Concurrency theory Exercise sheet 9

Sebastian Muskalla, Prakash Saivasan

Due: January 9

Out: December 21

Submit your solutions until Tuesday, January 9, during the lecture.

Exercise 1: Sequential consistency

In the memory model **SC** (sequential consistency), we assume that access to the main memory is atomic. More formally, the transition relation \rightarrow_{SC} is defined similar to \rightarrow_{TSO} , but the rule (STORE) is replaced by the rule (SCSTORE).

 $(\text{SCSTORE}) \xrightarrow{\langle \text{inst} \rangle = \text{mem}[r] \leftarrow r', a = val(r), v = val(r')}_{(pc, val, buf) \longrightarrow_{\text{SC}} (pc', val[a := v], buf)}$

Note that the buffer will never be used, i.e. early reads and updates from the buffer never occur.

- a) Explain the following statement and argue that it is true: There is a correspondence between all executions of a multi-threaded program under SC and the single execution of all single-threaded programs obtained by shuffling the source code of the threads.
- b) Let *prog* be a program. We define fency(*prog*) as the program that we obtain from *prog* by inserting an mfence instruction directly after every store operation (i.e. mem[r] $\leftarrow r'$).

Argue whether the following statement is correct: The program *prog* executed under SC has the same behavior as fency(*prog*) does under TSO.

Here, you may use control-state reachability (see below) as a suitable definition for "having the same behavior".

Exercise 2: SC reachability

The (control-state) reachability problem for SC is defined as follows.

SC-Reachability

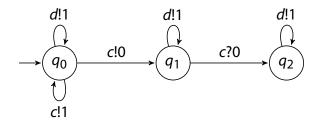
Given: Program *prog* over DOM, program counter *pc* **Decide:** Is there a computation $cf_0 \rightarrow^*_{SC}$ (*pc*, *buf*, *val*) for some *buf*, *val*?

- a) Reduce SC-Reachability to Petri net coverability. Explain which places are needed by the net, and how each instruction in the program can be simulated by Petri net transitions.
- b) Conclude that SC-Reachability can be solved in PSPACE. Here, you may assume that the size of DOM is encoded in unary.

We wish all of you a Merry Christmas ...

Exercise 3: Expand, Enlarge and Check

Consider the following lossy channel system LCS:



together with $\Gamma = \{(q_0, \varepsilon), (q_1, \varepsilon), (q_2, \varepsilon)\}$ and limit domains

$$L_{0} = \{ \top, (q_{0}, {\binom{1^{*}}{\epsilon}}), (q_{0}, {\binom{\epsilon}{1^{*}}}), (q_{1}, {\binom{(0+1)^{*}}{0^{*}.1^{*}}}), (q_{1}, {\binom{(0+1)^{*}}{1^{*}.0^{*}}}) \}$$

$$L_{1} = L_{0} \cup \{ (q_{0}, {\binom{1^{*}}{1^{*}}}), (q_{1}, {\binom{1^{*}.(0+\epsilon)}{1^{*}}}), (q_{2}, {\binom{\epsilon}{1^{*}}}) \}.$$

- a) Compute *Over*(*LCS*, Γ , L_0). Provide an execution tree.
- b) Compute *Over*(*LCS*, Γ , L_1). Argue why configuration $(q_2, \begin{pmatrix} 1 \\ \varepsilon \end{pmatrix})$ is not coverable.

Exercise 4: Ideals

Let (C, \leq) be a wqo. An **ideal** (with respect to \leq) is a set $\mathcal{I} \subseteq C$ that is non-empty, downward closed and directed. Directed means that for any $x, y \in \mathcal{I}$, there is $z \in \mathcal{I}$ such that $x \leq z, y \leq z$.

a) Let (A, \leq_A) , (B, \leq_B) be words and let $(A \times B, \leq_X)$ be the product words. Show that a set $\mathcal{J} \subseteq A \times B$ is an ideal (wrt. $A \times B$) if and only if it is of the shape $\mathcal{J} = \mathcal{I}_A \times \mathcal{I}_B$ where $\mathcal{I}_A \subseteq A$ and $\mathcal{I}_B \subseteq B$ are ideals (wrt. \leq_A resp. \leq_B).

Hint: For one direction, prove that $\mathcal{J} = \text{proj}_A(\mathcal{J}) \times \text{proj}_B(\mathcal{J})$, where proj denotes the projection (e.g. $\text{proj}_A(a, b) = a$).

- b) Show that the ideals of (\mathbb{N}, \leq) are \mathbb{N} itself and the sets of the shape $n \downarrow$ for $n \in \mathbb{N}$. Use a) to conclude that the ideals of (\mathbb{N}^d, \leq_d) are exactly the sets of the shape $M_{\omega} \downarrow$, where $M_{\omega} \in \mathbb{N}_{\omega}^d = (\mathbb{N} \cup \{\omega\})^d$ is a generalized marking (as they occur in the coverability graph).
- c) Prove that the set of ideals is always an adequate domain of limits. You may use the following fact without proof: Any downward-closed set $D \subseteq C$ has a finite ideal decomposition, i.e. a finite set of ideals $\mathcal{I}_0, \ldots, \mathcal{I}_k$ such that $D = \bigcup_i \mathcal{I}_i$.

Remark: In fact, it is also effective in many cases. For example, for LCS resp. the Higman's subword ordering, the set of products (as in the definition of *sres*) is the set of ideals and also an effective adequate domain of limits.