
Concurrency Theory (WS 2016) Out: Thu, 03 Nov Due: Wed, 09 Nov

Exercise Sheet 2

D’Osualdo, Lederer, Schneider Technische Universität Kaiserslautern

Please submit your solution in groups of 2 to 3 people until Wed, 09 Nov at 10h into the mailbox
next to 34-401.1.
Please note: in the graphical representation of Petri net we use here boxes t for transitions.

Problem 1: Family of Generating Traps
Add arcs to the Petri net N below so that its family of generating traps contains exponentially
(in N ’s size) many traps. Once added, describe N = (S, T,W ) formally and prove that the
family of generating traps is exponential in N ’s size.

t1

p0

q0

p1

q1

· · · · · · · · · tn

pn

qn

Does the generating family of traps for N contain only minimal traps? Argument your answer.

Problem 2: Invariants for Petri Nets

Let N = (S, T,W ) be a Petri net.

a) prove that if I and J are structural invariants of N , so are I + J and k · I (∀k ∈ Z).

b) compute a basis of structural invariants for the following net:

p1

p2

t3 t4

p3

p4t1

t2



Problem 3: Concurrent Boolean Programs
Consider the following syntax definition

P ::= skip | x := b | P1;P2 | if(x){P}else{P} |
while(x){P} | fork{P} | acquire(`) | release(`)

b ::= 0 | 1 | x | ∗ | x and y | notx

Programs P can make use of boolean variables x, y, . . ., where 1 stands for true and 0 for
false; a separate set of variables `1, `2, . . . represent locks: they have no value and can only be
used by acquire and release. Initially, all the variables are 0 and the locks are released. The
semantics of the language is the expected one, we describe the non standard constructs:

• A program fork{P};P ′ will start a new ‘thread’ running P and continue with P ′ without
waiting for P to terminate.

• A program acquire(`);P will try to acquire the lock `: if the lock is acquired by some
other thread the program will block. If at some point the lock is released then the acquire
may proceed and P can be executed.

• Similarly, executing release(`) should make the lock available again; you can assume
the program never releases a released lock.

As demonstrated in the lecture, we can associate a Petri net semantics to the language.

a) Provide a translation to Petri nets of the syntax constructs not seen in the lecture.

b) Explain why we are unable to construct a Petri net if we introduce the concept of variables
that are private to a single thread.

c) Propose an extension of the language (and its translation to Petri nets) where we have
variables c1, c2, . . . that can take values in N. How can you represent them? Which
operations are easy to support? Which operations are problematic for the translation to
Petri nets?



Problem 4: Lamport’s Mutual Exclusion Algorithm
Consider the Petri net below, describing Lamport’s 1-bit mutual exclusion algorithm.

cs1 idle1 req1

nid1 id1

after you2

await2

id2

idle2cs2req2

In this exercise, we want to show that both processes (delimited by the gray regions) never
enter their critical section (cs1 and cs2) at the same time, i.e. that a marking M with M(cs1) =
M(cs2) = M(nid1) = 1 is not reachable.

a) State the corresponding BVS and prove that it is feasible by finding a marking that is a
solution.

b) Find a trap that is initially marked but not marked by the solution found in 4a).

The Enhanced Verification System incorporates the trap property check for all traps at once.
A simpler approach could be to solve the BVS and, in case it is feasible, find a trap Q that is
initially marked but not marked by some solution. Then we can add some inequalities to the
BVS that ensure the trap property only for Q.

c) Show how to refine the BVS of item 4a) with the trap of item 4b). Is it feasible now?
What does this imply for mutual exclusion?

d) You can imagine this process can be iterated until the system becomes infeasible or we
are inconclusive. What is the drawback of this approach in comparison to the Enhanced
Verification System seen in the lecture?


	Family of Generating Traps
	Invariants for Petri Nets
	Concurrent Boolean Programs
	Lamport's Mutual Exclusion Algorithm

