of the formula has one position with the letter a and no position but
this one. The expression H is a special case, since there is no word which satisfies this
expression. We can express it by an unsatisfiable formula like DxDpxq ^  x � x.

4.4 Transformation of recursive regular expressions

To express recursive calls with the expression ρ on the domain D we use formρD.
The expression ρ� τ can be translated to pformρDq_ pform τ Dq without changing

the domain.
For a concatenation ρ.τ , we need to find two subwords such that the former satisfies

ρ and the latter satisfies τ .
w :�

w1  ρ w2  τ

Both words have to follow directly and without overlap, so that together they form
the whole word. This property is characterised by

DX1DX2X1 � D ^X2 � D

^ p DxX1pxq ^X2pxqq (no overlapping)
^ p DxDpxq ^  X1pxq ^  X2pxqq pX1, X2 form the whole wordq
^ p@x@yX1pxq ^X2pyq Ñ x   yq pX1 before X2q

^ pform ρX1q ^ pform τ X2q ,

where X1 and X2 are the domains of w1 and w2.
The expression ρ� is more difficult to encode. A generalisation of the concatenation

does not work, as � allows for any number of concatenations. So we can neither introduce
a new set Xi for each concatenation i nor can we preliminarily limit the number of sets.
By using the set’s first position instead of a whole set we avoid these problems.

S

w :�

s0 s1 sks

ρ ρ ρ

. . .X1 X1

. . .

X2

s2

• S comprises each beginning of a subword.

• X1 represents each subword rsi, si�1r between two subword beginnings si, si�1.
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• X2 represents the last part of the word.

• Each X1 and also X2 form a model of ρ.

Each beginning of a subword works as a guard to make sure that the sets following
each other do neither overlap nor leave gaps. By also stating that the union of the sets is
the whole word we can effectively describe the Kleene star using the three second-order
variables S,X1 and X2.

DS S � D (1)
^ p@x firstDpxqq Ñ Spxqq (2)
^ p@x@ypx   y ^ Spxq ^ Spyq ^  Dz x   z ^ z   y ^ Spzqq Ñ (3)
pDX1X1 � D ^ ppform ρX1q (4)
^X1pxq ^  Dz z   x^X1pzq (5)
^ Dz Dpzq ^ x   z ^ z   y ^ X1pzq (6)
^ Dz z ¥ y ^X1pzqqq (7)

^ p@x lastSpxq Ñ (8)
pDX2X2 � D ^ pform ρX2q (9)
^X2pxq ^  Dy Dpyq ^ x   y ^ X2pyq ^  Dz z   x^X2pzqqq (10)

Line (2) states that the beginning of the whole word is also the beginning of a sub-
word. The lines (3) to (7) describe the sets X1: Under the condition that x and y are
two beginnings of subwords directly following each other (3), the set X1 between them
contains x and nothing before x (5) contains every position between x and y (6) but
does not contain any position from y on (7). Likewise, lines (8) to (10) describe X2:
under the condition that x is the last beginning of a subword (8), X2 contains x, any
position after x as long as this position is part of the domain, and no position before x.
Only one slight modification is necessary to translate ρ�: we state that there is a

position starting the last subword which excludes the case of zero repetitions but also
excludes ε from being a model at all. Since Lpρ�q contains ε if Lpρq does, we have to
add the formula accepting ρ as a second option. Since Lpρq � Lpρ�q, this introduces no
further words but ε if ε P Lpρq. In summary we have to replace the universal quantifier
in line (8) by an existential one, so that we have "pDx lastSpxq^" and also add "_ form
ρD" as a second option on the top-level.

4.5 Transformation of availability extensions

Availability expressions are strictly more expressive than regular expressions as we saw
in section 3.2 on page 20 by the expressibility of tanbnu. This makes clear that an
extension to MSO will be necessary to express them, since Büchi’s theorem (2.3) states
that an MSO-definable language is always regular.
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We extend MSO by a new second-order predicate compAÁkpXq which checks, if within
the subword w encoded by X the availability constraint |πApwq| Á k � |πΣpwq| holds.
We call this extension availability logic. To model the constraint we work with the
cardinality of a set, which is not provided by MSO logic on word domains. We use two
subsets Y and Z where Y is πΣpwq, while Z is a freely chosen subset of Y , only consisting
of positions with an element of A. Instead of changing the word when evaluating a
constraint like we do when we evaluate the word under the expression, we simply ignore
the check symbols by limiting Y to Σ. This makes it necessary to use a trick, when
evaluating nested constraints, but avoids the problem of changing domains or positions.
We present the trick at the end of this section. To ensure that compAÁk is only used on
subwords and not on any sets, we also require the set to be connected (ZpXq) in order
to evaluate the predicate to true.

Definition 29 (comp).

compAÁkpXq iff ZpXq ^ DY Y � X ^ r@xpXpxq ^QΣpxqq Ñ Y pxqs ^QΣpY q

^ DZ Z � X ^ r@xpXpxq ^QApxqq Ñ Zpxqs ^QApZq

^ |Z| Á k � |Y | .

We have to show that the predicate indeed checks the availability constraint |πApwq| Á
k � |πΣpwq| if X characterises the subword w.

Lemma 3. Let Σ be an alphabet, w a word over ΣYtXu and X a second-order variable
which is interpreted as dompwq. Then compAÁkpXq holds iff |πApwq| Á k � |πΣpwq| holds.

Proof. Since X is fixed as the domain dompwq, we know that it is connected and can
ignore ZpXq in the further proof which consists of two inclusions.

"ñ" : Since compAÁkpXq holds, there is a set Y which is a subset of X and therefore of
dompwq. This set Y consists of all the positions in X a letter of Σ is placed at. In
addition, Y does not contain any position no letter of Σ is written at. Thus Y can
only be the set of all positions a letter of Σ is placed at and therefore |Y | � |πΣpwq|.
The set Z is described in analogy so |Z| � |πApwq|. Since |Z| Á k � |Y | holds,
|πApwq| Á k � |πΣpwq| also holds.

"ð" : We choose Y as all positions in w which carry a letter of Σ and Z as all positions
in w which carry a letter of A. As we know from "ñ" this is a valid choice for the
first two lines of the formula. Since |πApwq| Á k � |πΣpwq| holds, the third line is
also true.

We have seen that the new predicate is powerful enough to model the checking of
an availability constraint. The sets we will use this predicate on are specified in the
availability extensions: Each X claims an availability constraint A Á k on a subword v
which begins with the first letter after the opening bracket of the constraint p. . . qAÁk and
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ends with the X. Since each included X is projected away by πΣpY q, it is not important
whether we define the subword to end before or with the check symbol.

w :�
s c0X c1X . . . ckX

CX

X0

X0

We characterise the set X0 related to the subword v by its borders. The first border is
given by the constraint and the second one is given by X. This strong interconnection is
represented in a set CX which is introduced whenever a new constraint pρqAÁk is trans-
lated. The set CX has some similarities with the set S used in the Kleene translation,
since it contains end points of subwords, but in CX these subwords all start in the same
position and overlap. In chapter 5.2 on page 43 we will see that this difference allows us
to completely remove CX, while S cannot be eliminated. We state that any element of
CX is the end of a subword v for which the constraint holds. This is done by

DCXCX � D ^ @xCXpxq

Ñ pDX0X0 � D ^X0pxq ^  Dy y ¡ x^X0pyq

^ @z pDpzq ^ z   xq Ñ X0pzq

^ compAÁkpX0qq

^ form ρD .

Whenever the expression X is translated, we do not only express that the current letter
is X, but also state that the position is part of CX:

DxDpxq ^QXpxq ^  Dy Dpyq ^  y � x

^ CXpxq .

This translation introduces a free variable CX. Since we are limited to sentences, we
have to make sure that there is a surrounding constraint binding this variable. But since
we have limited the considered expressions to the check-closed form, such a surrounding
constraint is always given.

Check symbols already evaluated in underlying constraints should not be considered
when evaluating the current constraint, since they would already have been projected
away. Our construction ignores them using the scope of a variable: As discussed in 4.2
on page 26 name conflicts appear if we introduce a new variable within the scope of
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another one with the same name. For example, the translation of form ρ.τ X1 causes a
name conflict with

DX1DX2X1 � X1 ^X2 � X1

^ p DxX1pxq ^X2pxqq

^ p DxDpxq ^  X1pxq ^  X2pxqq

^ p@x@yX1pxq ^X2pyq Ñ x   yq

^ pform ρX1q ^ pform τ X2q .

Usually this name conflict would be resolved by renaming one of the two sets X1. How-
ever, this time we do not resolve but study it to understand the scope of a variable.
Outside the formula above, the set X1 from "form ρ.τ X1" is active, which means that
an occurrence of X1 in a predicate has to be evaluated under the value this X1 has.
However, this X1 is shadowed by DX1 at the beginning of the formula. Therefore, any
use of X1 within the formula or in any subformula constructed by form ρX1 and form
τ X2 refers to the freshly introduced X1, while the old one cannot be accessed.

Of course this new X1 can also be shadowed by a new introduction of a bound variable
X1 so that we have

w :�
DX1r. . . DX1r. . . DX1r. . . s . . . s . . . s .

In the case of nested availability constraints, like they occurred in the translation of
anbn or matching parentheses, we exploit this shadowing. While other variables may be
renamed if necessary, the name of the set CX is fixed. Every translation of a constraint
p. . . qAÁk introduces a new variable CX so that the formerly active CX is shadowed within
the domain of the constraint. This makes sure that no X within an inner constraint
enforces a check in the outer constraint, since the formula "^CXpxq" always refers to
the active and thus directly surrounding set CX. Furthermore, we cannot enforce a check
in an outer constraint since their sets CX are shadowed as well.

4.6 Accepted words

We are now able to translate a given check-closed regular availability expression into
an availability formula: We know how to translate each form of a regular availability
expression and by that inductively know how to translate the complete expression. Fur-
thermore, we know how to initialise the first call of form with the complete domain
dompwq by DD@xDpxq.

The only missing part is the elimination of the check symbols occurring within the
range of a constraint. According to definition 16 on page 19, only those check symbols are
removed which are positioned within the range of a constraint. But in order to receive
a deterministic acceptance of a word we limited ourselves to check-closed expressions.
In those expressions all check symbols are surrounded by a constraint so that we can
project any X away in the end by defining the language accepted by an availability
formula to be the projection of the accepted words to Σ.
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Definition 30 (Lpϕq). Let Σ Y tXu be the alphabet the availability sentence ϕ is built
over. We define the language accepted by ϕ:

Lpϕq � tπΣpwq | pwq ( ϕ u .

4.7 Correctness of the translations

Our first big step towards the main theorem is the proof that the previously introduced
translations in form are correct. Therefore we rely on Lemma 3 on page 29 which showed
that the comp predicate works as an availability constraint if it is invoked on a subword.
Since we are so far not concerned with the top-level translation, we use a dummy variable
D to start form. This free variable D is then interpreted as dompwq when we analyse
the satisfaction of the formula under w, or it is substituted by another variable when we
integrate the corresponding formula into a larger one.

Lemma 4. Let ρ be a check-closed regular availability expression over an alphabet ΣY
tXu. Then

pw, dompwqq ( formρD, iff w is accepted by ρ .

Proof. We use two structural inductions to prove the lemma. Subexpressions of an
expression in check-closed form are usually not check-closed, as we have illustrated after
definition 21 on page 22. This makes a generalisation of the claim necessary.

In an expression which is not in check-closed form there is at least one active check
symbol. When we translate this check symbol, we introduce a free second-order variable
CX via "^CXpxq", but since the check symbol is not surrounded by a constraint, such a
set CX is never bound. Thus we have to interpret a second free variable CX and therefore
extend the former satisfaction relation to pw, dompwq, P q ( form ρD, where P is the
interpretation of CX. This relation can be seen as a more general case of the original
satisfaction relation, since the interpretation that P implies is ignored if there is no free
variable which we can apply it to.

We can formulate our modified claim using this extended satisfaction relation. To
prove "ñ" we show that for all sets P � dompwq so that pw, dompwq, P q ( form ρD
holds, w is accepted by ρ.
In opposite, when proving "ð" we show that for a word w which is accepted by ρ, for

all different sets freepw, ρq pw, dompwq, freepw, ρqq ( form ρD holds.
["ñ":] Let w be a word, P � dompwq a set of positions so that pw, dompwq, P q (

form ρD. We show that w is accepted by ρ.

basis. We have to distinguish four cases:

ρ � H :
There is no word w and no interpretation P such that pw, dompwq, P q (
formHD holds since DxDpxq ^ x � x is not satisfiable: Dx is only satisfied
if at least one position x exists in the word. However,  x � x cannot be true
for any position.

32



ρ � ε :
The only possible choice for a word w so that pw, dompwq, P q ( form ε dompwq
is w � ε:  DxDpxq is only true if there exists no x within D’s interpretation
dompwq. The only word w for that dompwq � H holds is the empty word ε.

ρ � a :
DxpQapxq ^ Dpxq ^  Dy Dpyq ^ y � x states that any word satisfying the
formula with its model has to contain a position the letter a is placed at and
may contain no other position at all. This is only true for w � a.

ρ � X :
The formula DxDpxq ^QXpxq ^ Dy Dpyq ^ y � x^CXpxq is similar to the
one for a in the first part. This makes clear that the only word which can
form a model is X. As a second restriction we have CXpxq which forces this
check symbol to be a position of the set CX. This limits valid interpretations
for P to those containing the position in dompwq.

induction hypothesis. Let v1, v2 be words and P1 � dompv1q and P2 � dompv2q
such that pv1, dompv1q, P1q ( form τ D and pv2, dompv2q, P2q ( formσD hold. We
assume that v1 is accepted by τ and v2 is accepted by σ.

inductive step. Now we can prove our claim for compound expressions ρ. Let w be a
word and P � dompwq be an interpretation for which pw, dompwq, P q ( form ρD.
We show that w is accepted by ρ.

ρ � τ � σ :
We have form ρD � form pτ � σqD � (form τ Dq_ (formσDq. Since
pw, dompwq, P q ( form ρD, it is pw, dompwq, P q ( form τ D_formσD. This
implies that either pw, dompwq, P q ( form τ D or pw, dompwq, P q (formσD
hold. We can apply the induction hypothesis at least on one the satisfaction
relations and receive either w accepted by τ or by σ. This yields that w is
accepted by τ � σ � ρ.

ρ � σ.τ :
We have form ρD � form pσ.τqD =

DX1DX2X1 � D ^X2 � D

^ p DxX1pxq ^X2pxqq

^ p DxDpxq ^  X1pxq ^  X2pxqq

^ p@x@yX1pxq ^X2pyq Ñ x   yq

^ pformσX1q ^ pform τ X2q .

A word w which forms a model for the formula has to have two subsets
of positions, X1 and X2, which are disjoint but together contain the whole
domain. Additionally, every position in X1 is positioned earlier than any
position in X2. This yields two subwords v1 and v2 such that v1’s positions
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are those of X1 and v2’s positions are those of X2 and their concatenation
forms w. The formula also states that pformσX1q ^ pform τ X2q.

We can partition P into two sets P1 and P2 such that P1 � dompv1q and
P2 � dompv2q and pv1, dompv1q, P1q is a valid interpretation for pformσX1q
and pv2, dompv2q, P2q is a valid interpretation for form τ X2. Although the for-
mer variable D is now called X1 or X2, we can apply the induction hypothesis,
especially since a substitution of X1 and X2 by D fixes this syntactical prob-
lem. Since v1 is accepted by σ and v2 is accepted by τ , we know that w � v1.v2

is accepted by ρ � σ.τ .

ρ � pτq� :
We have form ρD � form pτ�qD �

DS S � D

^ p@x firstDpxq Ñ Spxqq

^ p@x@ypx   y ^ Spxq ^ Spyq ^  Dz x   z ^ z   y ^ Spzqq Ñ

pDX1X1 � D ^ ppform τ X1q

^X1pxq ^  Dz z   x^X1pzq

^  Dz Dpzq ^ x   z ^ z   y ^ X1pzq

^  Dz z ¥ y ^X1pzqqq

^ p@x lastSpxq Ñ

pDX2X2 � D ^ pform τ X2q

^X2pxq ^  Dy Dpyq ^ x   y ^ X2pyq ^  Dz z   x^X2pzqqq .

A word w so that pw, dompwq, P q is a model for this formula contains a set of
positions S which the first position in dompwq belongs to, if such a position
exists. Each of the positions in S encodes the beginning of a new subword
represented asX1 orX2: for two positions x and y which are direct neighbours
in S there is a set X1 which ranges from the earlier position x to the position
directly before y. Each of these pairs encodes a subword vi with i � 0, . . . n�1,
if n� 1 such pairs exist.

If x is the last position in S it is also a position in a subset X2 such that there
is no position after this x until the end of dompwq, which is not in X2, nor is
there any position before x which is part of X2. Thus X2 encodes a subword
vn of w which is the last part of w. Now we have subwords vi (i � 0 . . . n�1),
which are concated and the first one of which starts in the first position of w.
The word vn forms the last subword and immediately follows the last vi.

In analogy to the concatenation, we can partition P along the subwords so
that we can apply the induction hypothesis. Each of the words vi (i � 0 . . . n)
is accepted by τ and therefore w � v0 . . . vn is accepted by ρ � pτq�.

The formula is also satisfied, if no direct neighbours in S or even no posi-
tions in S exist at all. The latter implies an empty domain, since otherwise
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p@xDpxq ^ p Dy y   x ^Dpyqq Ñ Spxqq would not be satisfied. This is the
case of zero repetitions, which is part of L� for any language. The former
case implies that S contains at most one position, since otherwise neighbours
would exist. This leads either to zero, as discussed above, or to the case of
one position in S, which then has to be the first position in w. Now X2 cor-
responds to w so that the induction hypothesis guarantees that w is accepted
by τ .

ρ � pτqAÁk :
We know that there is a P such that pw, dompwq, P q satisfies form ρD �
form pτqAÁkD �

DCXCX � D ^ @xCXpxq

Ñ pDX0X0 � D ^X0pxq ^  Dy y ¡ x^X0pyq

^ @z pDpzq ^ z   xq Ñ X0pzq

^ compAÁkpX0qq

^ form τ D .

Since form ρD holds, there is one choice Q for CX which the first part of
the formula but also form τ D holds under. For this choice Q we have
pw, dompwq, Qq ( form τ D and applying the induction hypothesis we see that
w is accepted by τ . This shows that Q is a valid choice for CX in form τ D.
Therefore Q contains one of the sets freepw, ρq of which at least one must
exist since w is accepted by τ .

We show that all words vX which begin with the first letter of w and end with
an element of this set freepw, ρq satisfy |πApvXq| Á k � |πΣpvXq| to show that
w is accepted by ρ.

Therefore we examine the first part of the formula closer. The word w contains
a set of positions CX which we interpret by Q. For each x P Q, there is a set
X0, which contains x, but no later position, and also contains all the letters
before x, which are still in dompwq, but no earlier one. This yields that X0 is
a subword vX ranging from the beginning of w to the position x in Q. The
predicate compAÁkpX0q holds for each of these sets X0, so by Lemma 3 on
page 29 |πApvXq| Á k � |πΣpvXq| holds for the corresponding word vX.

["ð":] Let ρ be a regular availability expression and w a freely chosen word such
that w is accepted by ρ and Q is the checkset freepw, ρq � dompwq for an arbitrary way
to accept the word. We show that pw, dompwq, Qq ( form ρD.

basis. We have to distinguish four cases:

ρ � H :
There is no word w accepted by H, which makes clear that for each word
accepted by H pw, dompwq, Qq ( formHD holds, which we wanted to show.
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ρ � ε :
The only word w accepted by the expression ε is w � ε. We have to check
wether pε, dompεq, Qq ( form εD. Since dompεq � H, there is no x at all,
so  Dx . . . is true independent from the formula following and in particular
independent of Q.

ρ � a: The word a is the only word accepted by ρ. Since there is no free
check symbol in a, freepa, aq is uniquely defined as H. We have to show
that pa, dompaq,Hq ( form aD. We have form aD � DxpQapxq ^ Dpxqq ^
 Dy Dpyq ^  y � x. We can evaluate the formula to true because the exis-
tential quantifier can choose for x position 0. This position carries an a and
there is no position apart from 0.

ρ � X :
The only accepted word w is X and the check symbol is active, so
freepX,Xq � t0u. We have formXD �

DxDpxq ^QXpxq ^  Dy Dpyq ^  y � x

^ CXpxq .

Again, the existential quantifier can choose 0 as value for x so that the first
line is valid. The formula CXpxq is then also valid since 0 P t0u.

induction hypothesis Let v1, v2 be words such that v1 is accepted by the regular
availability expression τ and v2 is accepted by σ. We abbreviate freepv1, τq �
dompv1q for an arbitrary way to accept v1 by Q1 and freepv2, σq � dompv2q for an
arbitrary way to accept v2 by Q2. We assume that pv1, dompv1q, Q1q ( form τ D
and pv2, dompv2q, Q2q ( formσD.

inductive step We show the claim for compound expressions ρ. Let w a word accepted
by ρ and Q � freepw, ρq the check set of an arbitrary way to accept w in ρ. We
show pw, dompwq, Qq ( form ρD.
ρ � τ � σ: Since w is accepted by ρ with Q, w is accepted by τ � σ with Q and

thus it is either accepted by τ with checkset Q or by σ with check set Q. We
can apply the induction hypothesis and receive pw, dompwq, Qq ( form τ D
or pw, dompwq, Qq ( formσD. So we have pw, dompwq, Qq ( (form τ Dq _
pformσD) which is pw, dompwq, Qq ( (form ρDq.

ρ � σ.τ : Since w is accepted by ρ, it is accepted by σ.τ which yields that w consists
of two words v1 and v2 (w � v1v2) such that v1 is accepted by σ and v2 is
accepted by τ . We have form ρD � form pσ.τqD =

DX1DX2X1 � D ^X2 � D

^ p DxX1pxq ^X2pxqq

^ p DxDpxq ^  X1pxq ^  X2pxqq

^ p@x@yX1pxq ^X2pyq Ñ x   yq

^ pformσX1q ^ pform τ X2q .
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We choose dompv1q as the positions in X1 and dompv2q as the set of positions
in X2. Both sets are in dompwq, disjoint, but together form the whole word
and X1 is completely before X2.

We can partition Q into two sets Q1 and Q2 so that Q1 contains all positions
of Q which are in dompv1q and Q2 contains those of dom(v2q. Since Q is one
way to match the free checks of w onto the active checks in ρ, Q1 and Q2

present one way to match the free checks of v1 onto σ and those of v2 onto
τ . Applying the induction hypothesis we see pv1, dompv1q, Q1q ( formσD
and pv2, dompv2q, Q2q ( formσD. We substitute D by X1 in the formula
for σ and by X2 in the formula for τ . With dompv1q as interpretation for
X1 and dompv2q as interpretation for X2 we get pw, dompv1q, dompv2q, Qq (
(formσDq ^ pform τ Dq since Q1 YQ2 � Q.

Please convince yourself that the formula also holds for ε as v1 and v2 if
the regular availability expressions σ and τ accept ε as a word: existential
quantifiers are only used for the second-order variables for which any "exists"
claim can be satisfied by the empty set. Any first-order quantification is either
done via @ or via  Dx . . . which is true if no x exists.

ρ � pτq�: A word w accepted by ρ is either ε, a word v0 accepted by τ or has the
form w � v0 . . . vn with each vi pi � 0 . . . nq accepted by τ . It is form ρD �
form pτ�qD �

DS S � D

^ p@x firstDpxq Ñ Spxqq

^ p@x@ypx   y ^ Spxq ^ Spyq ^  Dz x   z ^ z   y ^ Spzqq Ñ

pDX1X1 � D ^ pform τ X1q

^X1pxq ^  Dz z   x^X1pzq

^  Dz Dpzq ^ x   z ^ z   y ^ X1pzq

^  Dz z ¥ y ^X1pzqqq

^ p@x lastSpxq Ñ

pDX2X2 � D ^ pform τ X2q

^X2pxq ^  Dy Dpyq ^ x   y ^ X2pyq ^  Dz z   x^X2pzqqq

We give an interpretation for S,X1, and X2 for the different cases of w � ε,
w � v0, and w � v0 . . . vn to illustrate the effect of the existential quantifiers.

In the case of zero subwords, ε, we choose S as the empty set, which is the only
subset of dompεq � H. Each subformula begins with a universally quantified
first-order variable, which allows us to evaluate these subformulas to true.

In the case of only one subword v0 we can choose S as the set only containing
the first position. This makes px   y ^ Spxq ^ Spyqq unsatisfiable, so that
the implication is trivial. Furthermore, the first position is a position of
S, after which no further position in S occurs. We can choose X2 as all
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positions in dompwq � dompv0q which satisfies the last line of the formula. It
remains to prove that pv0, dompv0q, Qq ( form τ X2. Since Q is one choice for
freepw, τq � freepv0, τq we can apply the induction hypothesis and receive
that pv0, dompv0q, Qq ( form τ D which is transformed into the desired form
by substituting D by X2.

In the case of several subwords we choose S as all positions which are the
beginning of a subword vi for p0 ¤ i ¤ nq. Again, S is a subset of D
interpreted as dompwq the first position of dompwq also occurs in. For every
two direct neighbours x and y in S, we choose the area between them –
beginning in x and ending before y – as X1. This fulfills X1pxq as well as the
inclusion of every position until y and the exclusion of any other position. To
see that form τ X1 holds for each dompviq with i � 0 . . . n�1 as X1, we extend
the argument we used in the concatenation and partition Q into Q0 to Qn

where each of the sets corresponds to one choice for the free checks in v0 to vn.
We can apply the induction hypothesis and see pvi, dompviq, Qiq ( form τ D
for i � 0 . . . n and the desired claim if we substituteD byX1 for i � 0 . . . n�1.

We choose dompvnq � dompwq as X2 and receive that form τ X2 holds by
substituting D by X2 in pvn, dompvnq, Qnq ( form τ D The last element of
S is in X2, since it is the beginning of vn, also every element after this last
element in S until the end of dompwq is in X2, since vn is the last subword
and since vn starts with the last position of S, no earlier position is part of
X2.

ρ � pτqAÁk :
The expression ρ does not contain active checks, so Q � H. Since w is
accepted by ρ � pτqAÁk, w is accepted by τ with the checkset freepw, τq so
that the check of the availability constraint A Á k is performed successfully
on every prefix v of w ending in a position of freepw, τq. We call this checkset
Q0 and show that it is a sufficient choice for CX. With this interpretation,

DCXCX � D ^ @xCXpxq

Ñ pDX0X0 � D ^X0pxq ^  Dy y ¡ x^X0pyq

^ @z pDpzq ^ z   xq Ñ X0pzq

^ compAÁkpX0qq

^ form τ D

expresses that for each position x in Q0 there is a subset X0. For each of
these positions x we choose the domain of the subword v ranging from the
beginning of dompwq to the position x as interpretation for the corresponding
X0. This is a valid choice since x but no later position than x are contained
as well as any position in dompwq which is placed earlier than x. Since the
availability constraint holds for each of these words v, the comp predicate
is valid on X0 interpreted as dompvq by Lemma 3 on page 29. Since w is
accepted by τ with freepw, τq � Q0, we know by the induction hypothesis
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that pw, dompwq, Q0q ( form τ D. This shows that the last line of the formula
is also valid for the choice of Q0 for CX.

We have shown that w is accepted by an arbitrary availability expression ρ iff there is
a set P � dompwq so that pw, dompwq, P q ( from ρD. If ρ is in check-closed form the
interpretation P can be dropped, since there is only one freely occurring variable, D,
which is interpreted by dompwq.

4.8 Main theorem

In the previous section, we have shown that for a check-closed regular availability ex-
pression ρ and a word w pw, dompwqq ( form ρD holds iff w is accepted by ρ. Our next
step towards the main theorem is to transform the formula that form constructs into a
sentence. Therefore we have to remove the free variable D while we fix its value to be
dompwq.

Lemma 5. Let ρ be a check-closed expression and w a word over ΣY tXu. We have

pwq ( DD @xDpxq ^ form ρD iff w is accepted by ρ .

Proof. By Lemma 4 on page 32, we know that pw, dompwqq ( form ρD holds iff w is
accepted by ρ.
We prove that pw, dompwqq ( form ρD iff pwq ( DD @xDpxq ^ form ρD .

"ñ": Since pw, dompwqq ( form ρD holds, we know that dompwq is a valid choice for
D to satisfy form ρD. This choice also satisfies DD @xDpxq, since it states that
each position of w is a part of the set of all positions in w.

"ð": It is pwq ( DD @xDpxq^ form ρD. We assume that a valid choice for D is a strict
subset of dompwq. But then there is a position x, so that x R D. This makes
the formula @xDpxq false so that the whole formula becomes false. Hence, a strict
subset cannot be a valid choice and thus the whole set dompwq is the valid choice.
But then form ρD holds if D is interpreted as dompwq, which is what we had to
show.

Lemma 5 introduces the construction which we will use to prove the following theorem.

Theorem 4 (Lpρq � Lpϕq). For any check-closed availability expression ρ there is an
availability sentence ϕ so that Lpϕq � Lpρq.

Proof. Out of an arbitrary check-closed expression ρ we can construct a formula ϕ �
DD @xDpxq ^ form ρD, so that a word forms a model for ϕ iff it is accepted by ρ, as
Lemma 5 shows. This means that any word accepted by ρ is also accepted by ϕ and
vice versa. For each word w which is accepted by the check-closed expression ρ, only
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πΣpwq is in the language Lpρq, as illustrated in Fact 1 on page 22. Thus Lpρq � tπΣpwq
| w is accepted by ρ} in analogy to Lpϕq � tπΣpwq | pwq ( ϕ u � tπΣpwq | w is accepted
by ρ} where the last equality holds due to Lemma 5 on the preceding page. Since the
definition of the accepted languages is equal, the languages are equal.
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5 Transformation into Σ1
1 with additional comp

predicate

[KR03] introduces WS1Scard as an extension of MSO logic with cardinalities. These
cardinality constraints are predicates of the form |X1| � . . . |Xr|   |Y1| � . . . |Ys| over
second-order sets Xi (i � 1 . . . r) and Yj (j � 1 . . . s).

We can translate each comp predicate into a WS1Scard formula. In

compAÁkpXq iff ZpXq ^ DY Y � X ^ r@xpXpxq ^QΣpxqq Ñ Y pxqs ^QΣpY q

^ DZ Z � X ^ r@xpXpxq ^QApxqq Ñ Zpxqs ^QApZq

^ |Z| Á k � |Y |

the first two lines are already expressible in MSO. Therefore we only have to encode
|Z| Á k � |Y | in WS1Scard to transform our formula into WS1Scard. As we saw in
chapter 3 on page 18 k is a fraction k � l

m
with l,m P N. Thus, |Z| Á k � |Y | can also

be written as m � |Z| Á l � |Y |. Since m and l are constant, we can encode m � |Z| and
l � |Y | by additions

|Z| � � � � |Z|loooooomoooooon
m

Á |Y | � � � � |Y |loooooomoooooon
l

.

The constraint m � |Z| ¡ l � |Y | is then expressed via swapping the left and right side of
the unequality so that we have |Y | � � ��|Y |   |Z| � � ��|Z|. The second casem�|Z| ¥ l�|Y |
can be encoded as  p|Z| � � � � � |Z|   |Y | � � � � � |Y |q. Hence we are able to encode
our formulas in WS1Scard but unfortunately WS1Scard is undecidable [KR03, page 682,
item (i)]. However, the fragment [FOD�MSOFO] with arbitrary cardinality constraints
ranging over the second-order variables quantified in the D�MSO block is decidable [KR03,
page 690, Theorem16].
Therefore, we transform our formulas into Σ1

1 with additional comp predicate. Please
note that this does not directly imply decidability since the translation of each comp
predicate into WS1Scard introduces two new second-order variables Y and Z. For the
resulting class of formulas so far neither decidability nor undecidability results have been
proven.

5.1 Eliminating second-order quantifiers encoding subwords

We use a trick, which has also been used by [EF95], to eliminate unnecessary MSO-
quantifiers. By looking at our formulas, we can see that we usually use set variables to
encode subwords. Set variables are able to express arbitrary combinations of positions,
not just a sequence.
In fact, a subword is already characterised by its first and last position. Instead of

invoking a new second-order variable D to define the domain of a subformula, we now
use the two borders f and l.
This changes the encoding of subdomains presented in section 4.2 on page 26 to
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Dx ϕ  Dx pf ¤ x^ x ¤ lq ^ϕ
@x ϕ  @x pf ¤ x^ x ¤ lq Ñ ϕ
DX ϕ  DX p@xXpxq Ñ pf ¤ x^ x ¤ lqq ^ϕ
@X ϕ  @X p@xXpxq Ñ pf ¤ x^ x ¤ lqq Ñ ϕ .

Before this change the case of an empty domain was implicitly treated via D � H.
Now we need to do the case distinction by hand for every translation in form except for
the empty set and the choice (+). Some expression can immediately decide wether the
empty domain forms a sufficient model.

The case of an empty domain is represented by form ρH. Let τ and σ be arbitrary
raes. The translations are

formHH �Dx px � xq

form εH �@x x � x

form aH �Dx px � xq

formXH �Dx px � xq

form pσ � τqH �pformσHq _ pform τHq

form pσ.τqH �pformσHq ^ pform τHq

form pτq�H �@x x � x

form pτqAÁkH �pform τHq

Let ρ be a check-closed rae. The top-level translation is done via

r Dx x � x^ form ρHs

_ rDfp@x f ¤ xq ^ Dlp@x x ¤ lq ^ form ρ pf, lqs .

The translations in the cases where letters occur can be constructed using the changed
encoding of subdomains. The following formulas already exploit several easier ways to
express the facts by the help of the borders. For example, ε cannot be satisfied since
there is at least one position f .

formHpf, lq �Dx px � xq

form ε pf, lq �Dx px � xq

form a pf, lq �f � l ^Qapfq

formX pf, lq �f � l ^QXpfq

form pσ � τq pf, lq �pformσ pf, lqq _ pform τ pf, lqq

form pσ.τq pf, lq �rDl1 Df1 f ¤ f1 ^ pl1   f1 ^ Dw l1   w ^ w   f1q ^ f1 ¤ l

^ pformσ pf, l1q q ^ pform τ p1f, lq qs

_ rppformσ pf, lq q ^ pform τHq

_ rppformσHq ^ pform τ pf, lq q
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The concatenation requires several case distinctions depending on wether ε is accepted
by σ, τ or by both.

form pτq� pf, lq �DS r@xSpxq Ñ pf ¤ x^ x ¤ lqs

^ Spfq

^ p@x@ypx   y ^ Spxq ^ Spyq ^  Dz x   z ^ z   y ^ Spzqq Ñ

pDlx x ¤ lx ^ lx   y ^ p Dw lx   w ^ w   yq ^ pform τ px, lxqqq

^ p@x lastSpxq Ñ

pform τ px, lqq

form pτqAÁk pf, lq �DCX r@xCXpxq Ñ pf ¤ x^ x ¤ lqs

^ @xCXpxq

Ñ pDX0 ^X0pxq ^  Dy y ¡ x^X0pyq

^X0pfq ^  Dy y   f ^X0pyq

^ @z pf ¤ z ^ z   xq Ñ X0pzq

^ compAÁkpX0qq

^ form τ pf, lq

This leaves us with a set S for each Kleene operator and the sets CX and X0 for every
constraint.

5.2 Transforming comp and availability extensions

We can eliminate CX and X0 completely by moving the responsibility to invoke the comp
predicate from the constraint towards the check symbol. But therefore the predicate
comp must be changed so that it works on FO variables and not on sets.
We define

compAÁkpf, lq iff DY r@x pf ¤ x^ x ¤ l ^QΣpxqq Ñ Y pxqs ^QΣpY q

^ DZ Z � Y ^ r@xpY pxq ^QApxqq Ñ Zpxqs ^QApZq

^ |Z| Á k � |Y | ,

where the formerly used Z predicate is no longer necessary, since by definition we use
a connected set: the sequence from f to l. Furthermore the replacement of X by Y
when defining Z does not have an effect. The difference between Y and X is that check
positions are already projected away in Y while they still occur in X. Since Z implies
a projection to A � Σ check positions are anyway projected away. Therefore, we can
exploit Lemma 5 on page 39 and see the following property.

Observation 2. Let Σ be an alphabet, w a word over Σ Y tXu and f, l two first-order
variables marking the left and right border of dompwq. Then compAÁkpf, lq holds iff
|πApwq| Á k � |πΣpwq| holds.
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Instead of using a set X0 when translating a constraint, we can now again use two
borders. The first one is given as the first position in the subword the constraint is
checked on. When we translate the constraint, we fix this position under the name fX.
In analogy to CX, we fix FX onto ist name and exploit the shadowing this introduces.
Later, when translating a check symbol, we use fX to define the left border for the
application of the comp predicate, while the position where X is placed is used as the
right border.

For an arbitrary expression τ we have

form pτqAÁk pf, lq �DfXtf � fX ^ form τ pf, lqu .

For technical reasons, we have to introduce a third parameter in form to pass the in-
formation which check constraint is checked down to the check symbols. The translation
of a check constraint replaces the former used constraint by itself.

form pτqAÁk pf, lq pB Á lq �DfXtf � fX ^ form τ pf, lq pA Á kqu .

To indicate that there is no surrounding constraint, we initialise the new parameter
with H on the top-level. The translation of a check symbol if the parameter is still not
initialised is simply

formX pf, lqH �pf � lq ^QXpfq .

We need not check any constraint, since there is no constraint surrounding this check
symbol.
However, in a check-closed expression we will never translate a check symbol while

the parameter is still empty. Here we translate

formX pf, lq pA Á kq �pf � lq ^QXplq

^ compAÁkpfX, lq .

In all other expressions the new parameter is simply passed down and has no impact
on the translation. By now, we can translate a regular availability expression into a
formula in MSO with only existential quantifiers where only one variable S occurs for
each Kleene star or Kleene plus, occuring in the expression.

5.3 Eliminating multiple sets of star positions

A Σ1
1 formula consists of one block of existential quantifiers of MSO variables and a

body where only FO quantification occurs. So far, our formula contains several wildly
spread existentially quantified MSO variables which have been introduced by the Kleene
operators on the different levels.
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We show by induction that we can lift the property of being a Σ1
1 formula onto the

next level. A sketch of the proof for the Kleene plus was given in [EF95, page 112]. It
exploits the disjointness of the scope of Kleene operators on different subexpressions.

We illustrate the use of this property in the following example. Consider two expres-
sions, σ� and τ�, which can be joined to form the expression ρ � pσ�q.pτ�q:

w :�
sσ,0 sσ,1 . . . sσ,m sτ,0 . . . sτ,n

Sσ Sτ

σ� τ�

We can join the sets Sσ and Sτ so that they form a new set S which ranges over the
union of the intervals. We make sure that the new set behaves like both sets behaved
before by limiting the subformulas to the old sets via the borders of the subdomains.
For example, what we claimed for the last element in Sσ before, we now claim for the
last element in S, that is within pσ�q’s domain.

Theorem 5. Every check-closed regular availability expression is expressible via a Σ1
1

formula with additional comp predicates for FO.

Proof. In the previous sections we introduced techniques to replace second-order vari-
ables encoding sequences by FO variables which encode the borders of the sequence and
saw in Fact 2 on page 43 that comp can also be adapted to FO without changing its
meaning. A proof in analogy to Lemma 4 on page 32 can be done by a canonical struc-
tural induction. This time fX is a free variable which needs an interpretation. However,
the elaborate investigation of the different sets freepw, ρq is no more necessary, since fX
always encodes the first position in the surrounding constraint.

Also, an argumentation in analogy to Lemma 5 on page 39 can be given for the adapted
top-level translation.

We show by induction that the remaining second-order quantifiers can be brought to
the front so that the resulting formula is in Σ1

1 form.

basis :
Since none of the non-recursive regular availability expressions contains an MSO
variable, they are all in the Σ1

1 form.

induction hypothesis :
Let σ and τ be regular availability expressions for which we assume that they can
be transformed into the Σ1

1 formulas DSσ,1 . . . DSσ,nχ1 and DSτ,1 . . . DSτ,mχ2, with
m,n P N and χ1 and χ2 formulas,where no MSO quantification occurs.

inductive step :

σ _ τ :
We assume that m ¤ n, which is no restriction since it can always be reached
via swapping of σ and τ , using the commutativity of �.
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We transform pDSσ,1 . . . DSσ,nχ1q_pDSτ,1 . . . DSτ,mχ2q into DSσ,1 . . . DSσ,nχ1_χ
1
2,

where χ12 is χ2, only that it adresses the variables Sσ,1 to Sσ,m instead of Sτ,1
to Sτ,m. If there are further variables Sσ,m�1 to Sσ,n, they are not used in χ12,
just as they were not used in χ2.

σ.τ :
This translation uses the fact that the different sets in the translation of σ and
τ can be melted as long as their evaluation is restricted to the corresponding
part of the new set. This fact was illustrated in 5.3 on the previous page and
has its reason in the disjointness of the domains for the expression for σ and
for τ . Depending on wetherm ¤ n or n   m, we use the larger number, which
we now call k and construct a formula DS1 . . . DSkϕχ

1
1rx1, y1s^χ

1
2rx2, y2s. The

formula ϕ is a FO formula to determine the borders x1, x2, y1 and y2 for the
two subdomains for the word matching σ and the word matchingτ . This
reflects the translation of the concatenation for two existing subwords in the
previous section. the formulas χ11 and χ12 are the same as χ1 and χ2, but
address S1 to Sk and are limited to the borders that ϕ implies. The several
cases of the concatenation where one of the words has an empty domain is not
studied closer, since the resulting formula for the empty case is always FO,
since the Kleene star is immediately translated into a tautology and cannot
introduce new sets Si. The various choices (_) introduced can be handled in
the same way than those introduced by a choice in a rae (+).

τ� :
Following our translation, we introduce a new variable S in the front, then
there are ϕ1 and ϕ2, FO formulas, which characterise the borders for the
intermediate subwords and the last subword satisfying τ . We transform
DSϕ1pDS1 . . . DSmχ2qϕ2pDS1 . . . DSmχ2q into DSDS1 . . . DSmϕ1χ2ϕ2χ2 in a gen-
eralisation of the concatenation, again using the disjointness of the range of
the sets S1 to Sm with their equally named successors within the formula.

pτqAÁk :
The formula

form pτqAÁk pf, lq �DfXtf � fX ^ form τ pf, lqu

is by induction hypothesis equivalent to a formula

form pτqAÁk pf, lq �DfXtf � fX ^ DS1 . . . DSnϕu ,

where ϕ is a Σ1
1 body. We can transform this formula into

form pτqAÁk pf, lq �DS1 . . . DSnDfXtf � fX ^ ϕu ,

since all the sets and fX are existentially quantified and therefore the ordering
is not important.
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6 Conclusion

We have seen that the acceptance of a word in a rae is a non-deterministic process
which can produce different words in the language of the rae out of one accepted word.
However, for check-closed expressions the word in the language is uniquely defined for
each accepted word.

As main result we established a language equality between the languages of check-
closed raes and availability formulas constructed with the help of form. An extension
onto arbitrary raes would be easily possible by a slight modification of the top-level-
translation and a change in the definition of the language accepted by an availability
formula. However, further studies in the non-deterministic setting are not of our con-
cern now. Still, they might be of interest to understand the non-deterministic accep-
tance of the availability automata and the differences in the expressions which lead to
deterministic automata and those for which the corresponding automaton is inherently
non-deterministic.

Currently, our main concern is the question whether the emptiness problem for one
given rae is decidable. The transformation of the formulas which characterise raes into
Σ1

1 formulas with assigned comp predicates marks one important step towards the answer
of the question.

For the use of comp as a FO predicate we have seen that we can easily encode our
formulas in W1S1card introduced by [KR03], but unfortunately the resulting formula
falls into a class neither decidability nor undecidability results have been proven for.
It is an interesting task to evaluate this class in extension of the notions and proofs
proposed. However, even the sets introduced by the translation of the comp predicate
into WS1Scard are fixed onto one meaning by the FO parameters for comp. Therefore a
direct encoding of the comp predicate seems of interest, too. Inspired by [SSMH04] we
will try to encode the cardinality constraints represented by the comp predicates on FO
in Presburger formulas to solve the problem.

Another interesting question is the search for a decidable fragment of the availability
logic or an encoding of fragments into linear temporal logic (LTL) [Var08] in order to
do model checking.
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