
Notes on Bisimulation

Emanuele D’Osualdo

February 8, 2017

1 Bisimulation and its Characterisations

1.1 Labelled Transition Systems

Definition 1 (LTS). A Labelled Transition System (LTS) over a set of actions
Act , is a pair (S,−→) where

• S is a set of configurations (it can be infinite)

• −→ ⊆ S ×Act × S is the transition relation

We write s1
α−→ s2 when (s1, α, s2) ∈ −→.

Note that there is a conceptual difference between LTS and finite automata.
When Act and S are finite, both definitions describe a graph with labelled
edges. Conceptually, however, automata are the syntax of a system, with usual
semantics expressed in terms of languages ; LTS are instead objects that are used
to express the semantics of a system. The fact that the LTS semantics of a finite
automaton coincides with the structure of the automaton itself is a trivial corner
case which should not confuse you.

While in general infinitely-branching LTS can be considered, for our lecture we
only consider finitely-branching LTS, i.e. LTS (S,−→) in which for every state

s ∈ S, there are only finitely many states s′ and actions α such that s
α−→ s′.

1.2 Bisimulations

Definition 2 (Bisimulation). Let (S,−→) be an LTS over Act . A binary relation
B over S is called a (strong) simulation if for every s, s′, t ∈ S and α ∈ Act such

that s
α−→ s′ and s B t, there exists a t′ ∈ S such that t

α−→ t′ and s′ B t′.

A binary relation B over S is a (strong) bisimulation if both B and B−1 are
(strong) simulations.

We say s is simulated by t (written s . t) if there exists a simulation relation
containing the pair (s, t).

Similarly, we say s is bisimilar to t (written s ∼ t) if there exists a bisimulation
relation containing (s, t).

1

When we compare two distinct LTS (S1,−→1), (S2,−→2) using (bi)simulations,
we implicitly instantiate the above definition on the LTS (S1 ∪ S2,−→1 ∪ −→2).
An initialised LTS is a triple (S,−→, s0) where (S,−→) is an LTS and s0 ∈ S is its
initial state. We say two initialised LTS are bisimilar if their initial states are
bisimilar.

In this note we will only consider strong bisimulation, and we simply refer to it
as bisimulation.

Theorem 1. The relation ∼ is an equivalence relation.

Proof. We need to check that ∼ is reflexive, symmetric and transitive. Reflexivity
is obvious since equality is a bisimulation. Symmetry follows from the fact
that if B is a bisimulation, B−1 is a bisimulation too. For transitivity it is
sufficient to check that if B1 and B2 are both bisimulations, then the relation
B1B2 := {(s, s′) | ∃t : s B1 t ∧ t B2 s′} is a bisimulation too.

Theorem 2. The relation ∼ is a bisimulation.

Proof. Assume s ∼ t, then there is a bisimulation B such that s B t and for all
s′ ∈ S and α ∈ Act such that s

α−→ s′, there exists a t′ ∈ S such that t
α−→ t′ and

s′ B t′, which implies s′ ∼ t′. The other direction is proven by using B−1.

We now present two characterisations of bisimulation that are both very useful
for proofs involving bisimulation and for computing bisimulation relations.

1.3 Stratification of Bisimulation

The first characterisation, which only works for finitely-branching LTS, is called
stratification.

Definition 3 (Stratification). Fix an LTS (S,−→). For n ∈ N, we define the
binary relation ∼n over S, inductively as follows:

• s ∼0 t for every s, t ∈ S

• s ∼n+1 t if for every α ∈ Act :

i) for every s′ ∈ S such that s
α−→ s′, there exists a t′ ∈ S such that

t
α−→ t′ and s′ ∼n t′;

ii) for every t′ ∈ S such that t
α−→ t′, there exists a s′ ∈ S such that

s
α−→ s′ and t′ ∼n s′;

We say s is n-bisimilar to t when s ∼n t.

Proposition 3. For every n, the relation ∼n is an equivalence relation.

Proof. Easy induction on n.

Theorem 4. Fix a finitely-branching LTS (S,−→). For s, t ∈ S, s ∼ t if and
only if ∀n ∈ N : s ∼n t. Equivalently, ∼ =

⋂
n∈N ∼n.

2

For a proof, see Problem 3, Exercise Sheet 11.

Actually, Theorem 4 holds also in the weaker assumption of image-finiteness,
instead of finite branching. An LTS over Act is image-finite when for every
α ∈ Act , the relation

α−→ is finitely branching.

Note that ∼0 ⊇ ∼1 ⊇ ∼2 . . . and the expression
⋂

n∈N ∼n is the greatest fixpoint
of the relation transformer induced by Definition 3, by Kleene’s theorem.

This characterisation readily provides an algorithm for computing the bisimula-
tion relation over a finite LTS: as the following theorem shows, the sequence the
stratified relations saturates after at most n steps for an n-configurations LTS.

Theorem 5. In a LTS with n configurations, ∼ = ∼n = ∼n−1.

Proof. Let (S,−→) be an LTS with |S| = n. Observe that, if ∼k = ∼k+1 for
some k ∈ N, then ∼k = ∼j for all j ≥ k. This means that ∼n = ∼n−1 implies
∼ = ∼n so we only need to prove the former equation. Consider the sequence
of relations ∼0 ⊇ ∼1 ⊇ ∼2 . . . ; since each of them is an equivalence relation,
we can count the number of induced equivalence classes for each relation. The
number of classes is non-decreasing along the sequence and is 1 for ∼0. Surely,
at any point there cannot be more than n classes and if ∼k and ∼k+1 have
the same number of classes then they are the same relation. Now, towards a
contradiction, assume that there is no k < n such that ∼k = ∼k+1. Then we
have that ∼n−1 has n classes and ∼n would need to have at least n+ 1 classes
which is a contradiction.

1.4 Bisimulation Games

The second characterisation uses two-player games that are a variant of Ehren-
feucht-Fräıssé games (see the Advanced Automata Theory lecture notes for
background).

Definition 4 (Bisimulation Game). Fix two LTS (S0,−→0), (S1,−→1). A bisim-
ulation game is a game played by Spoiler against Duplicator. The game starts
from two positions s ∈ S0 and t ∈ S1 and proceeds in turns. At every turn with
current positions s0 ∈ S0, s1 ∈ S1:

1. Spoiler moves by choosing one of the two LTS, say Si; from Si it selects a
transition si

α−→ ti.

2. Duplicator responds by finding a transition sj
α−→ tj in the other LTS Sj

(j = 1− i).

The next turn is played from ti, tj .

A player wins if the other player cannot move in some turn. An infinite play is
won by Duplicator.

A strategy for a player is a partial function from the game’s history so far to the
choice the player needs to make in the current move. A strategy for player P is
winning from s, t if P always wins the game from s, t by following the strategy.

3

Proposition 6. i) Winning strategies for the bisimulation game are positional,
i.e. can be described by functions from the current positions to the player’s move.
ii) Every bisimulation game is determined, i.e. either one or the other player
has a winning strategy.

Theorem 7. Duplicator has a winning strategy from s, t if and only if s ∼ t.
More precisely, Duplicator has a winning strategy for the k-turn game from s, t
if and only if s ∼k t.

2 Bisimulation for Petri Nets

2.1 Decidability issues

It is natural to ask whether bisimulation is decidable for some class of models
of computation. For finite-state systems, we can compute bisimilarity using
Theorem 5. For LTS representing the reachability graph of Turing machines (with
only action τ), bisimulation is undecidable. This is easily shown by reducing the
halting problem to bisimilarity of the initial state of a Turing machine and the
state Ω of the LTS consisting of the transition Ω

τ−→ Ω.

The question we address in this section is thus: is there an infinite-state model
for which bisimulation is decidable? We consider the case of LTS generated by
Petri Nets.

2.2 Labelled Petri Nets

Definition 5 (Labelled Petri net). Fix a set of actions Act . A labelled Petri net
is a pair (N,λ) where N = (S, T,W) is a Petri net and λ : T → Act is a function
that assigns labels (actions) to the transitions of N .

The LTS induced by (N,λ) is the reachability graph of N where the edges are

relabelled using λ, i.e. for two markings M,M ′ ∈ N|S|, M
α−→ M ′ if in the

firing relation M
t−→ M ′ with λ(t) = α. A labelled Petri net is marked if the

underlaying net is marked.

Naturally, λ can assign the same action to different transitions, making it
impossible for the environment to distinguish them.

For two marked labelled Petri nets (N1, λ1) and (N2, λ2), we write (N1, λ1) ∼
(N2, λ2) to mean that the two LTS induced by the nets, restricted to the marking
reachable from the respective initial markings, are strongly bisimilar.

4

Example 1. Consider the two Petri nets:

(N1, λ1) = a b b

p0 p1

(N2, λ2) =

q0

q1
q2

q3

a

b

b
a

Their LTS are respectively

1 0 1 1 1 2 · · ·

2 0 2 1 2 2 · · ·

3 0 3 1 3 2 · · ·

...
...

...

0 0
a

a a a

a a a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1 0 0 0

0 1 1 0

0 1 0 1

a

a

b

a

b

It is easy to show that the two initial markings are strongly bisimilar, thus
(N1, λ1) ∼ (N1, λ1).

2.3 Undecidability of Strong Bisimulation for Petri Nets

The material in this section is adapted from:

P. Jančar, 1995.
Undecidability of bisimilarity for Petri nets and some related problems.
Theoretical Computer Science. Volume 148, Issue 2.

Theorem 8. Given two marked labelled Petri Nets (N1, λ1) and (N2, λ2), it is
undecidable whether (N1, λ1) ∼ (N2, λ2).

Proof. We define two PN (Nf
CM, λ) and (N f̄

CM, λ) from a 2-counter machine CM
such that

(Nf
CM, λ) ∼ (N f̄

CM, λ) ⇐⇒ CM does not halt. (∗)

A counter machine is a sequence of instructions

0: I0; 1 : I1; · · · h− 1: Ih−1;

for some h ∈ N.

5

Each instruction Ii is of one of the two forms

• cj++; which has the effect of incrementing counter cj (for j ∈ {0, 1})

• if(cj > 0) cj--; else goto k; which has the effect of decrementing the
counter cj if it is strictly positive and continue with the next instruction,
or jump to program location k ∈ {1, . . . , h} if the counter is zero.

We adopt the convention that jumping to program location h corresponds to
halting.

From CM we construct the two identical nets (Nf
CM, λ) and (N f̄

CM, λ) which

differ only for their initial marking Mf
0 and M f̄

0 which we specify later. Their
places, transitions and labelings are the same and are constructed as follows.

We have a place i for each program location of the CM i ∈ {1, . . . , h} (including
the halting location h). These places will be mutually exclusive: they are all
1-bounded and no two places will have a token at the same time. We also have
two unbounded places c1 and c2, one for each counter. Finally, we have two
auxiliary dual places that we call f and f̄ (for “f lag”).

An increment instruction at location i, that is i : cj++, is encoded as an incj-la-
belled transition that transfers a token from place i to i+ 1 while inserting a
token in place cj :

i incj i+ 1

cj

A test-and-decrement instruction at location i,

i : if(cj > 0) cj--; else goto k;

is implemented by a slightly more complicated gadget:

i

zeroj

k

cj

decj

i+ 1

zeroj

zeroj f

f̄

You can read this construction as follows. The two lower transitions are the

6

natural encoding of the instruction to Petri nets. This is usually called a “weak”
encoding because it allows to jump to the k branch even when the counter is not
zero, which we call “cheating”. Note however that these two transitions are all
we need to be able to simulate every “honest” (i.e. non-cheating) run of CM.

We added the two other zeroj transitions, which we call “definitely cheating”:
they can jump to the zero branch k only when the counter is non-zero (note the
arcs in and from the counter), an intentional mistake. They have the side-effect
of flipping the value of the flag.

Termination is encoded by a transition labelled with the halt action.

h

halt

f

We add the place f to the preset of the halting transition to help us distinguish
the behaviour of the two nets.

Finally, both initial markings Mf
0 , M

f̄
0 have a token in the place 0, encoding the

first program location. Moreover, Mf
0 has a token in f whereas M f̄

0 has a token
in f̄ .

It remains to show the claim (∗):

(Nf
CM, λ) ∼ (N f̄

CM, λ) ⇐⇒ CM does not halt.

“⇒”: Assume the CM does halt. Spoiler can win the game from Mf
0 , M

f̄
0 by

always picking the honest transitions. Duplicator has no other choice but to pick

the same transitions from M f̄
0 . When the honest run terminates, Spoiler can

pick the halt-transition but Duplicator cannot: the honest transitions do not

change the tokens in f, f̄ so the halt-transition is only enabled in Nf
CM.

“⇐”: Assume the CM does not halt. Duplicator can always win from Mf
0 , M

f̄
0

by following this strategy:

• As long as Spoiler does not cheat, i.e. doesn’t use a zeroj-transition when
cj > 0, Duplicator has no choice but to pick the same transitions. This is
always possible. If Spoiler does never cheat, the game will be infinite and
Duplicator wins.

• When Spoiler first cheats, Duplicator picks a zeroj-transition so that the
next markings coincide, i.e. flip f, f̄ if Spoiler does not flip f, f̄ and do not
flip f, f̄ otherwise. From then on, Duplicator can always pick the same
transitions as Spoiler.

7

2.4 Decidability of Bisimulation with a finite LTS

The previous negative result means that we cannot algorithmically use strong
bisimulation on Petri nets as a tool to prove correctess. However, when one
of the two nets is finite-states (i.e. bounded), strong bisimulation becomes
decidable. This can be useful to validate an infinite-state implementation against
a finite-state specification.

The material of this section is adapted from

Petr Jančar, Javier Esparza, and Faron Moller, 1999.
Petri nets and regular processes. Journal of Computer and System Sciences.
Volume 59, Issue 3.

Theorem 9. Given a PN (N,λN) and a bounded PN (A, λA), it is decidable
whether (N,λN) ∼ (A, λA).

Proof. Let s0 be the initial marking of A. Let n = |ReachA(s0)| be the (finite)
size of the LTS for A from s0. We first observe that for markings M ∈ Reach(N),
s ∈ ReachA(s0)

M ∼ s ⇐⇒ M ∼n s ∧ ReachN (M) ⊆ B

where B = {M ′ | M ′ ∼n s′ for some s′ ∈ ReachA(s0)}.

The left to right implication is trivial. For a proof of the other direction, consider
the relation ∼n over A. Since there are n configurations in ReachA(s0), we
have that ∼n = ∼n−1 by Theorem 5. Now if we consider ∼n over B, it cannot
be composed of more than n classes, otherwise we would have two markings
M1,M2 in B that are not n-bisimilar but are n-bisimilar to the same s, by
the pidgeon principle. This contradicts transitivity of ∼n. Note that the same
does not apply to markings of N outside B. Overall, we get that ∼n = ∼n−1

over B ∪ ReachA(s0). With this fact it is easy to check that ∼n is indeed a
bisimulation over ReachN (M) ∪ ReachA(s0).

Now, we need to show that we can decide 1 M ∼n s and 2 ReachN (M) ⊆ B.

By an easy induction on n, 1 is decidable.

As for 2 , we define

• the (finite!) set of n-bounded markings Ln := {M | ∀p : M(p) ≤ n},

• M �n :=

{
n if M(p) ≥ n

M(p) otherwise,

• n�L := {N | N �n = L} for L ∈ Ln.

Wlog., we assume that N is ordinary, i.e. has weights 1 or 0. Under this
assumption it is easy to show that M ∼n M �n, see Exercise Sheet 11, Problem 1.
From this we can infer that

M ∈ B ⇐⇒ M �n ∈ B ⇐⇒ n�(M �n) ⊆ B.

Since Ln is finite, we have that B is a finite union B = n�L1 ∪ · · · ∪ n�Lk,
and consequently its complement B = n�L′

1 ∪ · · · ∪ n�L′
k′ is a finite union too,

8

with Ln = {L1, . . . , Lk, L
′
1, . . . , L

′
k′}. Furthermore, the set {L′

1, . . . , L
′
k′} can be

computed by checking L ∼n s for each L ∈ Ln and s ∈ ReachA(s0).

Overall, we can decide Reach(M) ⊆ B by deciding whether Reach(M) ∩B = ∅,
which in turn can be computed by checking if we can reach some M ′ ∈ n�L′

i, for
some i ∈ {1, . . . , k′}.

The latter problem can be reduced to reachability of L′
i in N with transitions

added that can delete tokens from any place p with L′
i(p) = n. Note that this is

not a coverability problem since for the places p where L′
i(p) < n, we want the

reachable marking to coincide with L′
i.

9

	Bisimulation and its Characterisations
	Labelled Transition Systems
	Bisimulations
	Stratification of Bisimulation
	Bisimulation Games

	Bisimulation for Petri Nets
	Decidability issues
	Labelled Petri Nets
	Undecidability of Strong Bisimulation for Petri Nets
	Decidability of Bisimulation with a finite LTS

