Concurrency theory Exercise sheet 11

Sebastian Muskalla, Prakash Saivasan

TU Braunschweig Winter term 2017/18

Out: January 17 Due: January 23

Submit your solutions until Tuesday, January 23, during the lecture.

Exercise 1

Consider two traces $\tau = \alpha.a.b.\gamma$ and $\tau' = \alpha'.a.\beta.b.\gamma'$ where thread(*c*) \neq thread(*a*) and thread(*c*) \neq thread(*b*) for all *c* in β . Prove the following:

If
$$a \to_{\mathsf{hb}} b$$
 in $\mathsf{Tr}_{\mathsf{TSO}}(\tau)$ then $a \to_{\mathsf{hb}}^+ b$ in $\mathsf{Tr}_{\mathsf{TSO}}(\tau')$

Exercise 2

Consider the following program implementing an instance of the **non-blocking write** protocol by H. Kopetz and J. Reisinger:

 $\begin{array}{lll} \ell_1: & h \leftarrow \textit{mem}[g]; \ \text{goto} \ \ell_2 \\ \ell_2: & \textit{mem}[g] \leftarrow h+1; \ \text{goto} \ \ell_3 \\ \ell_3: & \textit{mem}[x] \leftarrow 42; \ \text{goto} \ \ell_4 \\ \ell_4: & \textit{mem}[g] \leftarrow h+2; \ \text{goto} \ \ell_5 \\ \ell_5: & r \leftarrow \textit{mem}[g]; \ \text{goto} \ \ell_6 \\ \ell_6: & v \leftarrow \textit{mem}[x]; \ \text{goto} \ \ell_7 \\ \ell_7: & s \leftarrow \textit{mem}[g]; \ \text{goto} \ \ell_8 \\ \ell_8: & \text{assert} \ r \neq s \lor r \ \text{is} \ \text{odd}; \ \text{goto} \ \ell_5 \\ \ell_8: & \text{assert} \ r = s \land r \ \text{is} \ \text{even}; \end{array} \right] \ \begin{array}{l} \ell_9: & h \leftarrow \textit{mem}[g]; \ \text{goto} \ \ell_{10} \\ \ell_{10}: & \textit{mem}[g] \leftarrow h+1; \ \text{goto} \ \ell_{11} \\ \ell_{11}: & \textit{mem}[x] \leftarrow 43; \ \text{goto} \ \ell_{12} \\ \ell_{12}: & \textit{mem}[g] \leftarrow h+2; \end{array}$

Note that there are two instructions labeled by ℓ_8 . Assume that when executing goto ℓ_8 , the execution non-deterministically jumps to any of them.

Prove that the program is not robust under TSO. Initially assume mem[g] = 0 and $g \neq x$.

Exercise 3

Consider a computation $\tau = \tau_1.act_1.\tau_2 \in C_{SC}(P)$ where for all act_2 in τ_2 we have $act_1 \to_{hb}^* act_2$. Show that the computation $\tau.act$ satisfies $act_1 \to_{hb}^* act$ if and only if

- 1. there is an action act_2 in $act_1.\tau_2$ with $thread(act_2) = thread(act)$, or
- 2. act is a load whose address is stored in $act_1.\tau_2$, or
- 3. act is a store (with issue) whose address is loaded or stored in $act_1.\tau_2$.