Concurrency Theory (WS 2016)

Out: Sat, 01 Dec Due: Wed, 07 Dec

Exercise Sheet 6

D'Osualdo, Lederer, Schneider

Technische Universität Kaiserslautern

Problem 1: LCS are WSTS

Let $L=(Q,q_0,C,M,\to)$ be a LCS. Recall that configurations are elements of the set $\mathbb{C}_L:=Q\times (M^*)^C$ and the initial configuration is $\gamma_0:=(q_0,\varepsilon)$ with $\varepsilon(_-)=\varepsilon$. The goal is to prove termination (from γ_0) is decidable.

- a) Define a suitable decidable qo $\sqsubseteq \subseteq \mathbb{C}_L \times \mathbb{C}_L$. [Hint: Lift the subword wqo on M^* to \mathbb{C}_L]
- b) Prove that $(\mathbb{C}_L, \to, \sqsubseteq)$ is a (transitive) WSTS.
- c) Construct FRT(γ_0) for the following LCS:

Problem 2: Semilinear Forward Inductive Invariants

a) Consider the following Petri net:

Find a semilinear forward inductive invariant and use it to prove that (1,0,3,2,0) is not reachable.

- b) Show how a trap Q gives rise to a semilinear forward inductive invariant.
- c) **OPTIONAL** Show that there is a semilinear forward inductive invariant which incorporates the trap property for every trap.

[Hint: Semilinear sets are closed under intersection]

Problem 3: Every TS is a WSTS

- a) Prove that $(\mathbb{N}_{\omega}, \leq_{\omega})$ is a wqo, where $\mathbb{N}_{\omega} = \mathbb{N} \uplus \{\omega\}$ and for all $n, n' \in \mathbb{N}$, $n \leq_{\omega} n'$ if $n \leq n'$ and $x \leq_{\omega} \omega$ for every $x \in \mathbb{N}_{\omega}$.
- b) Let $T=(S,\to)$ be a transition system. Define $\ell(s)\in\mathbb{N}_\omega$ for $s\in S$ to be the length of the longest run $s\to s_1\to\cdots$ in T, i.e. a natural if it is finite and ω if it is infinite. Prove that T is well-structured under the order \leq_ℓ where $s\leq_\ell s'$ iff $\ell(s)\leq_\omega \ell(s')$.
- c) Is \leq_{ℓ} decidable in general?

Problem 4: Simulations and Upward Closed Sets

Let (S, \to, \leq_S) be a qo transition system. We call a set X upward closed if for all $x \in X$ and $s \in S$, if $x \leq s$ then $s \in X$. Equivalently, X is upward closed iff $X = X \uparrow$. Define

$$\operatorname{pre}(X) := \{ x \in S \mid x \to x' \text{ and } x' \in X \}$$

to be the set of predecessors of configurations in X. We also define $\operatorname{pre}^0(X) := X$, $\operatorname{pre}^{n+1}(X) := \operatorname{pre}(\operatorname{pre}^n(X))$, and $\operatorname{pre}^*(I) := \bigcup_{i \in \mathbb{N}} \operatorname{pre}^i(I)$.

Prove the following claim:

 \leq_S is a simulation if and only if $\operatorname{pre}^*(I)$ is upward closed for all upward closed sets $I \subseteq S$.