Exercise Sheet 10

D'Osualdo, Lederer, Schneider
Technische Universität Kaiserslautern

Problem 1: Strong Bisimulation is a Process Congruence

In the lecture, we defined process congruence as any equivalence relation \cong such that for every elementary context $C[]$ we have that if $P \cong Q$ then $C[P] \cong C[Q]$. An easy consequence is that then the same is true for any context.

We now want to show that strong bisimulation is a process congruence. To prove this claim, we have to show that if $P \sim Q$ then

$$
\begin{aligned}
& 1 \quad \alpha \cdot P+M \sim \alpha \cdot Q+M \\
& 2 \nu a \cdot P \sim \nu a \cdot Q \\
& \sqrt{3} P\|R \sim Q\| R \\
& 4 R\|P \sim R\| Q
\end{aligned}
$$

Prove $\sqrt{3}$ by showing that the relation $\mathscr{S}:=\{(A\|C, B\| C) \mid A \sim B\}$ is a bisimulation. Then pick 1 or 2 and prove it using a similar argument. Note that 4 follows from 3 and the fact that structural congruence is a strong bisimulation.

The fact that bisimulation is a congruence is important: it gives formal meaning to the claim that no environment can tell the difference between two bisimilar processes, by modelling the environment as a context.

Problem 2: Algebraic Properties of Bisimulation

a) Show that $\boldsymbol{\nu} a .(a . P) \sim \mathbf{0}$ for any P.
b) Show that $\boldsymbol{\nu} c .(a . c . P \| b . \bar{c} . Q) \sim \boldsymbol{\nu} c .(a . c . Q \| b . \bar{c} . P)$ for any P, Q.
c) Assume that the three CCS processes P, Q and R have a free name done and perform an action $\overline{d o n e}$ just before terminating.

We define the sequential composition of processes A and B as

$$
A ; B:=\boldsymbol{\nu} \text { start. }(A[\text { start / done }] \| \text { start. } B) .
$$

Show that sequential composition is associative, i.e. $(P ; Q) ; R \sim P ;(Q ; R)$.

Problem 3: Weak Simulation

Consider the following LTS:

Show that
a) q_{0} weakly simulates p_{0},
b) p_{0} weakly simulates q_{0}, but
c) q_{0} is not weakly bisimilar to p_{0}.

Problem 4: Counter II - THE REVENGE

In class we have seen the sequential specification of a counter:

$$
\begin{aligned}
\text { Count }_{0} & :=\text { inc.Count }_{1}+\overline{\text { zero. } . \text { Count }_{0}} \\
\text { Count }_{n+1} & :={\text { inc. } \text { Count }_{n+2}+\text { dec. Count }}_{n}
\end{aligned}
$$

Now we give a new implementation. Let $\vec{x}_{i}=\operatorname{inc}_{i}, \operatorname{dec}_{i}$, zero $_{i}$:

$$
\begin{aligned}
\mathrm{Z}\left[\vec{x}_{1}\right] & :=\operatorname{inc}_{1} \cdot \boldsymbol{\nu} \vec{x}_{2} \cdot\left(\mathrm{~S}\left[\vec{x}_{1}, \vec{x}_{2}\right] \| \mathrm{Z}\left[\vec{x}_{2}\right]\right)+\overline{\operatorname{zero}}_{1} \cdot \mathrm{Z}\left[\vec{x}_{1}\right] \\
\mathrm{S}\left[\vec{x}_{1}, \vec{x}_{2}\right] & :=\operatorname{inc}_{1} \cdot \boldsymbol{\nu} \vec{x}_{3} \cdot\left(\mathrm{~S}\left[\vec{x}_{1}, \vec{x}_{3}\right] \| \mathrm{S}\left[\vec{x}_{3}, \vec{x}_{2}\right]\right)+\operatorname{dec}_{1} \cdot\left(\overline{\operatorname{dec}}_{2} \cdot \mathrm{~S}\left[\vec{x}_{1}, \vec{x}_{2}\right]+\text { zero }_{2} \cdot \mathrm{Z}\left[\vec{x}_{1}\right]\right)
\end{aligned}
$$

Your task is to prove that it is a correct implementation, that is Count ${ }_{0} \approx \mathrm{Z}[$ inc, dec, zero $]$.

