Concurrency theory Exercise sheet 6

TU Braunschweig Winter term 2017/18

Sebastian Muskalla, Prakash Saivasan

Due: November 28

Submit your solutions until Tuesday, November 28, during the lecture. You may submit in groups up to three persons.

Exercise 1: Well quasi orderings

Prove or disprove that (Bin, \leq) is a well-quasi ordering, here Bin represents set of all binary numbers $Bin = \{0, 1\}^*$ and \leq is the lexicographing ordering with $0 \leq 1$.

Exercise 2: Downward closed sets

Prove that for any wqo (A, \leq) and for every infinite decreasing sequence $D_0 \supseteq D_1 \supseteq D_2 \supseteq \ldots$ of downward closed sets, there is a $k \in \mathbb{N}$ such that $D_k = D_{k+1}$

Exercise 3: WSTS

Out: November 23

Given a wsts $(\Gamma, \rightarrow, \gamma_0, \leq)$, describe an algorithm to decide if every run from γ_0 is terminating or not. Assume the wsts to be finitely branching, i.e., for every configuration $\gamma_1 \in \Gamma$ there are finitely many $\gamma_2 \in \Gamma$ with $\gamma_1 \rightarrow \gamma_2$. Prove correctness of your algorithm.

Hint: start from the reachability tree for Petri nets and lift the construction for wsts.