
First-order logic with reachability for infinite-state systems

Emanuele D’Osualdo Roland Meyer
University of Kaiserslautern
dosualdo,meyer@cs.uni-kl.de

Georg Zetzsche ∗

LSV, CNRS & ENS Cachan, Université Paris-Saclay
zetzsche@lsv.fr

Abstract
First-order logic with the reachability predicate (FO[R]) is an impor-
tant means of specification in system analysis. Its decidability status
is known for some individual types of infinite-state systems such as
pushdown (decidable) and vector addition systems (undecidable).

This work aims at a general understanding of which types of
systems admit decidability. As a unifying model, we employ valence
systems over graph monoids, which feature a finite-state control and
are parameterized by a monoid to represent their storage mechanism.
As special cases, this includes pushdown systems, various types of
counter systems (such as vector addition systems) and combinations
thereof. Our main result is a characterization of those graph monoids
where FO[R] is decidable for the resulting transition systems.

Categories and Subject Descriptors F1.1 [Models of Computa-
tion]: Automata

Keywords first-order logic, reachability, decidability, valence au-
tomata, graph monoids, automatic structures

1. Introduction
In the context of model checking, proving correctness of a system
amounts to proving that a model of the system’s behaviour, often
given in the form of an automaton, complies with a specification,
typically defined by a formula in a logic over the configuration graph
of the automaton model. To obtain an automated correctness proof,
care needs to be taken in choosing the expressivity of the automaton
model and of the logic.

First-order logic with reachability (FO[R]) can uniformly specify
a wide range of correctness properties. Safety specifications can be
expressed with a simple existential quantification: Can some error
configuration be reached? Violations of liveness specifications can
be found by checking the existence of a loop that avoids desirable
behaviour, that is, by solving a recurrent reachability problem, also
expressible in FO[R]. In general, quantifier alternation provides a
means to specify how the system should react to an environment:
No matter what the choices of the environment are (∀), the system
should be able to react (∃) in a way that guarantees some objective is
met. Moreover, FO[R] can provide a useful middle ground between
first-order logic without reachability and monadic second-order

∗ The third author is supported by a fellowship within the Postdoc-Program
of the German Academic Exchange Service (DAAD).

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

LICS ’16, July 05 - 08, 2016, New York, NY, USA
Copyright c© 2016 ACM ISBN 978-1-4503-4391-6/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2933575.2934552

logic: The latter significantly increases expressivity but at the cost
of being decidable for fewer models.

Despite its importance in system analysis, the decidability status
of FO[R] for infinite state systems is only known for a handful of
prominent models. Using Caucal’s interpretation technique, positive
results have been shown for the (higher-order) pushdown automata
family (Caucal 1996; Carayol and Wöhrle 2003). In the parallel
setting, there are positive results for PA (Lugiez and Schnoebelen
2000) and vector addition systems with states (VASS) of dimension
two (Leroux and Sutre 2004). For general VASS (equivalently,
Petri Nets), close to no flavour of first-order logic (even without
reachability) is decidable (Darondeau et al. 2011). However, to the
best of our knowledge, there is no systematic account of decidability
of FO[R] for general classes of storage mechanisms. The question
we address in this paper is:

Which features of the storage mechanism of the automaton model
determine the decidability status of FO[R]?

In order to investigate this question, we need a unifying frame-
work that encompasses and generalizes all the aforementioned infi-
nite state models. We thus set out to study FO[R] on the configura-
tion graphs of valence systems: Finite state automata with auxiliary
storage, where the storage mechanism is specified via a monoid.
In this model, a configuration of a valence system over a monoid
M consists of a pair (q,m) where q is a control state and m is the
storage content, an element of M . A transition (q, r, q′) has the
effect of multiplying r ∈ M (to the right) to the current storage
content. In order to model actions that are not allowed at the current
storage content (such as popping the wrong stack symbol), we re-
strict the configurations to right-invertible monoid elements. As an
example, a stack can be modeled by the monoid whose elements
can be represented by sequences of non-barred (a) and barred (ā)
versions of each stack symbol (representing a push and a pop re-
spectively) with the rule aā = 1. Then, the right-invertible elements
are the sequences over non-barred symbols. A counter over N with
increment and decrement (which we call a partially blind counter)
can be similarly modeled by having only one stack symbol. Corre-
spondingly, a blind counter is a counter over Z, represented by also
having aā = āa.

Most importantly, new storage mechanisms can be built by
composing monoids using two kinds of products. The direct product
M ×N of two monoids M and N allows the automaton to use the
two storage mechanisms independently. This permits, for example,
building counter systems of any finite dimension. The free product
M ∗N amounts, roughly speaking, to forming stacks whose entries
alternate between elements of M and elements of N . A valence
system over M ∗N can push elements of N or M into the stack,
manipulate the top entry using the relevant storage mechanism
(N or M) and pop the top of the stack when empty.

To systematize our study, we consider the so-called graph
monoids — monoids that are defined by graph presentations. For-
mally, a graph Γ induces a quotient MΓ over a free monoid: Each

Graph Γ Monoid MΓ Storage mechanism

B(3) Stack (of 3 symbols)

B3 Three partially blind counters

Z3 Three blind counters

B(2) × B3 Stack (of two symbols) and
three partially blind counters

B ∗ B3 Stack of three partially blind
counters

B(2) × B(2) Two stacks (of two symbols
each)

Table 1. Examples of storage mechanisms

node represents a pair of dual letters a and ā, which always cancel
out (i.e. aā ≡ ε) — in other words, nodes represent copies of what
is known in the literature as the bicyclic monoid B. Edges repre-
sent a commutativity relation used to quotient the monoid. If two
nodes u and v are adjacent, the letters they represent commute with
each other, i.e. xuxv ≡ xvxu for xw ∈ {aw, āw}, w ∈ {u, v}. If
a node has a self loop, the two dual letters it represents commute,
i.e. aā ≡ āa. A partially blind counter is thus represented by a graph
with one node and no edges; a blind counter is realized by a graph
with one node with a self loop. Table 1 shows several examples of
storage mechanisms that can be modeled as graph monoids.

Contributions Our main result is a full characterization of the
storage mechanisms MΓ that admit decidability of FO[R], based
on a simple graph-theoretic property of Γ. We call a graph a B2-
triangle if it is one of the graphs in Fig. 1. A graph is said to be

Figure 1. B2-triangles

B2-triangle-free if it does not contain a B2-triangle as an induced
subgraph. In Theorem 2.1 we prove that requiring Γ to be a disjoint
union of cliques, where each clique is B2-triangle-free, is a sufficient
and necessary condition for decidability of FO[R].

To establish our decidability results, we employ a strong notion
of automaticity for monoids, which implies automaticity of the
resulting transition systems, including the reachability predicate.
To be more precise, we define a notion of automatic rational
multiplication — multiplication in the monoid by elements of
a rational subset being representable by a synchronous relation
on a regular encoding. We then characterize the shape of storage
mechanisms satisfying our graph-theoretic condition as the closure
under free products of the monoids B × Zk for k ∈ N and
B × B. To show that, in the base case, B × Zk and B × B
have automatic rational multiplication, we establish Presburger-
definability of the reachability relation. In the induction step, we give

a direct construction for deriving automatic rational multiplication
in M ∗N , assuming M,N have automatic rational multiplication.

For the undecidability results, we first show that the decompo-
sition into cliques is needed. If Γ is not a disjoint union of cliques,
then MΓ contains {a, b}∗×{c}∗ as a submonoid of right-invertible
elements, which, as we show, offers enough structure to make the Σ1

fragment of FO[R] undecidable. On the other hand, if Γ decomposes
into cliques but is not B2-triangle-free, then we show how to inter-
pret the Σ1 theory of arithmetic with addition and multiplication,
(N,+, ·), in the Σ2 fragment of FO[R] on valence systems. In both
cases, undecidability already holds for a fixed valence system.

One notable consequence of our result is that FO[R] is decidable
for d-dimensional VASS if and only if d ≤ 2.

Outline In Section 2 we recall the basic notions around valence
systems and state our main theorem. Sections 3 and 4 are devoted to
proving the decidability and the undecidability results, respectively.

1.1 Related Work
A variety of positive results have been developed for the push-
down family. Notably, the Caucal hierarchy (Caucal 1996) admits
a decidable MSO theory, via MSO-interpretations and graph un-
foldings. The configuration graphs in the Caucal hierarchy are
the ones generated by higher-order pushdown automata (Carayol
and Wöhrle 2003), which therefore enjoy a decidable MSO the-
ory. Walukiewicz (Walukiewicz 1996) obtained upper complexity
bounds on µ-calculus model checking for pushdown systems. The
interpretation idea has been generalized by Colcombet (2002) to
regular ground tree rewriting. MSO is also known to be decidable
on trees generated by higher-order recursion schemes (Ong 2006).
Schulz (2010) showed, using an interpretation-based approach, that
FO[R] is decidable over a class of grid-like structures. Beyond such
iterated interpretation ideas, we are not aware of results that target
general storage mechanisms. While the storage mechanisms we
consider are quite general, higher-order features cannot be captured
by graph monoids: Higher-order pushdown systems have decid-
able MSO, but all graph monoids over which valence systems have
decidable MSO generate only ordinary pushdown graphs.

In the concurrent setting, variants of first-order theories with
reachability have been shown decidable by Lugiez and Schnoebelen
(2000) for PA processes. For Petri nets, a thorough study of plain
first-order logic without reachability showed that the logic is un-
decidable even for very weak predicates (Darondeau et al. 2011).
Crucially, this holds only when one restricts the structures to the
reachable configurations: when the unrestricted structure is consid-
ered, Petri net configuration graphs are automatic. For our setting,
the restriction does not make a difference since the presence of
the reachability predicate would allow us to restrict or relativize
quantifiers within the logic.

Ideas akin to automaticity are also applied in the area of reg-
ular model checking (Abdulla et al. 2004). There, the goal is to
approximate the transitive closure of the transition relation, using
widenings and acceleration-based techniques on regular transducers.
Instead of studying decidability, termination is enforced at the price
of precision, obtaining constructions that are useful in practice.

Valence automata over graph monoids have recently been used
to study other computational properties. For example, there is a full
characterization of those graph monoids that guarantee semilinear
Parikh images (Buckheister and Zetzsche 2013) and partial charac-
terizations of those with decidable reachability (Zetzsche 2015) and
of those where ε-transitions can be eliminated (Zetzsche 2013).

2. Concepts and Main Result
A finite automaton is a tuple (X,Q, q0, E, F) where X is a finite
alphabet, Q is a finite set of states, q0 ∈ Q is the initial state,

E ⊆ Q × X∗ × Q is a set of edges, and F ⊆ Q is the set
of final states. The language recognized by the automaton A is
denoted L(A); for two states p and q of A, we denote by Lpq(A)
the set of words that label paths from p to q in A.

Valence Systems
We represent storage mechanisms as monoids. Let M be a monoid;
we denote multiplication in the monoid by juxtaposition, and the
neutral element by 1. The elements of M are actions that can be
applied to the storage content and the elements of

R1(M) := {x ∈M | ∃y ∈M : xy = 1}
correspond to valid storage contents. The elements ofR1(M) are
said to be right-invertible. A valence system over M is a tuple
S = (Q,M,E), in which (i) Q is a finite set of states, (ii) E is a
finite subset ofQ×M×Q, called the set of edges. A configuration of
S is a pair (q, r) ∈ Q×R1(M). For p, q ∈ Q and r, s ∈ R1(M),
we write (p, r) →S (q, s) if there is an edge (p,m, q) ∈ E such
that s = rm. The reflexive transitive closure of→S is denoted→∗S .

Graphs
A graph is a pair Γ = (V,E) where V is a finite set and E is a
subset of {S ⊆ V | 1 ≤ |S| ≤ 2}. The elements of V are called
vertices and those of E are called edges. Vertices v, w ∈ V are
adjacent if {v, w} ∈ E. If {v} ∈ E for some v ∈ V , then v is
called a looped vertex, otherwise it is unlooped. A subgraph of Γ
is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Such a subgraph is
called induced (by V ′) ifE′ = {S ∈ E | S ⊆ V ′}, i.e.E′ contains
all edges from E between vertices from V ′. By Γ \ {v}, for v ∈ V ,
we denote the subgraph of Γ induced by V \{v}. Moreover, a clique
is a graph in which any two distinct vertices are adjacent. Finally,
Γ− denotes the graph obtained from Γ by deleting all self loops: We
have Γ− := (V,E−), where E− := {S ∈ E | |S| = 2}. Finally,
a graph is transitive if for x, y, z ∈ V , pairwise distinct, we have
that {x, y}, {y, z} ∈ E implies {x, z} ∈ E.

Graph monoids
Let A be a (not necessarily finite) set of symbols and R be a subset
of A∗ × A∗. The pair (A,R) is called a (monoid) presentation.
The smallest congruence of A∗ containing R is denoted by ≡R
and we will write [w]R for the congruence class of w ∈ A∗. The
monoid presented by (A,R) is defined as A∗/≡R. Note that since
we did not impose a finiteness restriction on A, up to isomorphism,
every monoid has a presentation. Furthermore, for monoids M1,
M2 we can find presentations (A1, R1) and (A2, R2) such that
A1 ∩A2 = ∅. We define the free product M1 ∗M2 to be presented
by (A1 ∪ A2, R1 ∪ R2). Note that M1 ∗M2 is well-defined up
to isomorphism. In analogy to the n-fold direct product, we write
M (n) for the n-fold free product of M .

With each graph Γ = (V,E), we associate the alphabet of gen-
erators XΓ := {av, āv | v ∈ V }, and the smallest congruence ≡Γ

satisfying

avāv ≡Γ ε for each v ∈ V , and (1)
xy ≡Γ yx for each x ∈ {av, āv}, (2)

y ∈ {aw, āw} with {v, w} ∈ E.

In particular, we have avāv ≡Γ āvav whenever {v} ∈ E. With
each graph Γ, we associate the monoid MΓ := X∗Γ/≡Γ. The
monoids of the form MΓ are called graph monoids.

Let us briefly discuss how to realize storage mechanisms by
graph monoids. First, suppose Γ0 and Γ1 are disjoint graphs.
If Γ is the union of Γ0 and Γ1, then MΓ ∼= MΓ0 ∗ MΓ1 by
definition. Moreover, if Γ is obtained from Γ0 and Γ1 by drawing
an edge between each vertex of Γ0 and each vertex of Γ1, then
MΓ ∼= MΓ0 ×MΓ1.

If Γ consists of one vertex v and has no edges, the only con-
gruence rule is avāv ≡Γ ε. In this case, MΓ is also denoted as B
and we will refer to it as the bicyclic monoid. The generators av
and āv are then also written a and ā, respectively. Observe that
R1(B) = {a}∗ and thus R1(B) ∼= N. Multiplying a or ā on the
right represents increment or decrement, respectively. Since a and ā
do not commute, B corresponds to a partially blind counter, i.e. one
that attains only non-negative values. For instance, starting from a,
we cannot decrement twice and add one by multiplying āāa because
aāāa ≡ āa 6∈ R1(B).

Moreover, if Γ consists of one looped vertex, then MΓ (and
alsoR1(MΓ)) is isomorphic to Z and thus realizes a blind counter,
which can go below zero.

If one storage mechanism is realized by a monoid M , then the
monoid B ∗M corresponds to the mechanism that builds stacks:
A configuration of this new mechanism consists of a sequence
c0ac1 · · · acn, where c0, . . . , cn are configurations of the mech-
anism realized by M . We interpret this as a stack with the entries
c0, . . . , cn. One can open a new stack entry on top (by multiplying
a ∈ B), remove the topmost entry if empty (by multiplying ā ∈ B)
and operate on the topmost entry using the old mechanism (by multi-
plying elements from M). In particular, B ∗B describes a pushdown
stack with two stack symbols. Observe thatR1(B∗B) is isomorphic
to the monoid of words over two symbols, i.e. stack words. Table 1
shows a few more examples. See (Zetzsche 2013) for details.

Logic
Let S be a valence system over the monoid M . Then the first-order
logic with reachability for S, FO[R](S), consists of the first-order
formulas over the following signature:

• The constant symbols are the configurations of S.
• stateq(·): A unary state predicate for each q ∈ Q.
• step(·, ·): The binary step predicate for one-step reachability.
• reach(·, ·): The binary reachability predicate.

Given a valence system S, its reachability structure is the
relational structure with domain Q × R1(M) over the above
signature defined in the obvious way. For a first-order formula ϕ, we
write S |= ϕ when ϕ holds on the reachability structure of S. The
first-order theory with reachability over S is then the set of formulas
{ϕ ∈ FO[R](S) | ϕ closed, S |= ϕ}.

2.1 Main Result
We call Γ a B2-triangle if it is one of the graphs of Fig. 1. A graph
Γ is said to be B2-triangle-free if it does not contain a B2-triangle
as an induced subgraph.

Theorem 2.1. Let Γ be a graph. The first-order theory with reacha-
bility for valence systems over MΓ is decidable if and only if Γ is a
disjoint union of B2-triangle-free cliques.

Before we move to the proof, let us elaborate on the concrete
shape of the graphs satisfying the condition of Theorem 2.1. If ∆ is
a B2-triangle-free clique, then ∆ either (i) consists of at most two
unlooped vertices or (ii) contains at most one unlooped vertex and
a number of looped vertices. Since all these vertices are adjacent,
this means we either have M∆ ∼= B2 or M∆ ∼= Br × Zs for
r ∈ {0, 1} and s ∈ N. If Γ is a disjoint union of B2-triangle-free
cliques ∆1, . . . ,∆n, then MΓ is the free product of the M∆i.

Operationally, the storage mechanism implemented by such an
MΓ is composed of a stack, each entry of which is either (i) a pair
of partially blind counters, or (ii) a partially blind counter with a
number of blind counters.

3. Decidability
In this section, we show that FO[R] is decidable for valence systems
over MΓ whenever Γ is a disjoint union of B2-triangle-free cliques.
More specifically, we prove that the transition systems–with the
reachability relation–generated by such systems over MΓ are (ef-
fectively) automatic. We deduce this property from a slightly more
abstract condition on the monoid, which we call automatic rational
multiplication.

As we argued in the previous section, if Γ is a disjoint union of
B2-triangle-free cliques, then MΓ is isomorphic to the free product
of a finite number of monoids, each of which is isomorphic either to
B2 or to Br ×Zs, for r ∈ {0, 1} and s ∈ N. Therefore, we proceed
as follows:

(i) We show that B× Zn has automatic rational multiplication for
each n ≥ 0. Here, we use a direct construction showing that the
reachability relation for two fixed states is Presburger-definable
and can thus conclude automaticity.

(ii) We observe that B × B has automatic rational multiplication.
Note that R1(B × B) ∼= N × N and that valence systems
over B × B are essentially two-dimensional vector addition
systems with states. We can therefore apply a result of Leroux
and Sutre (2004), stating that the binary reachability relation
of such systems is effectively semilinear. Specifically, given
a rational subset R of B × B, one can easily construct a 2-
dim. VASS whose binary reachability relation for two states
is precisely all those ((x, y), (x′, y′)) for which there is an
r ∈ R with (x, y)r = (x′, y′). Since this semilinearity implies
Presburger-definability, we directly obtain an encoding with
automatic rational multiplication.

(iii) We obtain a general transfer result, stating that if two monoids
M0 and M1 each have automatic rational multiplication, then so
does their free product M0 ∗M1. Here, we use a generalization
of the saturation method for pushdown automata (Benois 1969;
Bouajjani et al. 1997) to obtain automaticity.

Hence, for the decidability, it remains to prove (i) and (iii), which
we do in Sections 3.2 and 3.3, respectively. We begin with the
required concepts.

3.1 Automaticity
Let X be an alphabet and � /∈ X . We define the alphabet X(2, �)
as (X ∪ {�})2 \ {(�, �)} and the convolution u⊗ v ∈ X(2, �)∗ of
words u, v ∈ X∗ inductively as follows. We have

au⊗ bv = (a, b)(u⊗ v), ε⊗ ε = ε

ε⊗ bv = (�, b)(ε⊗ v) au⊗ ε = (a, �)(u⊗ ε)
for a, b ∈ X and u, v ∈ X∗. For a relation R ⊆ X∗ × X∗, we
write R⊗ = {u⊗ v | (u, v) ∈ R}. Such a relation is called regular
if R⊗ is a regular language.

Let (D,R1, . . . , Rn) be a relational structure with domain
D and relations R1, . . . , Rn of arities r1, . . . , rn ≤ 2 (for our
purposes, it suffices to consider arities ≤ 2). This structure is called
automatic if there is a regular language L ⊆ X∗, and a bijection
θ : L→ D such that each of the relations

Rθi = {(x1, . . . , xri) ∈ L
ri | (θ(x1), . . . , θ(xri)) ∈ Ri}

is regular. The first-order theory of each automatic structure is
decidable (Khoussainov and Nerode 1995), even when extended
by the infinity quantifier (Blumensath and Grädel 2000) and the
modulo quantifier (Khoussainov et al. 2004).

We will show that in the decidable case of Theorem 2.1, the
reachability structure of each such valence system is (effectively)
automatic. Here, it will be convenient to prove a more abstract
condition, termed ‘automatic rational multiplication’, which implies

the desired automaticity. We say that a monoid M is finitely
generated if there is an alphabet X and a surjective morphism
[·] : X∗ →M . The image of w ∈ X∗ under [·] will be denoted [w]
and we write [K] = {[w] | w ∈ K} when K ⊆ X∗. Note that if
M is finitely generated, we can denote elements of M by words
over X . From now on, we assume that M is finitely generated and
fix X and [·]. While the following definitions make reference to
X and [·], it is easy to see that they do not depend on this choice.
A subset R ⊆ M is called rational if there is a regular language
K ⊆ X∗ such that R = [K]. We will represent such a rational
subset of M by a finite automaton for K.

Definition 3.1. Let M be finitely generated. An encoding for M
is a bijection θ : L→ R1(M) where L is a regular language. We
say that θ has automatic rational multiplication if for each rational
subset R ⊆M , the relation

R� := {(u, v) ∈ L× L | ∃r ∈ R : θ(u)r = θ(v)}

is effectively regular, i.e. one can compute a finite automaton for
(R�)⊗. In this case, we also say that M has automatic rational
multiplication.

Note that here, the alphabet of L is usually not X .

Theorem 3.2. SupposeM has an encoding with automatic rational
multiplication. Then each valence system over M has an effectively
automatic reachability structure.

The proof of Theorem 3.2 is not difficult. One has to extend
the encoding with the states of a given valence system. One then
observes that the configurations in state q reachable from (p,m) are
precisely those of the form (q,mr), where r is drawn from a rational
set. Hence, the reachability relation is regular. Moreover, encodings
of step relation and configurations follows from the special case
where the rational set is finite.

3.2 Base Case B× Zk

We show that B × Zk has automatic rational multiplication. The
key observation is that a rational set over this monoid behaves like
a 1-counter automaton (1CM) over N that is decorated with further
counters over Z. Decorated means only the N-counter influences the
behavior of the automaton, the Z-counters do not.

To prove automaticity, we show that the reachability relation
in such decorated 1CM is Presburger definable. Automaticity then
follows from automaticity of Presburger arithmetic. To establish
Presburger definability of the reachability relation, we make use of
semilinearity of the Parikh images of 1CM languages, combined
with the equivalence of semilinear and Presburger-definable sets.

Proposition 3.3. B× Zk has automatic rational multiplication.

The monoid B× Zk is finitely generated by definition. Since we
have an isomorphismR1(B× Zk) ∼= N× Zk, we can identify the
elements of R1(B × Zk) with pairs (m,~c) ∈ N × Zk. Consider
a rational set R ⊆ B × Zk. We have to characterize the set of
pairs (m,~c) and (n, ~d) for which there is an element r ∈ R so
that (m,~c)r = (n, ~d). In the latter situation, (n, ~d) is said to
be reachable from (m,~c). More precisely, we choose a regular
language L where each word w ∈ L encodes an element θ(w) of
N×Zk. Then, we show that the set of pairs (u, v) ∈ L×L such that
θ(v) is reachable from θ(u) is synchronous rational. Fortunately,
we can express reachability of (n, ~d) from (m,~c) in Presburger
arithmetic, for which a suitable encoding is already available.
Presburger arithmetic is the first-order logic over (Z,≤,+).

Lemma 3.4. Given a rational set R ⊆ B× Zk, one can construct
a Presburger formula ϕR(x1, ~y1, x2, ~y2) so that for all (m,~c) and
(n, ~d) from N× Zk we have

∃r ∈ R : (m,~c)r = (n, ~d) iff ϕR(m,~c, n, ~d) holds.

Before we turn to the construction, we explain why the result
guarantees the encoding requirement. The structure (Z,+,≤) has
a first-order interpretation in (N,+,≤), the more common formu-
lation of Presburger arithmetic. (One idea is to provide two vari-
ables over the naturals for each integer). Automaticity of Presburger
arithmetic over N goes back to (Büchi 1960). To be precise, there
is a bijection between the naturals and the elements in a regular
language. Moreover, there are automata for the encodings of solu-
tions to Presburger-definable relations. Automaticity is preserved
under first-order interpretations (Blumensath and Grädel 2000). A
direct encoding of (Z,+,≤) into automata (sign followed by most-
significant bit) is given in (Boigelot and Wolper 1998). Finally, the
set N×Zk is first-order definable, meaning we can find an encoding
of precisely the elements ofR1(B× Zk).

To compute the Presburger formula ϕR, we develop an under-
standing of the rational set R ⊆ B× Zk as a 1CM. By definition,
the rational set is represented by a finite automaton N over letters
say a and ā for B and bi and b̄i for each copy of Z, i = 1, . . . , k.
We interpret B and Z as counters (partially blind and blind, respec-
tively). With this point of view, a and ā and similarly bi and b̄i are
increment and decrement operations on the respective counters. An
element r ∈ R is thus represented by a sequence of increment and
decrement operations on the counters that is accepted by N .

The formula ϕR is supposed to capture the pairs (m,~c) and
(n, ~d) from N×Zk so that (m,~c)r = (n, ~d) for some r ∈ R. With
the above discussion, finding such an element r ∈ R means finding
a sequence of increment and decrement operations in the automaton
N that, when applied to the initial value (m,~c), yields (n, ~d). The
only requirement on this application is that the N-counter is never
decremented below zero. However, this is precisely the semantics
of a 1CM over N. We make this relationship between N and 1CM
explicit, and show how it leads to the desired computability result.

Let the given finite automaton be N = (X,Q, q0, E, F) with
alphabetX = {a, ā, b1, b̄1 . . . , bk, b̄k} and edgesE ⊆ Q×X×Q.
A 1CM C is a finite automaton that has access to an N-counter
and where every edges carries an increment, decrement, or noop-
command (E ⊆ Q × X × {+1,−1, 0} × Q). The semantics is
defined as expected. We write (q1,m1)

σ−→C (q2,m2) to mean that
there is a sequence of transitions between configurations of C that
is labeled by σ ∈ X∗ and that takes (q1,m1) to (q2,m2). We use
L(C,m) := {σ ∈ X∗ | ∃qf ∈ F, i ∈ N : (q0,m)

σ−→C (qf , i)}
to denote the language of C from the initial counter value m. Our
automaton N induces the 1CM CN defined as follows. Edges
labeled by a are given command +1, because they correspond to
increments on the one N-counter. Edges labeled by ā are given −1.
The remaining edges are decorated with 0. Note that the labeling
stays unchanged, and that we do not introduce commands for the
Z-counters. To state the relationship between N and CN , we need
the Parikh image of words w ∈ X∗. The Parikh image of w is
the function ψ(w) : X → N where (ψ(w))(a) is the number of
occurrences of the letter a in the word w.

Lemma 3.5. There is an r ∈ R so that (m,~c)r = (n, ~d) if and
only if there is a σ ∈ L(CN ,m) so that

y = x+ (ψ(σ))(z)− (ψ(σ))(z̄)

for all (x, y, z) ∈ {(m,n, a), (c1, d1, b1), . . . , (ck, dk, bk)}.

The lemma rephrases the existence of r ∈ R as the existence
of a CN -computation. The main message is that the effect on the

counters can be deduced from the Parikh image of the computation.
This holds true even for the N-counter. Nevertheless, we need the
semantics of a 1CM (rather than all computations of the finite
automaton N) to make sure the N-counter stays non-negative also
in all intermediary configurations.

Lemma 3.5 can be read as follows. For a fixed value m, it
characterizes the suitable ~c, ~d, and n in terms of the Parikh images
of the computations of CN . To give a characterization for all m,
we guess the initial value of the N-counter. Let C′N coincide with
CN except for a fresh initial state qnew and a fresh letter â. The new
state carries a loop (qnew, â,+1, qnew) and has an ε-transition to the
former initial state, (qnew, ε, 0, q0).

Lemma 3.6. There is r ∈ R so that (m,~c)r = (n, ~d) if and only
if there is w ∈ L(C′N , 0) so that

m = (ψ(w))(â)

n = (ψ(w))(â) + (ψ(w))(a)− (ψ(w))(ā)

and di = ci + (ψ(w))(bi)− (ψ(w))(b̄i) for all i = 1, . . . , k.

Since C′N is an ordinary 1CM, its language is context-free.
With Parikh’s theorem (Parikh 1966), the Parikh image of this
language is a semilinear set, and hence Presburger definable. The
equations in the lemma explain how to turn a Presburger formula
for ψ(L(C′N , 0)) into a formula for our set of pairs.

3.3 Induction Step
In this section, we show that the property of having automatic
rational multiplication is passed on to free products. This means, we
prove the following:

Theorem 3.7. If the monoids M0 and M1 have automatic rational
multiplication, then so does M0 ∗M1.

Let us briefly sketch the proof steps. First, we devise a saturation
procedure for rational sets (Lemma 3.9). This allows us to assume
that in the automata over M0 ∗M1, every element can be accepted
through a word in a normal form. This normal form is amenable
to an analysis of how elements can cancel during multiplication
(Lemma 3.10). Then, we use Lemma 3.10 to show that for each
rational set, the set of encodings of its members and that of their
inverses is effectively regular (Lemma 3.12). Finally, we use this and
the possible cancelation cases from Lemma 3.10 again to construct
a regular relation for each of these cases.

Let M0 and M1 be monoids with automatic rational multipli-
cation. Then, M0 and M1 are finitely generated, so assume alpha-
bets X0 and X1 with X0 ∩ X1 = ∅ and a surjective morphism
[·]i : X∗i →Mi for each i ∈ {0, 1}. For the monoidM = M0∗M1,
we pick the surjective morphism [·] : X∗ →M with X = X0 ∪X1

that extends [·]0 and [·]1.
By our assumption, for each i ∈ {0, 1}, there is an encoding

θi : Li → R1(Mi) with automatic rational multiplication. It is an
easy exercise to show that we may assume ε ∈ Li and θi(ε) = 1.
We may also assume Y0 ∩ Y1 = ∅, where Yi is the finite alphabet of
the language Li. In our encoding forM0∗M1, we take Y = Y0∪Y1

as the alphabet and L = (L0 ∪ L1)∗ as the regular language. In
order to define θ : L→R1(M0 ∗M1), we need some terminology.

Let w ∈ X∗ and i ∈ {0, 1}. A non-empty factor f of w is
called an i-block (or block of type i) if f ∈ X∗i and f has no
neighboring symbol in Xi. It is called a block if it is an i-block for
some i ∈ {0, 1}. The unique decomposition w = w1 · · ·wn where
each wj is a block of w is called w’s block decomposition. Note
that since also Y = Y0 ∪ Y1 and Y0 ∩ Y1 = ∅, we may apply the
terms block and block decomposition analogously for words over
Y . We call a word w ∈ X∗ reducible if for some i ∈ {0, 1}, it
has a block f with [f] = 1. Otherwise, w is called reduced. The
following follows easily from the definition of the free product.

Fact 3.8. Suppose u and v are reduced and have block decomposi-
tions u = u1 · · ·un and v = v1 · · · vm. Then [u] = [v] if and only
if m = n and [ui] = [vi] for every i ∈ [1, n].

We are now ready to define the map θ : L → R1(M). It is
well-known (and can be deduced from Lemma 3.10) thatR1(M0 ∗
M1) = R1(M0) ∗ R1(M1). For w ∈ Li, i ∈ {0, 1}, we define
θ(w) = θi(w). Recall that we have L0 ∩L1 = {ε}, but this causes
no contradiction because the neutral elements of M0 and M1 are
identified in M0 ∗M1. For the general case, suppose w ∈ L with
block decomposition w = w1 · · ·wn. Then we have wj ∈ L0 ∪ L1

for j ∈ [1, n] and we set θ(w) := θ(w1) · · · θ(wn). Observe that
θ is surjective because θ0 and θ1 are. Moreover, it follows from
Fact 3.8 that θ is injective.

Rational subsets of M = M0 ∗M1 are represented by finite
automata over X . Of course, such an automaton might accept words
that are not reduced. However, we will see that we can always
construct an automaton A for R that is saturated, meaning that
[L(A)] = R and whenever m ∈ [Lpq(A)] for states p, q, then there
is a reduced word w ∈ Lpq(A) with [w] = m.

Lemma 3.9. For each rational subset R ⊆ M = M0 ∗M1, we
can compute a saturated automaton for R.

Here, the idea is to introduce an ε-edge between p and q
whenever 1 ∈ [Lpq(A)]. If we do this until we reach a fixpoint,
we arrive at a saturated automaton.

Proof. We are given R as a finite automaton A = (X,Q, q0, E, F)
such that [L(A)] = R. We define, for states p, q ∈ Q, the finite
automaton Apq as (X,Q, {p}, E, {q}). In other words, we take A
and designate p and q as initial and (only) final state, respectively.

First, observe that if N is a monoid with automatic rational
multiplication, then given a rational subset R ⊆ N , it is decidable
whether 1 ∈ R: We have 1 ∈ R if and only if (ε, ε) ∈ R�, which
we can check because (R�)⊗ is effectively regular.

We apply a saturation procedure, in which we successively add
edges toE. We begin withE0 = E and assume we have constructed
Ei. Consider the automaton Ai = (X,Q, q0, Ei, F). We check
whether there is a pair (p, q) of states such that there is no edge
(p, ε, q) and we have 1 ∈ [Lpq(Ai)]. This is decidable by our
observation since [Lpq(Ai)] is rational. If we find such a pair of
states, we set Ei+1 = Ei ∪ {(p, ε, q)}. If there is no such pair, the
procedure terminates.

We clearly have E0 ⊆ E1 ⊆ · · · and since we add no states to
the automaton, the procedure has to terminate with some Ek. We
claim that then, Ak has the desired property.

First of all, it is clear that in each step, we have [L(Ai)] =
[L(Ai+1)]. The inclusion “⊆” holds trivially and the other inclusion
holds by the choice of p and q. In particular, we have [L(Ak)] = R.
Now let p, q ∈ Q and m ∈ [Lpq(Ak)] and choose a word
w ∈ Lpq(Ak) with [w] = m such that w has a minimal number of
blocks. Suppose w is not reduced, i.e. w = ufv with a block f such
that [f] = 1. By construction of Ak, this means uv ∈ Lpq(Ak).
However, since [uv] = [w] and uv has at least one block less than
w, this contradicts the choice of w. Hence, w must be reduced.

For our proof, we need to understand how multiplication works
in M0 ∗ M1 in terms of reduced words. We identify four cases,
the simplest being the “non-merging” case. Let u = u1 · · ·um and
v = v1 · · · vn be block decompositions of u, v ∈ X∗. We call u and
v non-merging if um and v1 are blocks of distinct types. Otherwise,
we say that u and v are merging. Of course, when u and v are non-
merging, then uv is again a reduced word and represents [u][v]. As
above, since we have Y0∩Y1 = ∅, the notion of merging words also
applies to encodings, i.e. members of L. Note that if x and y are
non-merging and x, y ∈ L, then xy ∈ L and θ(xy) = θ(x)θ(y).

We now want to understand multiplication in the merging case. For
a proof of the following lemma, see Appendix B.

Lemma 3.10. Let u, v, w ∈ X∗ be reduced and let u and v be
merging; moreover, let w = w1 · · ·wk be the block decomposition
of w. Then we have [uv] = [w] if and only if one of the following
holds:

(i) We have m ≤ n and
(a) for every j ∈ [1,m], we have [um−j+1vj] = 1,
(b) k = n−m, and
(c) [w1 · · ·wk] = [vm+1 · · · vn].

(ii) We have m > n and
(a) for every j ∈ [1, n], we have [um−j+1vj] = 1,
(b) k = m− n, and
(c) [w1 · · ·wk] = [u1 · · ·uk].

(iii) There is an i ∈ [0,min(m,n)] such that
(a) for every j ∈ [1, i], we have [um−j+1vj] = 1
(b) [um−ivi+1] 6= 1
(c) k = (m− i− 1) + 1 + (n− i− 1),
(d) [w1 · · ·wm−i−1] = [u1 · · ·um−i−1],
(e) [wm−i] = [um−ivi+1],
(f) [wm−i+1 · · ·wk] = [vi+2 · · · vn].

For relations S, T ⊆ Y ∗ × Y ∗, we define

S · T := {(x1x2, y1y2) | (x1, y1) ∈ S, (x2, y2) ∈ T}.
When constructing regular relations, we employ the following fact,
which is well known and easy to see.

Fact 3.11. Let S ⊆ Y ∗ × Y ∗ be regular and let C ⊆ Y ∗ and
D ⊆ Y ∗ be regular. Then, the relation S · (C ×D) is regular as
well. Moreover, if every pair (x, y) ∈ S satisfies |x| = |y| and
T ⊆ Y ∗ × Y ∗ is regular, then S · T is also regular.

We now show that for the encoding θ, the right-invertible
members of a rational set have effectively regular encodings, and
the same is true for their left-inverses. Let us define this precisely.
Suppose N is a monoid and we have an encoding η : K →R1(N).
Then, for rational subsets R ⊆ N , we define

R. := {w ∈ K | η(w) ∈ R},
R/ := {w ∈ K | ∃r ∈ R : η(w)r = 1}.

If the encoding function has automatic rational multiplication, these
sets are always regular. This is because the set R. is the projection
of R� ∩ ({η−1(1)} × X∗) onto the right component. Hence,
R. is regular. Analogously, R/ is the projection of the relation
R� ∩ (X∗ × {η−1(1)}) onto the left component. We now lift
this effective regularity to our encoding for M0 ∗ M1. The idea
is to (i) decompose each run of an automaton for R into blocks
representing elements 6= 1 (which is possible thanks to Lemma 3.9)
and (ii) replace each of them with the encoding (employing effective
regularity for M0 and M1). In the case of R/, we have to reverse
the sequence of blocks.

Lemma 3.12. For each rational subset R ⊆ M = M0 ∗M1, the
sets R. and R/ are effectively regular.

Proof. Suppose that R = [L(A)] for the finite automaton A =
(X,Q, q0, E, F). By Lemma 3.9, we may assume that every el-
ement of R is represented by a reduced word. Observe that it is
decidable whether 1 ∈ R: The only reduced word that can represent
1 ∈ M is the empty word, meaning we need to check whether
ε ∈ L(A). Recall that X = X0 ∪X1. By A|i, we denote the au-
tomaton obtained from A by deleting all edges labeled with X1−i.

We begin with the set R.. We will construct a regular language
K and a regular substitution σ such that σ(K) = R., which

x1 x2 x3

·
y1 y2 y3

=
x1 zx zy y3

zx zy

x1 x2 x3

x1 zx zy y3
∈ T4

guessed

Figure 2. Anatomy of rational multiplication, mixed case. The gray area reduces to 1.

implies effective regularity of R.. The set K is a language over
Z = Q× {0, 1} ×Q and consists of all non-empty words

(p0, i1, p1)(p1, i2, p2) · · · (pn−1, in, pn)

such that p0 = q0, pn ∈ F , and for every j ∈ [1, n − 1], we
have ij+1 = 1 − ij . Moreover, we add ε to K if and only if
1 ∈ R. We will use the rational set Rpiq ⊆ Mi, defined by
Rpiq := [Lpq(A|i)]. The substitution σ : Z → P(Y ∗) is defined as
follows. For (p, i, q) ∈ Z, we set σ(z) := R.piq \ {ε}, where R.piq
is effectively regular by our observation above. One can now show
that R. = σ(K) (see Appendix C).

Let us now show regularity of R/. We use the language K from
above, but in reverse, and instead of σ, we use the substitution
τ : Z → P(X∗) where for z = (p, i, q), we set τ(z) := R/piq \{ε}.
Again, one can show that R/ = τ(Krev) (see Appendix C).

We are now ready to show Theorem 3.7, i.e. regularity of R�.
Here, our strategy is to construct a regular relation for each of the
four cases of a multiplication (“non-merging” and the three cases
of Lemma 3.10). In order to show that the constructed relations are
regular, we first introduce some auxiliary sets. Let R = [L(A)] be
a rational subset of M = M0 ∗M1, where A = (X,Q, q0, E, F).
We may assume that A is saturated (Lemma 3.9) and that A has
only one final state, F = {f}. The first set we use consists of all
encoding pairs that are equal and either empty or end in an `-block:

E` := {(u, u) | u ∈ {ε} ∪ (L0 ∪ L1)∗L`}. (3)

E` is clearly regular. In order to describe the result of canceling
elements of R with others, we employ the set Rp,q,` = [Lpq(A|`)],
which is a rational subset of M`. Since we assume θ` to have
automatic rational multiplication, the following set is effectively
regular:

Pp,q,` := {(u, v) ∈ L` × (L` \ {ε}) | ∃r ∈ Rp,q,` :

θ`(u)r = θ`(v)}
(4)

Note that the right component is required to be non-empty, so this
set is not quite the same as R�p,q,`, but it can be obtained from the
latter by an intersection with the regular relation L` × (L` \ {ε})
(recall that regular relations are closed under intersection (Elgot and
Mezei 1965)). We also need two variants of R/p,q,`, namely those
that pick only encodings that are empty or start (end) in an `-block:

Ip,q,` = R/p,q,` ∩ ({ε} ∪ L`(L0 ∪ L1)∗) (5)

I ′p,q,` = R/p,q,` ∩ ({ε} ∪ (L0 ∪ L1)∗L`) (6)

Finally, we use a variant of R.p,q,` that requires encodings to be
empty or to start in an `-block:

Wp,q,` = R.p,q,` ∩ ({ε} ∪ L`(L0 ∪ L1)∗). (7)

According to Lemma 3.12, the sets in Eqs. (5) to (7) are effectively
regular.

Our task is to show that the set of pairs (u, v) such that
there is an r ∈ R with θ(u)r = θ(v) is regular. To this end,
we want to apply Lemma 3.10, which is, however, expressed in
terms of monoid elements represented as sequences of generators
and [·], and not via θ. However, since for a word w ∈ Y ∗ and
a block decomposition w = w1 · · ·wn, with w1 ∈ Y ∗i , we have
θ(w) = θi(w1)θ1−i(w2)θi(w3) · · · , the product of two encodings

via θ is built according to the same pattern of cancelation and of
multiplication analyzed in Lemma 3.10 for sequences of generators.

Thus, Lemma 3.10 (and the remark above it) tell us that there
are four possible situations. We call these cases non-merging (if x
and y are non-merging), suffix (case (i) of Lemma 3.10), prefix (case
(ii)), and mixed (case (iii)).

The simplest case is the non-merging case, since we just have
to concatenate encodings x and y to get z. This means, the two
components have a common prefix (corresponding to x) and then
the second component proceeds with the encoding of an element of
R. Hence, these pairs are represented in the following set:

T1 :=
⋃

`∈{0,1}

E` · ({ε} ×Wq0,f,1−`).

In the suffix case, y is split up in y = y1y2 such that x cancels
with y1, so that the result is y2. Therefore, we first guess the type `
of the last block of y1 and we guess the state p that A is in after it
has read the part y1. Then, in the left component, we generate x as
an element that can be canceled by one that is read from q0 to p. In
the right component, we generate y2 as an element that is read by A
from p to the final state:

T2 :=
⋃

`∈{0,1}

⋃
p∈Q

I ′q0,p,` ×Wp,f,1−`.

Now, the prefix case works similarly to the suffix case: Here, x
is split up as x = x1x2 such that x2 cancels with y:

T3 :=
⋃

`∈{0,1}

E` · (Iq0,f,1−` × {ε}).

The mixed case is more involved. As depicted in Fig. 2, x and
y decompose as x = x1x2x3 and y = y1y2y3 (which is not
necessarily a block decomposition) such that (i) x3 cancels with y1,
(ii) x2 and y2 are blocks of the same type ` that are multiplied as in
M` and yield a result 6= 1, and (iii) the prefix x1 of x and the suffix
y3 of y are passed to the result without modification. This is realized
as follows. First, we guess the block type ` of x2 and y2 and which
states the automaton A is in after it reads the part y1 (p) and after
it reads y2 (q). The relation E1−` copies the unchanged prefix x1.
Afterwards, the relation Pp,q,` generates x2 on the left side and the
product of x2 and y2 on the right side. Then, x3 is described by
Iq0,p,`: Recall that x3 cancels with y1, which is read from q0 to p.
Finally, y3 is described by Wq,f,1−`:

T4 :=
⋃

`∈{0,1}

⋃
p,q∈Q

E1−` · Pp,q,` · (Iq0,p,1−` ×Wq,f,1−`).

By Fact 3.11, each of the relations T1, T2, T3, T4, and hence their
union, is regular. It can be verified thatR� equals T1∪T2∪T3∪T4.
See Appendix D for a detailed proof.

4. Undecidability
We show that if Γ is not a disjoint union of B2-triangle-free cliques,
the first-order theory with reachability is undecidable — even for
a fixed valence system over MΓ. A graph is a disjoint union of
cliques if and only if it is transitive. Therefore, a graph can fail to be
a disjoint union of B2-triangle-free cliques for two reasons: Either
Γ− contains the graph as an induced subgraph, or Γ
contains a B2-triangle. To each of these cases we devote one section.

4.1 Undecidability: Non-Transitive Graphs
Suppose Γ− contains as an induced subgraph. This
means MΓ contains a submonoid (M0 ∗M1)×M2, where eachMi

is either B or Z. In any case, R1(MΓ) contains a submonoid that
is isomorphic to {a, b}∗ × {c}∗. We will show that undecidability
can be proved by just relying on the submonoid {a, b}∗ × {c}∗;
operationally, this means we will restrict ourselves to automata that
never make use of barred symbols. That is, if we interpret a and b
as the two symbols of a stack and c as representing a counter, the
systems we will construct never perform a pop, nor a decrement.
This is in sharp contrast to other questions in automata theory, where
even bounding reversals yields decidability results (Ibarra 1978).
Our main finding is that we can in fact give two arguments for
undecidability, one where the formula is fixed, and one for a fixed
valence system.

Theorem 4.1. Assume MΓ is as discussed above.

(i) There is a fixed FO[R]-formula that cannot be checked for
valence systems over MΓ.

(ii) There is a fixed valence system over MΓ with an undecidable
first-order theory with reachability.

For the first claim, we reduce the following undecidable problem
to ours:

Theorem 4.2 (Sakarovitch (1992)). Given a rational subset R of
{a, b}∗ × {c}∗, it is undecidable to determine whether R equals
{a, b}∗ × {c}∗.

Let R ⊆ {a, b}∗ × {c}∗ be a rational set as recognized by
the finite state automaton A. The automaton A can be turned into
a valence system SA with states qf and q0, such that (qf ,m) is
reachable from (q0,1) if and only if m ∈ R. We now construct the
following valence system, which we call StsA :

SAq0 qf t s

a

b

c

In this new system, we can use the transitions on s to reach,
from (s,1) all and only the configurations (t,m) with m ∈
{a, b}∗ × {c}∗; moreover, from (q0,1) we can reach (t,m) if and
only if m ∈ R. We therefore obtain that StsA |= ∀c : statet(c) ∧
reach((s,1), c) → reach((q0,1), c) holds if and only if R =
{a, b}∗ × {c}∗. Note that the formula can be evaluated on any
valence system having three states named t, s and q0 respectively.

To establish the second claim, we reduce a variant of Post’s
Correspondence Problem (PCP). The initialized PCP that we rely
on is the following.

Theorem 4.3 (Harju et al. (1996)1). There is a fixed alphabet X , a
fixed alphabet Y , and fixed morphisms α, β : X∗ → Y ∗ such that
the following problem is undecidable: Given a word u ∈ Y ∗, is
there a word w ∈ X∗ satisfying α(w)u = β(w)?

We encode an instance of initialized PCP into checking a Σ1

formula over a valence system. The precise statement is in the next
lemma, a proof of which concludes the proof of Theorem 4.1.

Lemma 4.4. Take X,Y , α, and β from Theorem 4.3. There is a
fixed valence system Sαβ and a mapping from u ∈ Y ∗ to the Σ1

formula ϕu so that Sαβ |= ϕu iff α(w)u = β(w) for some w.

1 In the original result, the problem is finding w such that uα(w) = β(w).
Our variant is equivalent via word reversal.

We give a construction that depends on X , Y , α, and β. By
choosing the parameters appropriately, we arrive at the lemma.
We begin with the construction of Sαβ . The alphabets X and Y
can be assumed to be disjoint. We encode their union X ∪ Y =
{a1, . . . , an} as words over the alphabet {a, b}. (Remember that
we are sure to have the submonoid {a, b}∗ × {c}∗.) The encoding
is via the morphism γ : (X ∪ Y)∗ → {a, b}∗ with γ(ai) = abi.

We now show how to represent morphisms µ : X∗ → Y ∗ by
rational sets. In a first step, we represent µ asWµ ⊆ {a, b}∗×{c}∗.
The set encodes the pairs wµ(w) together with information about
the length of µ(w). Formally, we have

Wµ := {(γ(wµ(w)), ck) | w ∈ X∗, k = |µ(w)|}.

In a second step, and this is the point in the definition of Wµ, we
observe that the complement Wµ = ({a, b}∗ × {c}∗) \ Wµ is
rational and effectively computable from µ, due to Sakarovitch
(1992). Intuitively, since we have negation in the logic, it will not
matter whether we use Wµ or its complement to represent µ.

An automaton recognizing Wµ can be turned into a valence
system Sµ. To this end, we introduce distinguished states sµ and tµ
such that the tµ-configurations reachable from (sµ,1) are exactly
of the form (tµ,m) with m ∈Wµ. We can make sure tµ does not
have outgoing edges.

We construct Sαβ by taking the union of Sα and Sβ obtained as
above, and adding new states qa and qb as below:

Sαsα tα

Sβsβ tβ

qa qb

ac

b

b

Note that m ∈ Wα iff (tα,m) is not reachable from (sα,1), and
similar for (tβ ,m).

We now construct the formula ϕu for the given word u ∈ Y ∗.
To explain the idea, consider a configuration e1 = (tα, (v1, c

k1))
that is not reachable from (sα,1). With the previous note, this
means v1 = γ(wα(w)) and k1 = |α(w)| for some w ∈ X∗.
Assume e1 leads to e2 = (tβ , (v2, c

k2)) via a path that multiplies
γ(u) to the store. Then we have v2 = v1γ(u) = γ(wα(w)u) and
k2 = k1 + |u| = |α(w)u|. The relationship with the instance of
the initialized PCP problem is as follows. Configuration e2 is not
reachable from (sβ ,1) iff v2 = γ(w′β(w′)) and k2 = |β(w′)|
for some w′ ∈ X∗. But since we also have v2 = γ(wα(w)u) and
k2 = |α(w)u|, we can conclude w′ = w. We found a solution,
namely β(w) = α(w)u, to the initialized PCP instance.

Formula ϕu phrases the above setting in first-order logic. It is Σ1

as we only have to existentially quantify over e1 and e2. Assume for
the moment we have a predicate pathγ(u)(e1, e2) that guarantees
the following. If it holds for configurations e1 = (tα, (v1, c

k1)) and
e2 = (tβ , (v2, c

k2)), then v2 = v1γ(u) and k2 = k1 + |u|. With
this predicate, formula ϕu is

∃e1, e2 : statetα(e1) ∧ ¬reach((sα,1), e1)

∧ statetβ (e2) ∧ ¬reach((sβ ,1), e2)

∧ pathγ(u)(e1, e2) .

The argumentation in the previous paragraph derives the desired
equivalence in Lemma 4.4.

ti zi q lj li,j

ti,jci cj

ck

cicj ck cicj

ck
cj

Figure 3. Gadget supporting auxiliary properties in SN, for all
i, j, k such that {i, j, k} = {1, 2, 3}.

It remains to define the predicate pathγ(u)(e, e
′). Let γ(u) be

the word x1 . . . xn from {a, b}∗. The trick is to refer to the control
states qa and qb:

∃e1 . . . en+1 : step(e, e1) ∧ step(en+1, e
′) ∧ stateqa(en+1)

∧
∧n
i=1 step(ei, ei+1) ∧

∧n
i=1 stateqxi (ei).

It is readily checked that the predicate satisfies the requirements.

4.2 Undecidability: B2-Triangle
Suppose Γ contains a B2-triangle as an induced subgraph. Then,
MΓ contains B2 × Z or B3 as a submonoid. In any case, it contains
the monoid B × B × N as a submonoid. By making use of this
substructure, we construct a valence system SN over MΓ in which
the structure (N,+, ·) of the natural numbers with addition and
multiplication can be interpreted. The Σ1 fragment of arithmetic
with addition and multiplication is undecidable (Matiyasevich 1993),
which, as we show, implies undecidability of the Σ2 fragment
over MΓ.

Theorem 4.5. For the (fixed) valence system SN constructed below,
checking the Σ2 fragment of FO[R] is undecidable.

To derive the undecidability, it suffices to interpret the structure
(N,+, ·2) with addition and squaring (n 7→ n2). This is because the
identity 2ab = (a+b)2−a2−b2 allows us to express multiplication
in terms of squaring and addition. In the remainder of the section
we thus show how to set up SN so that addition and squaring can be
interpreted as first-order properties of reachable configurations.

We interpret the number n ∈ N as the configuration (q, n, 0, 0)
of the submonoid B × B × N of MΓ. So we fix a distinguished
control state q. We will refer to configurations (q, n1, n2, n3) as
q-configurations. For a q-configuration c = (q, n1, n2, n3), let the
projection πi(c) = ni return the value of the i-th counter with
i ∈ {1, 2, 3}. We write ci and c̄i for the increment and decrement
operation on the i-th counter with i ∈ {1, 2, 3}.

The valence system SN consists of the gadgets in Figs. 3 and 4
that we explain one by one. The first gadget to include in SN is
depicted in Fig. 3. To be precise, we add a copy of these states
and transitions for every combination i, j, k such that {i, j, k} =
{1, 2, 3}. (The state q is the distinguished one. It is shared among
the copies.) These transitions allow us to express useful auxiliary
properties of q-configurations. In what follows, we implicitly require
stateq(c) and/or stateq(d):

(i) We can express πi(c) = πj(c) with reach((ti,j , 0, 0, 0), c).

(ii) We can express πi(c) = 0 with reach((zi, 0, 0, 0), c).

(iii) We can express πi(c) = πi(d) with ∃e : reach((ti, 0, 0, 0), e)∧
statezi(e) ∧ reach(e, c) ∧ reach(e, d).

(iv) We can express πi(c) = πj(d) with ∃e : πi(c) = πi(e) ∧
πi(e) = πj(e) ∧ πj(e) = πj(d).

(v) We can express πi(c) ≤ πj(c) with reach((li,j , 0, 0, 0), c).

m m1

m2

m3 m5

q a c̄2c1

c1 c̄1c2c3

c̄2c̄2

c̄2c1

Figure 4. Gadget supporting addition and squaring in SN

(vi) We can express πi(c) ≤ πi(d) with ∃e : πi(e) ≤ πj(e) ∧
πi(e) = πi(c) ∧ πj(e) = πj(d).

Note how all these formulas belong to the Σ1 fragment of the
logic. Now we are ready to show how to interpret first-order logic
over the naturals.

Domain We represent the domain of the naturals with the configu-
rations satisfying stateq(x) ∧ π2(x) = 0 ∧ π3(x) = 0.

Addition To represent addition, we include in SN the state a and
the relevant portion of the gadget in Fig. 4, again sharing q with the
rest of the construction. We can then express π1(d) = π1(c)+π2(c)
with the Σ1 formula

∃e1 e2 d
′ : statea(e1) ∧ step(e1, c)

∧ statea(e2) ∧ reach(e1, e2)

∧ stateq(d
′) ∧ step(e2, d

′)

∧ π2(d′) = 0 ∧ π1(d) = π1(d′).

The trick is to add the second to the first counter of c, and make sure
the first counter of d matches this value. To be more precise, we
guess a configuration e1 that has the same counter values as c. This is
guaranteed by step(e1, c). Then we transfer the value of the second
counter in e1 to the first counter, using the path from e1 to e2. We
have to check that we have transferred the full counter value π2(e1).
To this end, we perform a transition from e2 to the q-configuration d′

and check π2(d′) = 0. Note that the auxiliary predicate π2(d′) = 0
can only be used, because d′ is a q-configuration. It cannot be used
for e2. All that remains is to compare the value of the first counter in
d to the first counter in d′, again using one of the auxiliary predicates.

With the above, we can interpret π1(e) = π1(c) + π1(d) in Σ1

with the formula ∃e′ : π1(e′) = π1(c)∧π2(e′) = π1(d)∧π1(e) =
π1(e′) + π2(e′).

Squaring To interpret squaring we add the transitions in Fig. 4 to
SN. We then express squaring in two steps.

First, we express π1(d) ≤ π1(c)2. We rely on the fact that
n2 =

∑n−1
i=0 2i+ 1. With this equation, it is sufficient to reach all

configurations (q, 0, 0, n′) where n′ ≤
∑n
i=1 2(n− i) + 1. Indeed,

the desired inequality can now be phrased as π1(d) being one of the
values n′. To compute the sum, we define a configuration c′, using
the interpretation for addition above, such that c′ = (q, 2n−1, 0, 0).
We write this property as init(c, c′).

The trick for making sure that n′ ≤
∑n
i=1 2(n − i) + 1 is the

following. We start with the value 2n − 1 in the first counter. We
think of the counter values as tokens that can be moved, so that we
have 2n − 1 tokens in the first component. Intuitively, we move
the counter value back and forth between the first and the second
component. This happens between the states m3 and m5. However,
each time we move the tokens from one component to the other, we
lose 2 tokens. Moreover, each time we move one token from the
first to the second component, we increment the third. Now if we
could make sure to move all tokens in every iteration, we would end
up with counter value

∑n
i=1(2i− 1) = n2 in the third component.

This we cannot guarantee, but we know that each time we take at
most the tokens that are there (recall that the first two components

of our storage are B, i.e. partially blind counters). Hence, we end up
with counter value at most n2 in the third component.

We return to our formula. Starting in configuration (m, 0, 0, 0)
we increment the first counter to value n1 and move to c1 =
(m1, n1, 0, 0). We have to ensure that n1 = 2n − 1. To this end,
we require the existence of a path from c1 via m2 to a configuration
c′ that satisfies init(c, c′). That the path is via m2 guarantees
n1 = π1(c′). That the init predicate holds yields π1(c′) = 2n− 1.
Together, this is the equality we need.

We have to do the summation. From c1 = (m1, n1, 0, 0), we
go to c3 = (m3, n1, 0, 0) from which we execute the m3-m5-loop.
Eventually, we leave the loop and get to d′ = (q, , , n′). Since this
is a q-configuration, we can use the auxiliary predicates and require
π1(d) = π3(d′). The above argumenation on the construction of
the gadget together with the fact that n1 = 2n− 1 guarantees that
we leave the loop with n′ ≤

∑n
i=1 2(n− i) + 1 = n2.

Formally, we interpret π1(d) ≤ π1(c)2 with the Σ1 formula
ϕ≤sq(c, d) defined as follows:

∃c′ d′ c1 c2 c3 : init(c, c′) ∧ stateq(d
′) ∧ π1(d) = π3(d′)

∧ reach((m, 0, 0, 0), c1) ∧ statem1(c1)

∧ step(c1, c2) ∧ statem2(c2) ∧ step(c2, c
′)

∧ step(c1, c3) ∧ statem3(c3) ∧ reach(c3, d
′) .

In Appendix E, we elaborate on the correctness of the encoding.
To complete the construction we express π1(d) = π1(c)2 in

Π1. We state that d is the q-configuration with the maximal value
in the first counter that is below π1(c)2. Formally, for every q-
configuration e we either have π1(e) > π1(c)2 or π1(e) ≤ π1(d).
The corresponding Π1 formula is

ϕsq(c, d) := ϕ≤sq(c, d) ∧ ∀e : ¬ϕ≤sq(c, e) ∨ π1(e) ≤ π1(d) .

Formula ϕsq(c, d) is the needed interpretation of π1(d) = π1(c)2.

If we now take a Σ1 formula over (N,+, ·) and express addition
as above and multiplication via ϕsq(·, ·) and the identity 2ab =
(a + b)2 − a2 − b2, we arrive at a Σ2 formula. On the whole, we
obtain the following result.

Lemma 4.6. Assume Γ is not B2-triangle-free and construct the
(fixed) valence system SN over MΓ above. For each first-order
formula ϕ over the naturals with addition and multiplication, we
can produce a ϕ′ over the configuration graph so that

(N,+, ·) |= ϕ iff SN |= ϕ′.

Moreover, if ϕ belongs to the Σ1 fragment, then ϕ′ is in Σ2.

To deduce undecidability of the Σ2 fragment of FO[R] for a
fixed valence system, note that the Σ1 fragment of arithmetic with
addition and multiplication is undecidable (Matiyasevich 1993).
This concludes the proof of Theorem 4.5.

5. Discussion and Future Work
We provided a sufficient and necessary condition on a graph Γ such
that FO[R] for valence systems over the monoid MΓ is decidable.
This result generalizes previous results on verification of infinite-
state systems and provides a full characterization of the shape
of the storage mechanisms enjoying decidability of FO[R]. The
techniques employed in the proofs are robust enough to support
extensions. For example, the results would still hold when adding
a finite input alphabet X to valence systems and adding labeled
predicates stepx(·) with x ∈ X and reachR(·, ·) for a regular
language R ⊆ X∗.

As future work, it could be interesting to study whether sim-
ilar characterizations exist for ordinary first-order logic or richer
branching-time logics, such as the modal µ-calculus.

References
P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular

model checking. In CONCUR, volume 3170 of LNCS, pages 35–48.
Springer, 2004.

M. Benois. Parties rationnelles du groupe libre. CR Acad. Sci. Paris, 269:
1188–1190, 1969.

A. Blumensath and E. Grädel. Automatic structures. In LICS, pages 51–62.
IEEE, 2000.

B. Boigelot and P. Wolper. On the expressiveness of real and integer
arithmetic automata. In ICALP, volume 1443 of LNCS, pages 152–163.
Springer, 1998.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model-checking. In CONCUR, volume 1243 of
LNCS, pages 135–150. Springer, 1997.

J. R. Büchi. Weak second-order arithmetic and finite automata. Math. Logik
und Grundlagen der Mathematik, 6:66–92, 1960.

P. Buckheister and G. Zetzsche. Semilinearity and context-freeness of
languages accepted by valence automata. In MFCS, volume 8087 of
LNCS, pages 231–242. Springer, 2013.

A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms
of logic and higher-order pushdown automata. In FSTTCS, volume 2914
of LNCS, pages 112–123. Springer, 2003.

D. Caucal. On infinite transition graphs having a decidable monadic theory.
In ICALP, volume 1099 of LNCS, pages 194–205. Springer, 1996.

T. Colcombet. On families of graphs having a decidable first order theory
with reachability. In ICALP, volume 2380 of LNCS, pages 98–109.
Springer, 2002.

P. Darondeau, S. Demri, R. Meyer, and C. Morvan. Petri net reachability
graphs: Decidability status of FO properties. In FSTTCS, volume 13 of
LIPIcs, pages 140–151. Schloss Dagstuhl, 2011.

C. Elgot and J. E. Mezei. On relations defined by generalized finite automata.
IBM Journal of Research and Development, 9(1):47–68, Jan 1965.

T. Harju, J. Karhumäki, and D. Krob. Remarks on generalized post
correspondence problem. In STACS, volume 1046 of LNCS, pages 39–48.
Springer, 1996.

O. H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM (JACM), 25(1):116–133, 1978.

B. Khoussainov and A. Nerode. Automatic presentations of structures. In
LCC: International Workshop on Logic and Computational Complexity,
volume 960 of LNCS, pages 367–392. Springer, 1995.

B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in
automatic structures. In STACS, pages 440–451. Springer, 2004.

J. Leroux and G. Sutre. On flatness for 2-dimensional vector addition
systems with states. In CONCUR, volume 3170 of LNCS, pages 402–416.
Springer, 2004.

D. Lugiez and P. Schnoebelen. Decidable first-order transition logics for PA-
processes. In ICALP, volume 1853 of LNCS, pages 342–353. Springer,
2000.

Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, 1993.
C.-H. L. Ong. On model-checking trees generated by higher-order recursion

schemes. In LICS, pages 81–90. IEEE Computer Society, 2006.
R. J. Parikh. On context-free languages. Journal of the ACM (JACM), 13(4):

570–581, 1966.
J. Sakarovitch. The “last” decision problem for rational trace languages. In

LATIN, volume 583 of LNCS, pages 460–473. Springer, 1992.
S. Schulz. First-order logic with reachability predicates on infinite systems.

In FSTTCS, volume 8 of LIPIcs, pages 493–504. Schloss Dagstuhl, 2010.
I. Walukiewicz. Pushdown processes: Games and model checking. In CAV,

volume 1102 of LNCS, pages 62–74. Springer, 1996.
G. Zetzsche. Silent transitions in automata with storage. In ICALP, volume

7966 of LNCS, pages 434–445. Springer, 2013.
G. Zetzsche. The emptiness problem for valence automata or: Another

decidable extension of Petri nets. In Reachability Problems, volume 9328
of LNCS, pages 166–178. Springer, 2015.

A. Proof of Theorem 3.2
Suppose the monoidM has an encoding θ : L→R1(M), L ⊆ Y ∗,
with automatic rational multiplication and let S = (Q,M,E) be a
valence system over M . Since M is finitely generated, we have a
surjective morphism [·] : X∗ →M .

The reachability structure for S has the domain D = Q ×
R1(M), so we assume Q ∩ Y = ∅ and take the regular language
QL = {qx | q ∈ Q, x ∈ L} to represent D. As expected, the
bijection is then η : QL → D with η(qx) = (q, θ(x)), where
q ∈ Q and x ∈ L. We have to verify that each of the relations in the
reachability structure have regular encodings.

(i) The stateq(·) predicate. Clearly, the set of its encodings is qL,
which is regular.

(ii) The rechability predicate reach(·, ·). For each pair p, q ∈ Q,
the set Rpq of all m ∈ M such that (p, 1) →∗S (q,m) is a
rational set: Take the automatonAwith state setQ and whenever
there is an edge (r,m, s) in S, with m = [w], create an edge
labeled w between r and s. This automaton clearly satisfies
[Lpq(A)] = Rpq , so that R is rational. The word relation
corresponding to reach(·, ·) can now be written as⋃

p,q∈Q

{(px, qy) ∈ QL×QL | ∃r ∈ Rpq : θ(x)r = θ(y)}

=
⋃

p,q∈Q

{(px, qy) ∈ QL×QL | (θ(x), θ(y)) ∈ Rpq}

=
⋃

p,q∈Q

{(p, q)} ·R�pq,

which is regular (Fact 3.11).

(iii) The one-step reachability relation step(·, ·). Here, we can pro-
ceed as in the previous case, except that instead of the above
Rpq , we take the finite set of all m ∈ M for which there is a
transition (p,m, q) in S. Note that every finite set is rational.

(iv) Constants. Again, we use the fact that one-element subsets of
M are rational. Hence, given a state q ∈ Q and a word w ∈ X∗
such that [w] ∈ R1(M), we can clearly compute the word
x ∈ L such that θ(x) = [w] and thus η(qx) = (q, [w]).

B. Proof of Lemma 3.10
Proof. The “if” statement can be checked straightforwardly. We
prove the “only if” direction. Let i ∈ [0,min(m,n)] be maximal
with the property that for all j ∈ [1, i], we have [um−j+1vj] = 1.
We distinguish three cases.

• Suppose i = min(m,n) and m ≤ n. We claim that we are
in situation (i) above. The first condition is clearly fulfilled.
Moreover, the equations [um−j+1vj] = 1 for j ∈ [1,m] mean
that

[w1 · · ·wk] = [uv] = [u1 · · ·umv1 · · · vn] = [vm+1 · · · vn].

Hence, Fact 3.8 yields the second and third condition.
• Suppose i = min(m,n) and m > n. We claim that we are

in situation (ii) above. This can be shown analogously to the
second case.
• Suppose i < min(m,n). We claim that we are in situation (iii)

above. The first three conditions are clearly met. Furthermore,
the equations [um−j+1vj] = 1 for j ∈ [1, i] imply that

[w1 · · ·wk] = [uv] = [u1 · · ·um−ivi+1 · · · vn]

and since [um−ivi+1] 6= 1 by maximality of i, the word
u1 · · ·um−ivi+1 · · · vn is reduced. According to Fact 3.8, this
entails the last three conditions.

C. Proof of Lemma 3.12
We begin with the identity R. = σ(K). Suppose w ∈ R. and
let w = w1 · · ·wn be the block decomposition. Then θ(w) =
θ(w1) · · · θ(wn) and θ(wi) 6= 1 for i ∈ [1, n]. This means there
is a word v ∈ X∗ with block decomposition v = v1 · · · vn such
that [vi] = θ(wi) for i ∈ [1, n]. Note that v is reduced. Since
[v] = θ(w) ∈ R, there is a word u ∈ L(A) with [v] = [u].
Because of our saturation, we may assume that u is reduced. If
u = u1 · · ·um is its block decomposition, then this implies m = n
and [ui] = [vi] for i ∈ [1, n]. We distinguish two cases.

• If n = 0, then we have [v] = [u] = 1 and thus w = θ−1([v]) =
ε. On the other hand, this means 1 ∈ R and therefore ε ∈ K.
Thus, we have w = ε ∈ σ(K).
• Suppose n > 0 and consider a computation of A that reads
u = u1 · · ·un:

q0
u1−→ q1

u2−→ · · · un−−→ qn.

Moreover, let ij ∈ {0, 1} be the number with uj ∈
X∗i for j ∈ [1, n]. Then, clearly, the word x =
(q0, i1, q1)(q1, i2, q2) · · · (qn−1, in, qn) is contained in K.
Moreover, since [uj] = [vj] = θ(wj) and [uj] ∈
[Lpq(A|ij)] = Rpijq , we have wj ∈ σ((qj−1, ij , qj)) (recall
thatwj 6= ε because θ(wj) 6= 1). This meansw = w1 · · ·wn ∈
σ(x) ⊆ σ(K).

This proves R. ⊆ σ(K). We turn to the converse inclusion. Let
w ∈ σ(K). If w = ε, then ε ∈ K and hence 1 ∈ R by definition
of K. This means w = ε ∈ R.. Suppose w 6= ε and let x =
(p0, i1, p1)(p1, i2, p2) · · · (pn−1, in, pn) ∈ K such that w ∈ σ(x).
This means w = w1 · · ·wn such that wj ∈ σ((pj−1, ij , pj)). This
implies that for each j ∈ [1, n], we have θ(wj) = [uj] for some
uj ∈ Lpj−1pj (A|ij). Then the word u = u1 · · ·un is accepted by
A and satisfies [u] = θ(w). Since this means θ(w) = [u] ∈ R, we
have w ∈ R.. This completes the proof of R. = σ(K).

We now turn to the identity R/ = τ(Krev). Let w ∈ R/ and
let w = w1 · · ·wn be the block decomposition. Then θ(w) =
θ(w1) · · · θ(wn) and θ(wi) 6= 1 for i ∈ [1, n]. This means there
is a word v ∈ X∗ with block decomposition v = v1 · · · vn such
that [vi] = θ(wi) for i ∈ [1, n]. Note that v is reduced. Since there
is an r ∈ R with [v]r = θ(w)r = 1, there is a word u ∈ L(A)
with [u] = r and thus [vu] = [v][u] = 1. Since we saturated
A, we may assume that u is reduced. Let u = u1 · · ·um be its
block decomposition. Now we have u and v reduced and we know
[vu] = 1 = [ε]. The words v and u clearly have to be merging,
since otherwise the equality [vu] = [ε] would contradict Fact 3.8.
We can therefore apply Lemma 3.10. Note that the only case where
the resulting word can be empty is case (i). This implies that m = n
and [vn−j+1uj] = 1 for all j ∈ [1, n]. As above, we distinguish
two cases.

• If n = 0, then we have [v] = [u] = 1 and thus w = θ−1([v]) =
ε. On the other hand, this means 1 ∈ R and therefore ε ∈ Krev.
Thus, we have w = ε ∈ τ(Krev).
• Suppose n > 0 and consider a computation of A that reads
u = u1 · · ·un:

q0
u1−→ q1

u2−→ · · · un−−→ qn.

Moreover, let ij ∈ {0, 1} be the number with uj ∈
X∗i for j ∈ [1, n]. Then, clearly, the word x =
(qn−1, in, qn)(qn−2, in−1, qn−1) · · · (q0, i1, q1) is contained in
Krev. Moreover, since θ(wn−j+1)[uj] = [vn−j+1][uj] = 1
and [uj] ∈ [Lpq(A|ij)] = Rpijq , we have wn−j+1 ∈
τ((qj−1, ij , qj)) for all j ∈ [1, n] (recall that wn−j+1 6= ε
because θ(wn−j+1) 6= 1). In other words, we have wj ∈

τ((qn−j , in−j+1, qn−j+1) for all j ∈ [1, n]. This means w =
w1 · · ·wn ∈ τ(x) ⊆ τ(Krev).

This proves R. ⊆ τ(Krev). Now suppose w ∈ τ(Krev). Again,
w = ε clearly implies ε ∈ K and hence 1 ∈ R and thus
w = ε ∈ R.. Suppose w 6= ε. Then there is an x =
(qn−1, in, qn)(qn−2, in−1, qn−1) · · · (q0, i1, q1) such that w =
w1 · · ·wn with

wj ∈ τ((qn−j , in−j+1, qn−j+1)).

This implies that for each j ∈ [1, n], there is a

uj ∈ Lqn−jqn−j+1(A|in−j+1)

with θ(wj)[uj] = 1. Therefore, if we set u = un · · ·u1, then we
have u ∈ L(A) and thus [u] ∈ R. Hence

θ(w)[u] = θ(w1) · · · θ(wn)[un] · · · [u1] = 1

and thus w ∈ R/. This completes the proof of R/ = τ(Krev).

D. Proof of Theorem 3.7
It remains to be shown that R� = T1 ∪ T2 ∪ T3 ∪ T4. We
begin with the inclusion “⊆”, so we assume that x, y, z ∈ L
with θ(x)θ(y) = θ(z) for some θ(y) ∈ R. We want to show that
(x, z) ∈ T1 ∪ T2 ∪ T3 ∪ T4. There are reduced words u,w ∈ X∗
and v ∈ L(A) with [u] = θ(x), [v] = θ(y), and [w] = θ(z) (recall
that A is saturated). Let

u = u1 · · ·um, x = x1 · · ·xm,
v = v1 · · · vn, y = y1 · · · yn,
w = w1 · · ·wk, z = z1 · · · zk,

be block decompositions (note that since u, v, and w are reduced,
they have the same number of blocks as x, y, and z, respectively).
Then we have [ui] = θ(xi), [vi] = θ(yi), and [wi] = θ(zi) for all
possible indices i. Since v ∈ L(A), there is a computation

q0
v1−→ q1

v2−→ q2
v3−→ · · · vn−−→ qn (8)

with qn = f in A.
Since [u][v] = [w], we can apply Lemma 3.10, which leaves us

with four cases.

(i) Non-merging. If u and v are non-merging, then w = uv and
hence z = xy. Note that y ∈ Wq0,f,1−` for some ` ∈ {0, 1},
whether y is empty or not. Then, since u and v are non-merging,
we have (x, x) ∈ E`. Thus, (x, z) = (x, xy) ∈ T1.

(ii) The suffix case (case (i) of Lemma 3.10). We have m ≤
n and [um−j+1vj] = 1 for j ∈ [1,m]. This means
that θ(x)θ(y1 · · · ym) = 1 and thus x ∈ R/q0,qm since
θ(y1 · · · ym) ∈ Rq0,qm .
Note that ym+1 · · · yn ∈ R.qm,f . There is clearly an ` ∈ {0, 1}
such that x ∈ I ′q0,qm,` and ym+1 · · · yn ∈ Wqm,f,1−`. Hence,
we have

(x, z) = (x, ym+1 · · · yn) ∈ T2.

(iii) The prefix case (case (ii)). We have m > n and and
[um−j+1vj] = 1 for j ∈ [1, n]. This means that θ(x)θ(y) =
θ(x1 · · ·xm−n) and hence z = x1 · · ·xm−n. Since m > n,
z is non-empty, so there is a unique ` ∈ {0, 1} with (z, z) ∈
E`. Since [um−n+1 · · ·um][v] = 1 and [v] ∈ R, we have
xm−n+1 · · ·xm ∈ Iq0,f,`. Therefore,

(x, z) = (x1 · · ·xm−nxm−n+1 · · ·xn, x1 · · ·xm−n) ∈ T3.

(iv) The mixed case. We have an i ∈ [0,min(m,n)] so that
[um−j+1vj] = 1 for j ∈ [1, i] and [um−ivi+1] 6= 1. From

conditions (iii)d and (iii)f, Fact 3.8, and the injectivity of θ, we
may conclude

z1 · · · zm−i−1 = x1 · · ·xm−i−1,

zm−i+1 · · · zk = yi+2 · · · yn.
Let ` ∈ {0, 1} be the type of the block vi+1 (and hence of um−i
and xm−i). Then xm−i−1 is of type 1− ` and thus

(x1 · · ·xm−i−1, z1 · · · zm−i−1) ∈ E1−`. (9)

Note that since we have the computation (8), if we set p = qi
and q = qi+1, then we have [vi+1] ∈ Rp,q,`. Since

θ(xm−i)[vi+1] = [um−ivi+1] = [wm−i] = θ(zm−i)

we have
(xm−i, zm−i) ∈ Pp,q,` (10)

Furthermore, [v1 · · · vi] ∈ Rq0,p,1−` and

θ(xm−i+1 · · ·xm)[v1 · · · vi]
= [um−i+1 · · ·um][v1 · · · vi] = 1,

which together implies

xm−i+1 · · ·xm ∈ Iq0,p,1−`. (11)

Finally, we have [vi+2 · · · vn] ∈ Rp,f,1−` and hence

zm−i+1 · · · zk = yi+2 · · · yn ∈Wq,f,1−`. (12)

Together, Eqs. (9) to (12) imply that (x, z) ∈ T4.

This proves that R� ⊆ T1 ∪ T2 ∪ T3 ∪ T4.
Suppose (x, z) ∈ T1. This means we have z = xy, x is either

empty or ends in an `-block, and y ∈Wq0,f,1−`. In particular, we
have θ(y) ∈ R, so that there is a reduced word v ∈ L(A) with
[v] = θ(y). Let u,w ∈ X∗ be reduced words with [u] = θ(x) and
[w] = θ(z). Since y is empty or begins in a block of type 1 − `,
the same is true of v. For similar reasons, u is empty or ends in an
`-block. Hence, u and v are non-merging and we have

θ(x)θ(y) = [u][v] = [z] = θ(z),

which confirms (x, z) ∈ R�.
Now assume (x, z) ∈ T2. Then there is an ` ∈ {0, 1} and

a p ∈ Q such that x ∈ I ′q0,p,` and z ∈ Wp,f,1−`. The former
yields an element r ∈ Rq0,p with θ(x)r = 1 and the latter implies
θ(z) ∈ Rp,f,1−`. Since A is saturated, we can therefore pick
reduced words v ∈ Lq0,p(A) and w ∈ Lp,f (A) such that [v] = r
and [w] = θ(z). Then we have vw ∈ L(A) and thus [vw] ∈ R.
Therefore,

θ(x)[vw] = (θ(x)r)θ(z) = θ(z)

and thus (x, z) ∈ R�.
Suppose (x, z) ∈ T3. Then we can decompose x = zx′ so

that x′ ∈ Iq0,f,1−`. The latter means that there is an r ∈ R with
θ(x′)r = 1. Moreover, the last block of z and the first block of x′

are of different types; or one of the words is empty. This implies
θ(zx′) = θ(z)θ(x′) and hence

θ(x)r = θ(zx′)r = θ(z)θ(x′)r = θ(z)

meaning (x, z) ∈ R�.
Finally, let (x, z) ∈ T4. Then there are ` ∈ {0, 1}, p, q ∈ Q,

and words x1, x2, x3, z1, z2, z3 ∈ Y ∗ such that x = x1x2x3,
z = z1z2z3, x1 = z1, (x2, z2) ∈ R�p,q , x3 ∈ R/q0,p, and
z3 ∈ R.q,f . Moreover, x2, z2 are `-blocks and we know that xi
and xi+1 as well as zi and zi+1 are non-merging for i ∈ {1, 2} and
that θ(x2), θ(z2) ∈M`.

We want to construct an r ∈ R with θ(x)r = θ(z). We shall
construct an encoding for r in the form y1y2z3 such that in this
decomposition, each factor is non-merging with the next. Since

x3 ∈ R/q0,p, there is a y1 ∈ R.q0,p with θ(x3)θ(y1) = 1. Observe
that x3 is either empty or begins with a (1− `)-block. Hence, y1 is
either empty or ends with an 1 − `-block. Since (x2, z2) ∈ R�p,q ,
we can find a y2 ∈ R.p,q with θ(x2)θ(y2) = θ(z2). This means
θ(y2) ∈ M`, so that y1 and y2 are non-merging. Moreover, z3 is
empty or begins with a (1 − `)-block, so that also y2 and z3 are
non-merging.

We have seen that y1 ∈ R.q0,p, y2 ∈ R.p,q , and z3 ∈ R.q,f .
Together with the non-merging relationships, this implies

θ(y1y2z3) = θ(y1)θ(y2)θ(z3) ∈ R
and furthermore

θ(x)θ(y) = θ(x1x2x3)θ(y1y2z3)

= θ(x1)θ(x2)θ(x3)θ(y1)θ(y2)θ(z3)

= θ(x1)θ(x2)θ(y2)θ(z3)

= θ(x1)θ(z2)θ(z3)

= θ(z1)θ(z2)θ(z3)

= θ(z),

confirming (x, z) ∈ R�. This proves R� = T1 ∪ T2 ∪ T3 ∪ T4.

E. Correctness of squaring gadget
Let c1 = (m1, 2n − 1, 0, 0), as guaranteed by init(c, c′),
step(c1, c2), and step(c2, c

′). Any run going from c1 to a q-
configuration passing through an m3-configuration will be of the
following shape: After a first transition c1 → (m3, 2n − 1, 0, 0),
there will be a number of executions of the m3-m5-loop. At the i-th
execution, the self loops at m3 and m5 are fired ki and hi times,
respectively. Let us write the configurations before the i-th m3-m5-
loop as (m3, xi, yi, zi). The cumulative effect of an execution of
the m3-m5-loop is then (c̄1c2c3)ki c̄2c̄2(c̄2c1)hi , with ki ≤ xi and
hi ≤ yi + ki − 2. We obtain that xi+1 + yi+1 = xi + yi − 2, so
xi+1 ≤ xi + yi − 2. The consequence of this estimation is that
(i) the maximum number of iterations is given by b(x0 + y0)/2c
and (ii) at each iteration we add ki (so, at most xi) to zi. Hence,
starting from (m3, 2n − 1, 0, 0) (x0 = 2n − 1, y0 = 0, z0 = 0,
and thus b(x0 + y0)/2c = n − 1) we can reach precisely those
q-configurations d′ where π3(d′) is any number between 0 and n2.

