# Concurrency theory <br> Exercise sheet 1 

## Out: October 18

Submit your solutions until Tuesday, October 24, during the lecture. You may submit in groups up to three persons.

## Exercise 1: Traffic lights and Petri nets

Consider the Petri net given by the following graphic representation.

a) Write down the net as a tuple $N=(P, T, i, o)$.
b) The net should model a traffic light, but it contains a bug and exhibits unwanted behavior. Show a valid firing sequence (from the initial marking indicated in the graphic representation) reaching a bad marking.

Modify the net to fix the problem. The resulting net should be 1-safe.
c) Model two traffic lights handling a road crossing by using two such Petri nets.

## Exercise 2: The marking equation

Consider the following Petri net.

a) Write down the connectivity matrix $\mathbb{C}$ of the Petri net.
b) Argue that the marking $M_{f}=(0,0,1,0)$ that has one token in $p_{3}$ is not reachable from the initial marking $M_{0}=(1,0,0,1)$.
c) Prove that the marking equation $M_{f}-M_{0}=\mathbb{C} \cdot c$ has a solution (i.e. there is a vector $c \in \mathbb{N}^{T}$ satisfying the equation).

## Exercise 3: The Ackermann function

a) The three-argument Ackermann function $\varphi$ is defined recursively as follows.

$$
\begin{array}{ll}
\varphi: \mathbb{N}^{3} \rightarrow \mathbb{N} & \\
\varphi(m, n, 0)=m+n & \\
\varphi(m, 0,1)=0 & \\
\varphi(m, 0,2)=1 & \text { for } x>2 \\
\varphi(m, 0, x)=m & \text { for } n>0 \text { and } x>0
\end{array}
$$

Formally prove the following equalities (e.g. using induction):

$$
\varphi(m, n, 0)=m+n, \quad \varphi(m, n, 1)=m \cdot n, \quad \varphi(m, n, 2)=m^{n} .
$$

b) Nowadays, one usually considers the following two-parameter variant.

$$
\begin{array}{rlrl}
A: \mathbb{N}^{2} \rightarrow \mathbb{N} & & \\
A(0, n) & =n+1 & & \\
A(m, 0) & =A(m-1,1) & & \text { for } m>0 \\
A(m, n) & =A(m-1, A(m, n-1)) & & \text { for } m>0 \text { and } n>0
\end{array}
$$

For example, we have

$$
A(1,2)=A(0, A(1,1))=A(0, A(0, A(1,0)))=A(0, A(0, A(0,1)))=A(0, A(0,2))=A(0,3)=4 .
$$

Similar to this computation, write down a full evaluation of $A(2,3)$.

