Exercise Sheet 5

D'Osualdo, Lederer, Schneider Technische Universität Kaiserslautern

Problem 1: Minimal elements

Let (Q, \leq) be a qo. For $A \subseteq Q$, we say $x \in A$ is minimal in A if there is no $x^{\prime} \in A$ with $x^{\prime}<x$. The upward closure of $A \subseteq Q$ is the set $A \uparrow:=\left\{x \in Q \mid x \geq x^{\prime}\right.$ for some $\left.x^{\prime} \in A\right\}$.
Consider the following statements:
(1) Every strictly decreasing sequence over Q is finite and every antichain is finite.
(2) For every $A \subseteq Q$ there is a finite set $B \subseteq A$ of elements minimal in A such that $A \subseteq B \uparrow$.
(3) (Q, \leq) is wqo.

From the lecture we know that (3) \Longrightarrow (1), so prove the three statements equivalent by proving (1) \Longrightarrow (2) and (2) \Longrightarrow (3).

Problem 2: Words are wqo

Let (Q, \leq) be a wqo. For $u=u_{1} \cdots u_{m}, v=v_{1} \cdots v_{n} \in Q^{*}$, we write $u \leq^{*} v$ if there are $1 \leq i_{1}<\cdots<i_{m} \leq n$ with $u_{j} \leq v_{i_{j}}$ for all $j=1, \ldots, m$.
Derive that $\left(Q^{*}, \leq^{*}\right)$ is a wqo as a corollary of the lemmas proved in the lecture.

Problem 3: Multisets are wqo

A (finite) multiset over X is a function $m: X \rightarrow \mathbb{N}$ such that the set $\lfloor m\rfloor:=\{x \in X \mid m(x)>0\}$ is finite. We denote by $\mathcal{M}(X)$ the set of such multisets. Let $\left(X, \leq_{X}\right)$ be a quasi order and $m_{1}, m_{2} \in \mathcal{M}(X)$, an embedding from m_{1} to m_{2} is an injective function $\phi:\left\lfloor m_{1}\right\rfloor \rightarrow\left\lfloor m_{2}\right\rfloor$ such that $x \leq_{X} \phi(x)$ and $m_{1}(x) \leq m_{2}(\phi(x))$ for all $x \in\left\lfloor m_{1}\right\rfloor$. We define $m_{1} \leq_{\mathcal{M}(X)} m_{2}$ to hold when there exists an embedding from m_{1} to m_{2}.
Prove that $\left(\mathcal{M}(X), \leq_{\mathcal{M}(X)}\right)$ is a wqo if $\left(X, \leq_{X}\right)$ is a wqo.
[Hint: adapt the proof seen in the lecture for finite sets]
[Bonus: there is a shorter proof $(-)$]

