Concurrency Theory (WS 2016)

Out: Thu, 12 Jan Due: Wed, 18 Jan

Exercise Sheet 10

D'Osualdo, Lederer, Schneider

Technische Universität Kaiserslautern

Problem 1: Strong Bisimulation is a Process Congruence

In the lecture, we defined *process congruence* as any equivalence relation \cong such that for every *elementary* context C[] we have that if $P \cong Q$ then $C[P] \cong C[Q]$. An easy consequence is that then the same is true for *any* context.

We now want to show that strong bisimulation is a process congruence. To prove this claim, we have to show that if $P \sim Q$ then

 $\boxed{1} \alpha.P + M \sim \alpha.Q + M$

$$2 \quad \nu a.P \sim \nu a.Q$$

$$3 P \parallel R \sim Q \parallel R$$

$$\boxed{4} R \parallel P \sim R \parallel Q$$

Prove 3 by showing that the relation $\mathscr{S} := \{ (A \parallel C, B \parallel C) \mid A \sim B \}$ is a bisimulation. Then pick 1 or 2 and prove it using a similar argument. Note that 4 follows from 3 and the fact that structural congruence is a strong bisimulation.

The fact that bisimulation is a congruence is important: it gives formal meaning to the claim that no environment can tell the difference between two bisimilar processes, by modelling the environment as a context.

Problem 2: Algebraic Properties of Bisimulation

- a) Show that $\boldsymbol{\nu}a.(a.P) \sim \mathbf{0}$ for any P.
- b) Show that $\boldsymbol{\nu}c.(a.c.P \parallel b.\overline{c}.Q) \sim \boldsymbol{\nu}c.(a.c.Q \parallel b.\overline{c}.P)$ for any P,Q.
- c) Assume that the three CCS processes P, Q and R have a free name *done* and perform an action \overline{done} just before terminating.

We define the *sequential composition* of processes A and B as

$$A; B := \boldsymbol{\nu} start. (A[start/done] \parallel start.B).$$

Show that sequential composition is associative, i.e. (P;Q); $R \sim P$; (Q;R).

Problem 3: Weak Simulation

Consider the following LTS:

Show that

- a) q_0 weakly simulates p_0 ,
- b) p_0 weakly simulates q_0 , but
- c) q_0 is not weakly bisimilar to p_0 .

Problem 4: Counter II — THE REVENGE

In class we have seen the sequential specification of a counter:

 $\mathsf{Count}_0 := inc.\mathsf{Count}_1 + \overline{zero}.\mathsf{Count}_0$ $\mathsf{Count}_{n+1} := inc.\mathsf{Count}_{n+2} + dec.\mathsf{Count}_n$

Now we give a new implementation. Let $\vec{x}_i = inc_i, dec_i, zero_i$:

$$Z[\vec{x}_1] := inc_1 \cdot \nu \vec{x}_2 \cdot (S[\vec{x}_1, \vec{x}_2] \parallel Z[\vec{x}_2]) + \overline{zero}_1 \cdot Z[\vec{x}_1]$$

$$S[\vec{x}_1, \vec{x}_2] := inc_1 \cdot \nu \vec{x}_3 \cdot (S[\vec{x}_1, \vec{x}_3] \parallel S[\vec{x}_3, \vec{x}_2]) + dec_1 \cdot (\overline{dec}_2 \cdot S[\vec{x}_1, \vec{x}_2] + zero_2 \cdot Z[\vec{x}_1])$$

Your task is to prove that it is a correct implementation, that is $Count_0 \approx Z[inc, dec, zero]$.