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The algorithm deciding termination on Petri nets essentially relies on the
following two facts:

1. Transitions in Petri nets are monotonic: if M1
σ−→M2 and M ′

1 ≥M1 then

M ′
1

σ−→M ′
2 ≥M2 (larger markings can simulate smaller ones).

2. The state space Nk of a Petri net is a well-quasi-ordering (wqo).

It turns out that the algorithm can be adapted to decide termination on an
entire class of systems satisfying these two properties (we will call them well
structured transition systems and study them in great detail).

The goal of this note is to lay down the basic theory of wqo, which we will
extensively exploit later in the lecture.

1 Characterisations of wqo

Definition 1. We say (Q,≤) is a quasi-ordering (qo) if ≤ ⊆ Q×Q is reflexive
and transitive. We call P ⊆ Q an antichain if ∀x, y ∈ P : x 6= y⇒ x � y.

In the following, let (Q,≤) be a qo.

Definition 2. A pair (a, b) of elements of Q is called increasing if a ≤ b and
strictly increasing if additionally b � a; notation a < b. Decreasing and strictly
decreasing are defined analogously. An element a ∈ P ⊆ Q is said to be minimal
(resp. maximal) in P if there is no b ∈ P with b < a (resp. b > a).

We denote the upward closure of P ⊆ Q as P↑ := {x ∈ Q | ∃y ∈ P : y ≤ x}.
The downward closure of P is P↓ := {x ∈ Q | ∃y ∈ P : x ≤ y}. We say P is
upward closed if P = P↑ and downward closed if P = P↓.

Definition 3. A sequence (ai)i∈N is called ascending or strictly ascending if
ai ≤ ai+1 respectively ai < ai+1 for every i ∈ N. Descending and strictly
descending are defined analogously.

Definition 4. A sequence (ai)i∈N over Q is called good if there are i < j with
ai ≤ aj otherwise it is called bad. A well-quasi-ordering (wqo) is a qo over which
every infinite sequence is good.
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There are other equivalent ways of defining wqo, and each makes explicit an
important aspect of the wqo condition.

Theorem 1 (Characterisation of wqo). The following statements are equivalent:

1. Q is a wqo.

2. Every sequence (ai)i∈N over Q has an infinite ascending subsequence.

3. Every strictly descending sequence over Q is finite (i.e. Q is well-founded)
and every antichain of Q is finite.

4. For every P ⊆ Q there is a finite set P ′ ⊆ P of elements minimal in P
such that P ⊆ P ′↑.

Proof. “1 ⇒ 2”: Let A = (ai)i∈N be an infinite sequence over Q. Consider the
subsequence A′ = aφ0

aφ1
· · · of elements in the sequence that are not dominated

by a successor, formally @i > φk : ai ≥ aφk
. Since Q is a wqo, A′ has to be

finite, i.e. A′ = aφ0 · · · aφk
. Thus, we will find an infinite ascending subsequence

starting with aφk+1.
“2 ⇒ 3”: Assume there is an infinite strictly descending sequence (ai)i∈N.

By induction, ai � aj for all i < j. Contradiction to (ai)i∈N is good.
Assume there is an infinite antichain A. There is an infinite sequence (ai)i∈N

over A that is good by assumption. Contradiction to A antichain.
“3 ⇒ 4”: Let P ⊆ Q and set P0 = P . If Pi 6= ∅ choose ai,0 ∈ Pi. If

ai,j is not minimal in Pi, let ai,j > ai,j+1 ∈ Pi. As every strictly descending
sequence is finite, there is ai,ki

that is minimal in Pi. Let Pi+1 = Pi \ ai,ki
↑. As{

a0,k0
, a1,k1

, . . .
}
forms an antichain, it is finite. Thus, Pn = ∅ for some n ∈ N

and
{
a0,k0

, . . . , an−1,kn−1

}
fulfils our needs.

“4 ⇒ 1”: Let (ai)i∈N be an infinite sequence over Q. By assumption, there
is a finite set P ′ =

{
aφ0

, . . . , aφk

}
such that

{
ai

∣∣ i ∈ N
}
⊆ P ′↑ and φi < φi+1

for all i wlog. We have aφi
≤ aφk+1 for some i.

Remark 1. “3 ⇒ 1” and even the stronger “3 ⇒ 2” can alternatively be proven
as an application of Ramseys theorem.

For example, (N,≤) is a wqo: it has no antichains and is well-founded.
However, (Z,≤) is a qo but no wqo because it is not well-founded. The discrete
ordering (X,=) is a qo for every set; it is a wqo iff X is finite.

Lemma 1. Let (Q,≤) be a wqo. Then if Q′ ⊆ Q then (Q′,≤) is a wqo.
Moreover, if for a quasi-ordering v on Q, for all q, q′ ∈ Q we have q ≤ q′⇒ q v
q′, then (Q,v) is a wqo.

Proof. A bad sequence of (Q′,≤) or of (Q,v) is a bad sequence of (Q,≤).
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2 Constructing wqo

By constructing wqo we mean that we can show that from some wqo we can
build other wqo using some common constructions. The first we consider is the
Cartesian product.

Lemma 2. Let (Q1,≤1), (Q2,≤2) be wqo. Then (Q1 ×Q2,≤) with (p1, p2) ≤
(q1, q2)⇔ p1 ≤1 q1 ∧ p2 ≤2 q2 is a wqo.

Proof. Q1×Q2 is a qo. Let ((ai, bi))i∈N be a sequence over Q1×Q2. By item 2
in Theorem 1, there is an infinite ascending subsequence aφ0

≤1 aφ1
≤ · · · of

(ai)i∈N. Because (bφi
)i∈N is good by assumption, there are i < j such that

bφi
≤2 bφj

, and thus, (aφi
, bφi

) ≤ (aφj
, bφj

).

Corollary 1 (Dickson’s Lemma). For every k ∈ N, (Nk,≤k) is a wqo, where
(n1, . . . , nk) ≤k (m1, . . . ,mk) if for each i = 1, . . . , k we have ni ≤ mi.

We now study the wqo properties of domains built from other wqo. Say
you have a wqo (Q,≤), we will prove that a certain operation F will give rise
to another wqo (F (Q), F (≤)): for example a generalisation of Dickson’s lemma
(that follows from Lemma 2) is an instance of this scheme by setting F (Q) = Qk

and F (≤) = {(~x, ~y) | xi ≤ yi, i = 1, . . . , k}. We will see the case of finite subsets
of Q (F (Q) = Pf (Q)), finite trees labelled by elements of Q (F (Q) = T (Q)) and
finite words over Q (F (Q) = Q∗). In each case the induced F (≤) is obtained
by introducing a concept of embedding : a structure s1 in F (Q) is embedded
in another s2 if there is an injective function relating the components of s1 to
components of s2 so that the underlying ordering ≤ is preserved by the mapping.
Let us formalise this for each case.

Definition 5. We define Pf (Q) := {P ⊆ Q | P is finite}. Let P, P ′ ∈ Pf (Q),
a subset embedding from P to P ′, is an injective function ϕ : P → P ′ such that
for all x ∈ P , x ≤ ϕ(x). The subset embedding ordering is the quasi-ordering
vP over Pf (Q) where P vP P ′ iff there is a subset embedding from P to P ′.

Take for example the wqo (N,≤). We have that {1, 3, 5} vP {0, 3, 4, 5, 20}
but {4, 7} 6vP {1, 2, 5, 6} and {1, 2, 3, 4} 6vP {10, 20, 30}.

Note that for all A ∈ Pf (Q), we have ∅ vP A since the empty function
⊥ : ∅ → A is a subset embedding. When the underlying ordering is (Q,=) then
subset embedding is simply set inclusion.

Lemma 3. If (Q,≤) is a wqo, then (Pf (Q),vP) is a wqo.

Proof. Clearly, it is a qo. Assume Pf (Q) has bad sequences. We will construct
a “lexicographically minimal” bad sequence: Choose A0 ∈ Pf (Q) such that it
is the first term in a bad sequence and |A0| is minimal. If we chose A0, . . . , Ak,
choose Ak+1 such that A0 · · ·Ak+1 is the beginning of a bad sequence and |Ak+1|
is minimal. The so constructed (Ai)i∈N is a bad sequence.

No Ai can be empty, otherwise Ai = ∅ vP Ai+1, so we can pick an element
from each set in the sequence: for each i ∈ N, pick ai ∈ Ai and let Bi = Ai \ ai.
We show that (B,≤|B×B) is a wqo where B = {Bi | i ∈ N}: Let (Bf(i))i∈N
be a sequence over B. Let k ∈ N such that f(k) = min f(N), in particular,
f(i) ≥ f(k) for i ≥ k. Consider the sequence

A0 · · · Af(k)−1 Bf(k) Bf(k+1) · · ·
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As |Bf(k)| < |Af(k)|, this sequence cannot be bad as this would contradict the
choice of Af(k). Furthermore, as Ai ≤ Bf(j) implies Ai ≤ Af(j) for i < f(k),
j ≥ k and (Ai)i∈N is bad, there have to be k ≤ i < j such that Bf(i) ≤ Bf(j).

Thus,
(
Bf(i)

)
i∈N is good and B wqo.

By Lemma 2, Q × B is wqo. Therefore ((ai, Bi))i∈N is good, i.e. there
are i < j with (ai, Bi) ≤ (aj , Bj), which means there is a subset embedding
ϕ : Bi → Bj which we can extend to map ϕ(ai) = aj proving Ai vP Aj .
Contradiction with the badness of (Ai)i∈N.

A graph G consists of a finite set V (G) of vertices and a set E(G) ⊆ V (G)×
V (G) of edges. A tree T is a graph that has a root ρ(T ) ∈ V (T ) and where for
every v ∈ V there is a unique path (defined as usual) from ρ(T ) to v in T . In a
tree T , we say v ∈ V (T ) is the child of v′ ∈ V (T ) if (v′, v) ∈ E(T ). We say v′

is an ancestor of v in T if v′ is in the path from the root to v.

Definition 6. Let (X,≤) be a qo. A X-labelled tree T is a tree equipped with
a labelling function λ(T ) : V (T ) → X, associating each node to a label in X.
We denote the set of labelled trees over X as T (X).

For trees T, T ′ ∈ T (X), a tree embedding from T to T ′ is an injective function
ϕ : V (T ) → V (T ′) such that for all v ∈ V (T ):

1. λ(T )(v) ≤ λ(T ′)(ϕ(v)), and

2. v′ ∈ V (T ) is an ancestor of v in T , if and only if ϕ(v′) is an ancestor of
ϕ(v) in T ′.

We define the ordering vT on T (X) so that, for trees T, T ′ ∈ T (X) we have
T ≤ T ′ if there exists a tree embedding from T to T ′.

By adapting the same proof technique we used for proving Lemma 3 (and
using the lemma as well) we can prove that trees with wqo labels form a wqo.
The result is named after Kruskal, who proved it in a paper published in 1960.
Here we present a simpler proof due to Nash-Williams.

Theorem 2 (Kruskal’s theorem). If (X,≤) is a wqo so is (T (X),≤).

Proof. Clearly, (T (X),≤) is a qo. Assume there are bad sequences. Like in
Lemma 3, we construct a bad sequence (Ti)i∈N such that |V (Ti)| is minimal in
every step. Since it is a bad sequence, no tree in it is empty. Let Bi be the
(finite) set of subtrees of Ti rooted at the children of ρ(Ti) and let B =

⋃
i∈NBi.

We show that (B,≤|B×B) is a wqo: Consider a sequence (Ri)i∈N over B.
By construction, there is f : N → N such that Ri ∈ Bf(i) for all i ∈ N. Similar
to Lemma 3, let k ∈ N such that f(k) = min f(N), in particular, f(i) ≥ f(k)
for i ≥ k. Consider the sequence

T0 · · · Tf(k)−1 Rk Rk+1 · · ·

As |Rk| < |Tf(k)|, this sequence cannot be bad as this would contradict the
choice of Tf(k). Furthermore, as Ti ≤ Rj implies Ti ≤ Tf(j) for i < f(k), j ≥ k
and (Ti)i∈N is bad, there have to be k ≤ i < j such that Ri ≤ Rj . Thus, (Ri)i∈N
is good and B is a wqo.

By Lemmas 2 and 3, X × Pf (B) is a wqo. Thus, ((λ(Ti)(ρ(Ti)), Bi))i∈N
is good and there are i < j with λ(Ti)(ρ(Ti)) ≤ λ(Tj)(ρ(Tj)) and Bi vP Bj .
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By the latter, there is a subset embedding ϕ : Bi → Bj , i.e. R vT ϕ(R) for all
R ∈ Bi, which in turn means that there is a tree embedding ψR of R into ϕ(R).
Define an embedding ψ of Ti into Tj as follows:

ψ(v) =

{
ρ(Tj) if v = ρ(Ti)

ψR(v) if v ∈ R, for some R ∈ Bi

Note that every v ∈ V (Ti) is in one an only one R ∈ Bi or is the root of Ti.
Now from λ(Ti)(ρ(Ti)) ≤ λ(Tj)(ρ(Tj)) and ψR being tree embeddings, we get
that ψ is a tree embedding proving that Ti vT Tj . Contradiction to the badness
of (Ti)i∈N.

Remark 2. Kruskal’s theorem is actually slightly more general: it can also
handle the case where the children are ordered. In this lecture however we will
only need unordered trees.

Definition 7. Given a (non necessarily finite) qo alphabet (Q,≤), the set of
words over Q is Q∗ := {a1 . . . an | qi ∈ Q}. Given a word w = a1 . . . an ∈ Q∗,
the set of its positions is pos(w) = {1, . . . , n}. A word embedding from w =
a1 . . . an ∈ Q∗ to w′ = b1 . . . bm ∈ Q∗ is an injective function ϕ : pos(w) →
pos(w′) such that for all i ∈ pos(w):

1. ai ≤ bϕ(i), and

2. for all j ∈ pos(w), if i ≤ j then ϕ(i) ≤ ϕ(j).

The word embedding ordering ≤∗ over Q∗ is defined so that w ≤∗ w′ if there is
a word embedding from w to w′.

As an example, take the wqo (N,≤) as the alphabet, then we have 9 8 3 2 ≤∗

4 9 9 0 2 5 2 7 but 9 8 3 6≤∗ 8 9 9 1 1 1. When the alphabet is a finite set Σ ordered
by =, word embedding is called the subword ordering, written 4. For example,
with Σ = {a, b, c} we have: a c b 4 c a b c b a but a c 64 c b a.

Here we can derive that words over a wqo form a wqo as a corollary of
Kruskal’s theorem. The lemma was however already known before Kruskal’s
result, thanks to a proof in a 1952 paper by Higman, after whom the lemma is
named.

Corollary 2 (Higman’s Lemma). Let (Q,≤) be a wqo. Then (Q∗,≤∗) is a wqo.

Proof. A word a1, . . . , an ∈ Q∗ is a Q-labelled tree: a1 is the label of the root
with single child labelled by a2, with single child labelled by a3, and so on.
Subword ordering is then an instance of tree embedding, thus by Theorem 2
and Lemma 1 we get the result.

Note, by contrast, that the prefix ordering and the lexicographic ordering
on words are both not a wqo, not even for finite alphabets.
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