Concurrency theory Exercise sheet 2

Sebastian Muskalla, Prakash Saivasan

TU Braunschweig Winter term 2017/18

Out: October 25 Due: November 1

Submit your solutions until Wednesday, November 1, during the lecture. You may submit in groups up to three persons.

Exercise 1: Petri net constructions

- a) Let (N, M_0, M_f) be a Petri net. Explain how to construct a Petri net (N', M'_0, M'_f) with $M'_0(p) = 0$ for all places but a single place p' with $M'_0(p') = 1$ and $M'_f(p) = 0$ for all places such that $M_f \in R(N, M_0)$ iff $M'_f \in R(N', M'_0)$.
- b) Let (N, M_0, M_f) be a Petri net. Explain how to construct a Petri net (N', M'_0, M'_f) such that M_f is coverable from M_0 in N iff M'_f is reachable from M'_0 in N'.
- c) Construct a Petri net N with only 3 places, a marking M_0 and markings $M_{c \wedge r}$, $M_{-c \wedge r}$ and $M_{c \wedge r}$ such that
 - $M_{c \wedge r}$ is reachable and coverable from M_0 ,
 - $M_{\neg c \land \neg r}$ is neither reachable nor coverable, and
 - $M_{c \land \neg r}$ is coverable, but not reachable.

In each part of this exercise, argue briefly that your construction is correct.

Exercise 2: Addition and multiplication

Consider the (incomplete) Petri net containing places x, y and out depicted below.

- a) Add places and transitions to the net such that any computation of the net starting in $M_0(x) = m$, $M_0(y) = n$, $M_0(out) = 0$ terminates in a marking M_f with $M_f(out) = m + n$. (*Terminating* means that no transition is enabled anymore.)
- b) Add places and transitions to the net such that any computation of the net starting in $M_0(x) = m$, $M_0(y) = n$, $M_0(out) = 0$ terminates in a marking M_f with $M_f(out) \in \{0, ..., m \cdot n\}$.

In each part of this exercise, argue briefly that your construction is correct.

Exercise 3: Rackoff's bound

Consider the Petri net $N = (\{1, 2, 3, 4\}, \{a, b, c, x\}, i, o)$ with multiplicities as depicted below. The initial marking of interest is $M_0 = (1, 0, 0, 0)^T$ and the final marking is $M_f = (1, 0, 10, 100)^T$.

Compute the values $m(3, M_0)$ and f(3) and argue why they are correct.

Exercise 4: Counter programs

You may use additional counter variables to solve these problems. In each part of this exercise, you may use the previous parts as subroutines.

Let *n* be some fixed number.

- a) Present a counter program $Set_n(x_i)$ that sets the value of counter variable x_i to n.
- b) Present a counter program Double(x_i) that doubles the current value of counter variable x_i .
- c) Present a counter program Power_n(x_i) that sets the value of counter variable x_i to 2^n .
- d) Present a counter program Square(x_j) that squares the value of counter variable x_j , i.e. the new value is v^2 , where v is the old value.

In each part of this exercise, argue briefly that your program is correct.