Concurrency theory
 Exercise sheet 4

Sebastian Muskalla, Prakash Saivasan

TU Braunschweig Winter term 2017/18

Out: November 09
Due: November 14
Submit your solutions until Tuesday, November 14, during the lecture. You may submit in groups up to three persons.

Exercise 1: Coverability and place boundedness

Consider the following Petri net

a) Construct the coverability graph $\operatorname{Cov}(N)$ using the algorithm seen in the lecture.
b) Is $\operatorname{Cov}(N)$ unique?
c) Do you need to label the edges of $\operatorname{Cov}(N)$ to solve the coverability instance?

Exercise 2: Upward-closed sets

For a finite alphabet Σ and $w_{1}, w_{2} \in \Sigma^{*}$, let $w_{1} \leqslant w_{2}$ if and only if w_{1} is a subword of w_{2} [i.e. w_{1} can be obtained by deleting zero or more letters in w_{2}]. For any $\mathcal{L} \subseteq \Sigma^{*}$, the upward-closure of \mathcal{L} is defined as $\mathcal{L} \uparrow=\left\{w \mid \exists w^{\prime} \in \mathcal{L}: w^{\prime} \leqslant w\right\}$ and the downward closure $\mathcal{L} \downarrow$ is defined as $\mathcal{L} \downarrow=\left\{w \mid \exists w^{\prime} \in \mathcal{L}: w \leqslant w^{\prime}\right\}$
a) Show that for any language $\mathcal{L} \subseteq \Sigma^{*}$, the languages $\mathcal{L} \uparrow$ and $\mathcal{L} \downarrow$ are regular. (Assume that the set of finite sequences over a finite alphabet, ordered by the subword relation, is well-quasi-ordered)
b) Let (A, \leqslant) be a wqo and $M_{1}, M_{2} \subseteq A$ finite. Show that it is decidable if $M_{1} \uparrow=M_{2} \uparrow$.

