Concurrency theory Exercise sheet 10

Sebastian Muskalla, Prakash Saivasan

Out: January 10

Due: January 16

Submit your solutions until Tuesday, January 16, during the lecture.

Exercise 1: Bounded round reachability

Describe the general case for the bounded round TSO-reachability problem that was described in the lecture. Let *P* be a parallel program with $n \in \mathbb{N}$ threads and a bound $k \in \mathbb{N}$ on the number of rounds that each thread can make. Explain how to construct a program *P'* such that for each program counter *pc* in *P* and its equivalent program counter *pc'* in *P'*, the following holds.

pc is TSO-reachable in P iff pc' is SC-reachable in P'.

Note: You do not have to give a formal construction. It is sufficient to list the additional global variables needed, explain their meaning and how they are used by P'.

Exercise 2: Trace robustness strictly implies reachability robustness

Prove the following Lemma from the lecture.

a) If $Tr_{TSO}(P) = Tr_{SC}(P)$ for some program, then $Reach_{TSO}(P) = Reach_{SC}(P)$.

Here, Reach_{TSO}(*P*) = { $pc \mid cf_0 \rightarrow^*_{TSO} (pc, val, buf)$ with $buf(i) = \varepsilon$ for all *i*} and Reach_{SC}(*P*) is obtained by restricting the definition to computations in which each issue (STORE) is followed by the store (UPDATE).

b) The reverse implication does not hold.

Remark: Relations

Recall the following basic definitions for relations.

Let *N* be a set and let $\leq \subseteq N \times N$ be a relation.

Recall that *N* is **reflexive** if $x \le x$ for all $x \in N$. It is **antisymmetric** if $x \le y$ and $y \le x$ imply x = y (for all $x, y \in N$). It is **transitive** if $x \le y$ and $y \le z$ imply $x \le z$ (for all $x, y, z \in N$). If all three properties hold, we call \le a **partial order**.

A partial order is called **total** (or linear) if any two elements are comparable, i.e.

 $\forall x, y \in N: x \leqslant y \text{ or } y \leqslant x.$

We let \leq^* denote the reflexive-transitive closure of \leq , the smallest subset of $N \times N$ that contains \leq and is reflexive and transitive.

We may see (N, \leq) as a directed graph. We call \leq **acyclic** if this graph does not contain a non-trivial cycle $x_0 \leq x_1 \leq \ldots \leq x_m \leq x_0$. (Cycles of the shape $x_0 \leq x_0$ are trivial.)

Exercise 3: Relations

Let *N* be a **finite** set and let $\leq \subseteq N \times N$ be a relation.

- a) Explain how to construct \leq * from \leq within a finite number of steps.
- b) Prove that \leq^* is a partial order (i.e. antisymmetric) if and only if \leq is acyclic.
- c) Now assume that \leq_{po} is some partial order. Prove that there is a total order $\leq_{to} \subseteq N \times N$ containing \leq_{po} , i.e. $\leq_{po} \subseteq \leq_{to}$.
- d) (Bonus exercise, not graded.) Do b) and c) still hold if *N* is infinite?

Exercise 4: Shasha and Snir

Prove the Lemma by Shasha and Snir:

A trace $Tr(\tau) \in Tr_{TSO}(P)$ is in $Tr_{SC}(P)$ if and only if its happens-before relation \rightarrow_{hb} is acyclic.

Proceed as follows:

- a) Show that for traces of SC computations, \rightarrow_{hb} is necessarily acyclic.
- b) Show how from a trace with acyclic \rightarrow_{hb} , one can construct an SC computation τ' with $Tr(\tau') = Tr(\tau)$. *Hint*: Use Exercise 3.