Concurrency theory Exercise sheet 7

Sebastian Muskalla, Prakash Saivasan

TU Braunschweig

Winter term 2017/18

Out: November 29 Due: December 5

Submit your solutions until Tuesday, December 5, during the lecture. You may submit in groups up to three persons.

Exercise 1: SRE Inclusion

Use the algorithm given in the lecture to check whether the following SRE inclusions hold:

(a)
$$(a+n+s)^*(t+a+n)^* \subseteq (s+a+n+t+a)^*$$

(b)
$$(r+\epsilon)(p+\epsilon)(n+t)^* \subseteq p^*(r+\epsilon)(s+\epsilon)(n+t)^* + (p+\epsilon)r^*(n+e+t)^*$$

(b)
$$(r+\epsilon)(p+\epsilon)(n+t)^* \subseteq (p+r+e)^*(s+\epsilon)(n+t)^*$$

Exercise 2: Coverability of lossy channels

Consider the lcs depicted in the figure below.

Determine if configurations $(q_4, \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix})$ and $(q_4, \begin{bmatrix} \varepsilon \\ 1 \end{bmatrix})$ are coverable using the known procedure.

Exercise 3: Generalised Lossy Channel Systems

Consider the following variation of a lcs: assume one of the symbols $s \in M$ can not be lost during send/receive by any channel but that a channel can contain at most $k \in \mathbb{N}$ symbols s.

A transition that wants to send the k+1st symbol s is blocked. Such a generalized lcs can be represented by a standard lcs using as states the Cartesian product $Q \times \{0, \ldots, k\}$ where Q is the set of states of the original system.

The resulting lcs transitions are schematically represented below (for $0 \le i < k$).

You are asked to give an implementation of $(q_1, i) \xrightarrow{c!s} (q_2, i + 1)$ by several lossy transitions. Your model should check that precisely i symbols s are present in the channel c before appending the extra s.

[Hint: Take $M \cup \#$ as the alphabet of the resulting lcs]

Exercise 4: Lossychannel with Natural numbers

Consider another type of lcs $L = (Q, q_0, \{c\}, M, \rightarrow)$ with c a channel carrying natural numbers as content, i.e., $M = \mathbb{N}$. Take the ordering $\leq^* \subseteq M^* \times M^*$ given in Higman's lemma.

- (a) Prove that $(Q \times M^*, \lhd)$, with \lhd defined by $(q, w) \lhd (q, w')$ iff $w \leqslant^* w'$, is a wqo.
- (b) The transitions in L are given by $q \stackrel{!n}{\to} q'$ and $q \stackrel{?n}{\to} q'$ with $n \in \mathbb{N}$. The first appends n to the channel, the second receives a number $n' \geqslant n$ with $n' \in \mathbb{N}$ from the head of the channel. The channel is supposed to be lossy. Formalise the transition relation between configurations.
- (c) Prove that $((Q \times M^*, (q_0, \epsilon), \rightarrow), \triangleleft)$ is a wsts.