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Submit your solutions until Tuesday, January 9, during the lecture.

Exercise 1: Sequential consistency
In the memory model SC (sequential consistency), we assume that access to the main memory
is atomic. More formally, the transition relation →SC is defined similar to →TSO, but the rule
(STORE) is replaced by the rule (SCSTORE).

<inst> = mem[r]← r′, a = val(r), v = val(r′)(SCSTORE)
(pc, val, buf)→SC (pc′, val[a := v], buf)

Note that the buffer will never be used, i.e. early reads and updates from the buffer never occur.

a) Explain the following statement and argue that it is true: There is a correspondence between
all executions of a multi-threaded program under SC and the single execution of all single-
threaded programs obtained by shuffling the source code of the threads.

b) Let prog be a program. We define fency(prog) as the program that we obtain from prog by
inserting an mfence instruction directly after every store operation (i.e. mem[r]← r′).

Argue whether the following statement is correct: The program prog executed under SC has
the same behavior as fency(prog) does under TSO.

Here, you may use control-state reachability (see below) as a suitable definition for “having
the same behavior”.

Exercise 2: SC reachability
The (control-state) reachability problem for SC is defined as follows.

SC-Reachability
Given: Program prog over DOM, program counter pc
Decide: Is there a computation cf0 →∗

SC (pc, buf, val) for some buf, val?

a) Reduce SC-Reachability to Petri net coverability. Explain which places are needed by the net,
and how each instruction in the program can be simulated by Petri net transitions.

b) Conclude that SC-Reachability can be solved in PSPACE. Here, you may assume that the size
of DOM is encoded in unary.

Wewish all of you a Merry Christmas ...



Exercise 3: Expand, Enlarge and Check
Consider the following lossy channel system LCS:
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a) Compute Over(LCS, Γ , L0). Provide an execution tree.

b) Compute Over(LCS, Γ , L1). Argue why configuration (q2,

(
1
ε

)
) is not coverable.

Exercise 4: Ideals
Let (C,⩽) be a wqo. An ideal (with respect to ⩽) is a set I ⊆ C that is non-empty, downward
closed and directed. Directed means that for any x, y ∈ I , there is z ∈ I such that x ⩽ z, y ⩽ z.

a) Let (A,⩽A), (B,⩽B) bewqos and let (A×B,⩽×) be the productwqo. Show that a setJ ⊆ A×B
is an ideal (wrt. A× B) if and only if it is of the shape J = IA × IB where IA ⊆ A and IB ⊆ B
are ideals (wrt.⩽A resp.⩽B).

Hint: For one direction, prove that J = projA(J ) × projB(J ), where proj denotes the projec-
tion (e.g. projA(a, b) = a).

b) Show that the ideals of (N,⩽) are N itself and the sets of the shape n ↓ for n ∈ N. Use
a) to conclude that the ideals of (Nd,⩽d) are exactly the sets of the shape Mω ↓, where
Mω ∈ Nd

ω = (N ·∪
{
ω
}
)d is a generalized marking (as they occur in the coverability graph).

c) Prove that the set of ideals is always an adequate domain of limits. Youmay use the following
fact without proof: Any downward-closed set D ⊆ C has a finite ideal decomposition, i.e. a
finite set of ideals I0, . . . , Ik such that D =

∪
i Ii.

Remark: In fact, it is also effective in many cases. For example, for LCS resp. the Higman’s
subword ordering, the set of products (as in the definition of sres) is the set of ideals and also
an effective adequate domain of limits.

... and a happy New Year!


