Concurrency theory Exercise sheet 4

TU Braunschweig Winter term 2017/18

Sebastian Muskalla, Prakash Saivasan

Due: November 14

Submit your solutions until Tuesday, November 14, during the lecture. You may submit in groups up to three persons.

Exercise 1: Coverability and place boundedness

Consider the following Petri net

Out: November 09

- a) Construct the coverability graph Cov(N) using the algorithm seen in the lecture.
- b) Is Cov(N) unique?
- c) Do you need to label the edges of Cov(N) to solve the coverability instance?

Exercise 2: Upward-closed sets

For a finite alphabet Σ and $w_1, w_2 \in \Sigma^*$, let $w_1 \leq w_2$ if and only if w_1 is a subword of w_2 [i.e. w_1 can be obtained by deleting zero or more letters in w_2]. For any $\mathcal{L} \subseteq \Sigma^*$, the upward-closure of \mathcal{L} is defined as $\mathcal{L}\uparrow = \{w \mid \exists w' \in \mathcal{L} : w' \leq w\}$ and the downward closure $\mathcal{L}\downarrow$ is defined as $\mathcal{L}\downarrow = \{w \mid \exists w' \in \mathcal{L} : w \leq w'\}$

- a) Show that for any language $\mathcal{L} \subseteq \Sigma^*$, the languages $\mathcal{L}\uparrow$ and $\mathcal{L}\downarrow$ are regular. (Assume that the set of finite sequences over a finite alphabet, ordered by the subword relation, is well-quasi-ordered)
- b) Let (A, \leq) be a word and $M_1, M_2 \subseteq A$ finite. Show that it is decidable if $M_1 \uparrow = M_2 \uparrow$.