Regular Separability of VASS Reachability Languages

Eren Keskin and Roland Meyer
TU Braunschweig

1. Regular Separability

Regular Separability

$\mathbb{X} \in\{\mathbb{Z}, \mathbb{N}\}$.
\mathbb{X}-REGSEP:
Given: Initialized VASs V_{1} and V_{2} over Σ. Question: Does $L_{\overparen{\nwarrow}}\left(V_{1}\right) \mid L_{\widehat{\nwarrow}}\left(V_{2}\right)$ hold?
vs.
$L_{1} \mid L_{2}$:
$\exists R \subseteq \Sigma^{*}$ regular. $L_{1} \subseteq R \wedge R \cap L_{2}=\varnothing$.
Write $R: L_{1} \mid L_{2}$.

Regular Separability

Example:

1. $\left\{a^{n} . b^{n} \mid n \in \mathbb{N}\right\} \mid\left\{a^{n} . b^{n+1} \mid n \in \mathbb{N}\right\}$.

Yes! Separator: Even.Even U Odd.Odd.
2. $\left\{a^{n} \cdot b^{\leq n} \mid n \in \mathbb{N}\right\} \nmid\left\{a^{n} . b^{>n} \mid n \in \mathbb{N}\right\}$.

No! Assume $A: L_{1} \mid L_{2}$ and A has m states.
Consider $a^{m+1} \cdot b^{m+1} \in L_{1} \subseteq L(A) \cdot \downarrow$
Discussion:
Separability tries to understand the gap between languages.
Insight:
Modulo seems to play an important role!

Regular Separability

Known:
Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP'17]:
\mathbb{Z}-REGSEP is decidable.

Goal:
Theorem:
\mathbb{N}-REGSEP is decidable.

2. Transducer Trick

[Lorenzo, Wojtek, Slawek, Charles, ICALP'17]
[Wojtek and Georg, LICS'20]

Transducer Trick

Goal:
Take only one language as input.
Lemma:

$$
\begin{aligned}
L(V) \mid L(U) & \Leftrightarrow L(V) \mid T_{U}\left(D_{n}\right) \\
& \Leftrightarrow T_{U}^{-1}(L(V)) \mid D_{n} \text { over } \Sigma_{n}:=\left\{a_{i}, \bar{a}_{i} \mid i \in d y:=[1, n]\right\} \\
& \Leftrightarrow L\left(V^{\prime}\right) \mid D_{n} .
\end{aligned}
$$

3. Intermezzo: Reachability

Deciding Reachability

Approximations:

Coverability graphs:
Good: Can keep counters non-negative.
Bad: Cannot guarantee precise counter values.
Marking Equation:
Good: Can guarantee precise counter values.
Bad: Cannot keep counters non-negative.

Solution:
Combine the two.

Deciding Reachability

Challenge:

Coverability graphs need pumping to guarantee non-negativity. Pumping has to respect the marking equation.

Solution:
Only pump where the solution space is unbounded.

Deciding Reachability

Lemma:
Consider $A \cdot x=b$ over \mathbb{N}^{k} and variable $\times[i]$.
$\mathrm{x}[\mathrm{i}]$ is unbounded in $\operatorname{sol}(A \cdot x=b)$

$$
\Leftrightarrow \quad \exists s \in \operatorname{sol}(A \cdot x=0) . s(x[i])>0 .
$$

Support $=$ the set of unbounded variables.

Support solution =
$s \in \operatorname{sol}(A \cdot x=0)$ giving a positive value to all variables in the support.

Note: Homogeneous solutions are stable under addition.

Deciding Reachability

$$
\begin{array}{lll}
\Rightarrow & x[e] \text { with } e \in \sigma & \text { have to be unbounded } \\
& x[j] \text { with } \mathrm{j}=2 & \text { in the solution space. }
\end{array}
$$

So far:
Pumping where the solution space is unbounded
= pumping should yield a support solution.

Problem:

σ may not match a support solution S.
Idea:
Turn $s-\psi(\sigma)$ into a path.

Deciding Reachability

Lemma (Euler-Kirchhoff):

Let $G=(V, E)$ be a strongly connected directed graph.
Let $x: \mathbb{N}^{E}$ satisfy

$$
\begin{aligned}
\sum_{e=(-, v)} x[e] & =\sum_{e=(v,-)} x[e] \quad \forall v \in V \\
x & \geq 1
\end{aligned}
$$

Then there is a cycle c in G with $\psi(c)=x$.
Also write $c=\langle x\rangle$.

Deciding Reachability

Definition:
 A precovering graph (PG) is a strongly connected VASS:

- The nodes are decorated by gen. markings, like in coverability graphs.
- These markings agree on where to put ω.
- The PG has a root $\left(v_{\text {root }}, c\right)$ with decoration c .
- There are gen. entry/exit markings $\left(v_{\text {root }}, c_{1}\right),\left(v_{\text {root }}, c_{2}\right)$ with $c_{1}, c_{2} \sqsubseteq_{\omega} c$.

Deciding Reachability

Definition:

A PG is perfect, if

- all edge variables are in the support,
- all variables decorated ω in the entry and exit markings are in the support,
- $U p(G) \neq \varnothing \neq \operatorname{Down}(G)$:
$u \in U p(G)=$ cycle in G exec. from c_{1} increasing the counters in $\Omega(c) \backslash \Omega\left(c_{1}\right)$.
$v \in \operatorname{Down}(G)=$ cycle in G bw exec. from c_{2} decreasing $\Omega(c) \backslash \Omega\left(c_{2}\right)$.

Deciding Reachability

Pumping should yield a support solution:

Let s be a support solution with

$$
d:=s-\psi(u)-\psi(v) \geq 1
$$

This is why we have connectivity
and all edges should be in the support!

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

$$
w=\langle d\rangle
$$

Now $\psi(u)+\psi(w)+\psi(v)=s$ and we say they match.

Deciding Reachability

Insight:
v has a strictly negative effect on the ω counters

$$
\Rightarrow \quad u . w \text { must have a strictly positive effect. }
$$

Pumping:

$$
u, w, v \text { and } s \text { match } \Rightarrow u^{c} \cdot w^{c} \cdot v^{c} \text { and } c \cdot s \text { match. }
$$

With
$k:=$ least number of $u . w$ needed to execute w.
$c:=\mathrm{k}+$ least number of further u needed to execute $u^{k} . w^{k}$
the sequence becomes an \mathbb{N}-run/executable.

Deciding Reachakilith

Lambert's Iteration Lemma [TCS'92]:

For c large enough, one can even fit in a \mathbb{Z}-cycle that reaches the exit from the entry marking:

$$
u^{c} \cdot \rho \cdot w^{c} \cdot v^{c}
$$

Since pumping happens in a support solution, this still solves reachability. Notably, it stays non-negative.

Note:
This works for all \mathbb{Z}-runs, and all choices of (u, w, v) that match a support solution.

Deciding Reachability

Problem: Precovering graphs may not be perfect.
Solution: Decompose them into sequences of precovering graphs, MGTS:

Deciding Reachability

Deciding Reachability:

As long as perfectness fails, decomposition is guaranteed to succeed.
It yields finite sets of MGTS that are smaller in a well-founded order.
Hence, perfectness will eventually hold.
For perfect MGTS,
\mathbb{N}-reachability holds $\Leftrightarrow \mathbb{Z}$-reachability holds.

Deciding Reachability

Acceptance on MGTS:

$C:=$ Counters that have to stay non-negative.
$\leq:=$ Preorder to compare markings at red nodes for acceptance.

The \mathbb{Z}-runs for reachability satisfy $I A c c_{\mathbb{Z}, \underline{\Xi}_{\omega}}$.

4. DMGTS

DMGTS

Doubly-Marked MGTS $W=(U, \mu)$:
$U=$ MGTS over Σ_{n} with counters $s j \uplus d y$ with $d y$ visible.
$\mu \geq 1$.

Strategy:
Define language $L_{s j}(W)$ and $L_{d y}(W)$.
Use perfectness to achieve

$$
L_{s j}(W)\left|D_{n} \quad \Leftrightarrow \quad L_{\mathbb{Z}, j j}(W)\right| L_{\mathbb{Z}, d y}(W) .
$$

DMGTS

Acceptance:

$$
\begin{aligned}
& (I) A c c_{d y}(W):=(I) A c c_{d y, \sqsubseteq_{\omega}[d y]}(W) \\
& (I) A c c_{\mathbb{Z}, d y}(W):=(I) A c c_{\mathbb{Z}, \sqsubseteq_{\omega}[d y]}(W) \\
& I A c c_{s j}(W):=I A c c_{\left.s j, \sqsubseteq_{\omega}[s]\right]}(W) \\
& I A c c_{\mathbb{Z}, s j}(W):=I A c c_{\mathbb{Z}, \sqsubseteq_{\omega}[s j]}(W) \\
& \cap \quad \operatorname{IAcc}_{d y, \text { ■. }_{\omega}^{\mu}[d y]}(W) \\
& \cap \quad \quad \operatorname{IAcc}{\mathbb{Z}, \mathbb{\Sigma}_{\omega}^{\mu}[d y]}(W)
\end{aligned}
$$

DMGTS

Modulo- μ Specialization:
$x \sqsubseteq_{\omega}^{\mu} k$, if $k=\omega$ or $x \equiv k \bmod \mu$.
Lemma (Monotonicity of Modulo- μ Inter nediate Acceptance):

$$
\rho \in I A c c_{\mathbb{Z}, \underline{E}_{\omega}^{\mu}[d y]}(W) \quad \Rightarrow \quad \rho+\mu \in I A c c_{\mathbb{Z}, \underline{E}_{\omega}^{\mu}[d y]}(W) .
$$

> Thanks to this, we could have replaced
> $d y$ by \mathbb{Z} in $I A c c_{s j}(W)$.

DMGTS

Languages:

$\lambda_{\sharp}(\rho)$ puts here
(a, \sharp) instead of a.

$$
\begin{aligned}
& L_{s d}(W):=\{\lambda(\rho) \mid \rho \in \operatorname{IAcc} \\
& s d \\
&\left.L_{\mathbb{Z}, s d}(W)\right\}:=\left\{\lambda_{\sharp}(\rho) \mid \rho \in \operatorname{IAcc} c_{\mathbb{Z}, s d}(W)\right\}
\end{aligned}
$$

DMGTS

Zero-Reaching:

$$
W \cdot c_{\text {in }}[d y]=0=W \cdot c_{\text {out }}[d y] .
$$

Faithful:

Intermediate acceptance modulo- $\mu \Leftrightarrow$ ordinary intermediate acceptance, provided we fix initial and final values.

Faithfulness: Zero-reaching +

$$
A c c_{\mathbb{Z}, d y}(W) \cap I A c c_{\mathbb{Z}, \underline{E}_{\omega}^{\mu}[d y]}(W) \quad \subseteq \quad I A c c_{\mathbb{Z}, d y}(W)
$$

DMGTS

Perfectness:

W is perfect, if it is faithful and for all $G \in W$.

$$
U p(G) \neq \varnothing \neq \operatorname{Down}(G)
$$

$\forall e \in G . E . e \in \operatorname{supp}\left(\operatorname{Char}_{s j}(W)\right) \wedge e \in \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$.
$\forall j \in s d . G . c_{i o}[j]=\omega \quad \Rightarrow \quad x[G, i o, j] \in \operatorname{supp}\left(\operatorname{Char}_{s d}(W)\right)$.

5. Deciding Regular Separability

Theorem: Let U be an initialized VASS over Σ_{n}.
Then $L(U) \mid D_{n}$ is decidable.

Deciding Regular Separability

Algorithm:

Deciding Regular Separability

Algorithm:

1. Turn the given VASS U into an initial DMGTS W.
W.
2. Decompose W into finite sets Perf and Fin.

For the DMGTS $T \in$ Fin,

$$
L_{s j}(T) \mid D_{n}
$$

For the DMGTS $S \in$ Perf,

$$
L_{s j}(S)\left|D_{n} \quad \Leftrightarrow \quad L_{\mathbb{Z}, s j}(S)\right| L_{\mathbb{Z}, d y}(S) .
$$

3. Check $L_{\mathbb{Z}, s j}(S) \mid L_{\mathbb{Z}, d y}(S)$ using [ICALP'17]. If all checks pass return true, else return false.

Needed: Initial DMTS, decomposition, separability transfer.

Deciding Regular Separability: Initial DMGTS

Definition:

Let $\left(U, c_{\text {init }}, c_{\text {final }}\right)$ be a VAS with counters $s j$.

The associated initial DMGTS is $W=(G, \mu)$ with $\mu=1$ and

Deciding Regular Separability: Initial DMGTS

Lemma (Initial DMGTS):

1. $L_{s j}(W)=L(U)$.

We can now show $L_{\mathrm{sj}}(W) \mid D_{n}$ and rely on faithfulness.
2. W is faithful.

Proof:

1. $L_{s j}(W)$ additionally requires acceptance modulo μ on $d y$.

As $\mu=1$ and the extremal markings are 0 on $d y$, this is no restriction.
2. W is zero-reaching by definition.

Moreover, there are no intermediate markings.
Hence, acceptance and intermediate acceptance on $d y$ coincide:

$$
A c c_{\mathbb{Z}, d y}(W) \cap I A c c_{\mathbb{Z}, \sqsubseteq_{\omega}^{\mu}[d y]}(W) \subseteq \operatorname{Acc}_{\mathbb{Z}, d y}(W)=\operatorname{IAc} c_{\mathbb{Z}, d y}(W)
$$

Deciding Regular Separability: Decomposition

Proposition (Decomposition):
Given a faithful DMTS W, we can compute finite sets
Perf and Fin of DMGTS,
where

- $\forall S \in \operatorname{Perf} . \quad S$ is perfect,
- $\forall T \in$ Fin. $\quad L_{s j}(T) \mid D_{n}$,
- $L_{s j}(W)=L_{s j}($ Perf $) \cup L_{s j}($ Fin $)$.

We only have to show $L_{s j}($ Perf $) \mid D_{n}$ and can rely on perfectness.

Deciding Regular Separability: Decomposition

Proposition (Separability Transfer):
We can rely on the decision procedure
If S is perfect,

$$
L_{s j}(S)\left|D_{n} \quad \Leftrightarrow \quad L_{\mathbb{Z}, s j}(S)\right| L_{\mathbb{Z}, d y}(S) .
$$

Lemma:
Given a DMGTS W, we can compute (\mathbb{Z}-)VASS
$U_{s j}$ and $U_{d y}$ with $L_{\mathbb{Z}, s d}(S)=L_{\mathbb{Z}}\left(U_{s d}\right)$.
Proof:
Auxiliary counters for each intermediate marking.
Maintain them until that marking is reached.
Check their values at the end.

Deciding Regular Separability

Algorithm:

1. Turn the given VASS U into an initial DMGTS W.
2. Decompose W into finite sets Perf and Fin.

For the DMGTS $S \in P e r f$,

It remains to prove decomposition and separability transfer!

$$
L_{s j}(S)\left|D_{n} \quad \Leftrightarrow \quad L_{\mathbb{Z}, s j}(S)\right| L_{\mathbb{Z}, d y}(S)
$$

3. For each $S \in \operatorname{Perf}$, compute VASS $U_{s j}$ and $U_{d y}$ with $L_{\mathbb{Z}}\left(U_{s d}\right)=L_{\mathbb{Z}, s d}(S)$.
4. Check $L_{\mathbb{Z}}\left(U_{s j}\right) \mid L_{\mathbb{Z}}\left(U_{d y}\right)$ using [ICALP'17].
5. If all $S \in \operatorname{Perf}$ pass the check, then return true, else return false.

6. Separability Transfer

Proposition: Let S be perfect. Then

$$
L_{\mathbb{Z}, s j}(S)\left|L_{\mathbb{Z}, d y}(S) \quad \Leftrightarrow \quad L_{s j}(S)\right| D_{n} .
$$

6.1 Separability

Lemma: Let S be faithful. Then

$$
L_{\mathbb{Z}, s j}(S)\left|L_{\mathbb{Z}, d y}(S) \quad \Rightarrow \quad L_{s j}(S)\right| D_{n}
$$

seraranily

Language intersection.

Every transition as an
a and (a, \sharp) variant.

Approach:

Reuse a separator for the \mathbb{Z}-languages:

$$
B^{\sharp}: L_{\mathbb{Z}, s j}(S)\left|L_{\mathbb{Z}, d y}(S) \quad \stackrel{!}{\Rightarrow} \quad B^{\sharp} \times A^{\sharp}: L_{\mathbb{Z}, s j}(S)\right| D_{n}^{\sharp} \quad \Rightarrow \quad B \times A: L_{s j}(S) \mid D_{n} .
$$

Note:

Every \mathbb{Z}-separator can be turned into an \mathbb{N}-separator. A^{\sharp} only depends on S, but is independent of B^{\sharp}.

Separability

Lemma:

Let S be faithful.
We can construct an NFA A^{\sharp} so that for all B^{\sharp}.

$$
B^{\sharp}: L_{\mathbb{Z}, s j}(S)\left|L_{\mathbb{Z}, d y}(S) \quad \Rightarrow \quad B^{\sharp} \times A^{\sharp}: L_{\mathbb{Z}, s j}(S)\right| D_{n}^{\sharp} .
$$

Task:

Restrict B^{\sharp} to make it disjoint from D_{n}^{\sharp}.

Separability: Disjointness

Situation:

Observation: B^{\sharp} is disjoint from $L_{\mathbb{Z}, d y}(S)$.
Lemma: Let $L\left(B^{\sharp}\right) \cap L_{\mathbb{Z}, d y}(S)=\varnothing$. Then

Easier to prove!

$$
L\left(B^{\sharp} \times A^{\sharp}\right) \cap D_{n}^{\sharp}=\varnothing \quad \Leftrightarrow \quad L\left(B^{\sharp} \times A^{\sharp}\right) \cap D_{n}^{\sharp} \subseteq L_{\mathbb{Z}, d y}(S)
$$

Proof: \Rightarrow
$\Leftarrow \quad L\left(B^{\sharp} \times A^{\sharp}\right) \cap D_{n}^{\sharp} \stackrel{\text { assumption }}{\subseteq} L\left(B^{\sharp}\right) \cap L_{\mathbb{Z}, d y}(S) \stackrel{\text { premise }}{=} \varnothing$.

Separability: Disjointness

1. Failure of $L\left(B^{\sharp}\right) \cap D_{n}^{\#} \subseteq L_{\mathbb{Z}, d y}(S)$:

$$
B^{\sharp} \text { may not follow the control flow of } S \text {. }
$$

1. Definition:

$$
A_{S}^{\#}:=\operatorname{NFA}(S) .
$$

1. Check of $L\left(B^{\sharp} \times A_{S}^{\#}\right) \cap D_{n}^{\#} \subseteq L_{\mathbb{Z}, d y}(S)$:

Consider $w \in L\left(B^{\sharp} \times A_{S}^{\sharp}\right) \cap D_{n}^{\sharp}$.
Then w labels a run ρ through S.
As $w \in D_{n}^{\sharp}$ and S is visible, ρ takes the Dyck counters in S from 0 to 0 .
Hence,

$$
\rho \in A c c_{\mathbb{Z}, d y}(S)
$$

Separability: Disjointness

2. Failure of $L\left(B^{\sharp} \times A_{S}^{\#}\right) \cap D_{n}^{\#} \subseteq L_{\mathbb{Z}, d y}(S)$:
$L_{\mathbb{Z}, d y}(S)$ is not defined via $A c c_{\mathbb{Z}, d y}(S)$ but via $I A c c_{\mathbb{Z}, d y}(S)$. The run may not reach intermediate values.
3. Solution: Faithfulness

$$
A c c_{\mathbb{Z}, d y}(S) \cap I A c c_{\mathbb{Z}, \sqsubseteq_{\omega}^{\mu}[d y]}(S) \quad \subseteq \quad I A c c_{\mathbb{Z}, d y}(S)
$$

Track the control flow as before.
Track the $d y$ counters modulo μ.
Check the $d y$ counters when entering and exiting precovering graphs.

Separability: Disjointness

Proof of $L\left(B^{\sharp} \times A^{\#}\right) \cap D_{n}^{\#} \subseteq L_{\mathbb{Z}, d y}(S)$:

Consider $w \in L\left(B^{\sharp} \times A^{\sharp}\right) \cap D_{n}^{\sharp}$.

Then w labels a run ρ through S.
Trick 7 in Action:
Faithfulness gives us disjointness from $D_{n}^{\#}$.

As before, we have $\rho \in \operatorname{Acc}_{\mathbb{Z}, d y}(S)$.
But additionally, we now get $\rho \in I A c c_{\mathbb{Z}, \Xi_{\omega}^{\mu}[d y]}(S)$.
Faithfulness yields

$$
\rho \in I A c c_{\mathbb{Z}, d y}(S)
$$

Separability: Inclusior

Problem: $L_{Z, s j}(S) \subseteq L\left(B^{\sharp} \times A^{\sharp}\right)$?

Yes!
 $L_{\mathbb{Z}, s j}(S) \subseteq L\left(B^{\sharp}\right)$ by assumption.

Trick 3 in Action:
The intersection in the definition of $I A c c_{\mathbb{Z}, j j}(S)$ is what allows us to restrict the \mathbb{Z}-separator!

For $L_{\mathbb{Z}, j j}(S) \subseteq L\left(A^{\sharp}\right)$, note that

$$
I A c c_{\mathbb{Z}, s j}(S)=I A c c_{\mathbb{Z}, \bar{\Xi}_{\omega}[s j]}(S) \quad \cap \quad I A c c_{\mathbb{Z}, \underline{\Xi}_{\omega}^{\mu}[d y]}(S) .
$$

The latter intersection guarantees the inclusion!

The $\#$ is not needed for this direction of separability transfer!

6.2 Intermezzo: Büchi Boxes

Intermezzo: Büchi Boxes

Goal: Understand what a separator can distinguish [Büchi'62].

Definition:

An NFA A over Σ induces an equivalence on Σ^{*} by

$$
u \sim_{A} v, \text { if } \forall p, q \in A . Q . \quad p \xrightarrow{u} q \quad \Leftrightarrow \quad p \xrightarrow{v} q .
$$

Intuition:
Words are equivalent, if they induce the same state changes. Equivalence classes therefore correspond to relations on states.

Intermezzo: Büchi Boxes

Example:

$$
\begin{array}{rr}
a \sim_{A} b & a \sim_{A} v \quad v \neq b \\
c . c \sim_{A} d & c . c \cdot c \sim_{A} a \cdot a
\end{array}
$$

Classes = relations on states:

$$
[a]_{\sim_{A}} \cdot[c, c]_{\sim_{A}}=\{a, b\} \cdot\{c \cdot c, d\}=\{a \cdot c \cdot c, a \cdot d, b, c, c, b \cdot d\}=[a \cdot c \cdot c]_{\sim_{A}}
$$

Box (a)

Box(c.c)

Box(a.c.c)

Intermezzo: Büchi Boxes

Lemma (Büchi):

1. \sim_{A} is a congruence wrt. concatenation:

$$
\forall u_{1}, u_{2}, v_{1}, v_{2} . \quad u_{1} \sim_{A} u_{2} \wedge v_{1} \sim_{A} v_{2} \Rightarrow u_{1} \cdot v_{1} \sim_{A} u_{2} \cdot v_{2}
$$

2. \sim_{A} has finite index.
3. $\forall c \in \Sigma^{*} /{ }_{\sim_{A}} . \quad c \subseteq L(A) \quad \vee \quad c \cap L(A)=\varnothing$.
4. $\forall c \in \Sigma^{*} / \sim_{\sim_{A}} . \quad c$ is a regular language.

Proof:

1. routine, 2 . count the boxes, 3 . by definition, 4.

$$
[u]_{\sim_{A}}=\bigcap_{\substack{p, q \in A \cdot Q \\ p \xrightarrow[\rightarrow]{u} q}} L\left(A_{p, q}\right) \cap \bigcap_{\substack{p, q \in A \cdot Q \\ p \ngtr q}} \overline{L\left(A_{p, q}\right)} .
$$

6.3 Inseparability

Lemma: Let S be perfect. Then

$$
L_{\mathbb{Z}, s j}(S)+L_{\mathbb{Z}, d y}(S) \quad \Rightarrow \quad L_{s j}(S) \nmid D_{n}
$$

Inseparability

Strategy:

Towards a contradiction, assume $A: L_{s j}(S) \mid D_{n}$.
We construct words

$$
o_{s j} \in L_{s j}(S) \quad \text { and } \quad o_{d y} \in L_{d y}(S) \subseteq D_{n} \quad \text { with } \quad o_{s j} \sim_{A} o_{d y}
$$

Contradiction:

$$
\begin{array}{ll}
o_{s j} \in L(A) \quad \stackrel{\text { Büchi } 3 .}{\Rightarrow} & o_{d y} \in L(A) \\
o_{s j} \notin L(A) & \\
& \Rightarrow L(A) \cap D_{n} \neq \varnothing
\end{array}
$$

Inseparability

Trick 8 in Action:

The pumping sequences u_{i} and v_{i} are shared between $L_{s j}(S)$ and $L_{d y}(S)$.

Construction:

Use Lambert's iteration lemma twice:

$$
\begin{aligned}
o_{s j} & =\lambda\left(u_{0}^{c} \cdot g_{0}^{c} \cdot w_{s j, 0}^{c} \cdot v_{0}^{c} \cdot t_{1} \ldots t_{k} \cdot u_{k}^{c} \cdot g_{k}^{c} \cdot w_{s j, k}^{c} \cdot v_{k}^{c}\right) & \in L_{s j}(S) \\
o_{d y} & =\lambda\left(u_{0}^{c} \cdot h_{0}^{c} \cdot w_{d y, 0}^{c} \cdot v_{0}^{c} \cdot t_{1} \ldots t_{k} \cdot u_{k}^{c} \cdot h_{k}^{c} \cdot w_{d y, k}^{c} \cdot v_{k}^{c}\right) & \in L_{d y}(S) .
\end{aligned}
$$

Note: We can assume a common pumping constant c.
Strategy (cont.):
For $o_{s j} \sim_{A} o_{d y}$, using Büchi 1. we need

$$
\forall 0 \leq i \leq k . \quad \lambda\left(g_{i}\right) \sim_{A} \lambda\left(h_{i}\right) \quad \wedge \quad \lambda\left(w_{s j, i}\right) \sim_{A} \lambda\left(w_{d y, i}\right) .
$$

Inseparability: $\lambda\left(g_{i}\right) \sim_{A} \lambda\left(h_{i}\right)$

Construction:

$$
\begin{array}{cc}
o_{s j}= & \lambda\left(u_{0}^{c} \cdot g_{0}^{c} \cdot w_{s j, 0}^{c} \cdot v_{0}^{c} \cdot t_{1} \ldots t_{k} \cdot u_{k}^{c} \cdot g_{k}^{c} \cdot w_{s j, k}^{c} \cdot v_{k}^{c}\right) \\
\imath^{\pi} & \imath^{\pi} \\
o_{d y}= & \lambda\left(u_{0}^{c} \cdot h_{0}^{c} \cdot w_{d y, 0}^{c} \cdot v_{0}^{c} \cdot t_{1} \ldots t_{k} \cdot u_{k}^{c} \cdot h_{k}^{c} \cdot w_{d y, k}^{c} \cdot v_{k}^{c}\right)
\end{array}
$$

When solving reachability, $g_{0} \ldots g_{k}$ resp. $h_{0} \ldots h_{k}$ can be arbitrary \mathbb{Z}-runs.
We need $\lambda\left(g_{i}\right) \sim_{A} \lambda\left(h_{i}\right)$.
The premise $L_{\mathbb{Z}, s j}(S) \nmid L_{\mathbb{Z}, d y}(S)$ provides equivalent \mathbb{Z}-runs.

Inseparability: $\lambda\left(g_{i}\right) \sim_{A} \lambda\left(h_{i}\right)$

Goal: Use the premise $L_{\mathbb{Z}, s j}(S) \nmid L_{\mathbb{Z}, d y}(S)$ to obtain equivalent \mathbb{Z}-runs.

Idea: Understand how \sim_{A} yields separability, then use contraposition.

Lemma:

Let A be an NFA so that
for all pairs of words

$$
\begin{array}{r}
w_{0} \cdot\left(a_{1}, \sharp\right) \ldots\left(a_{k}, \sharp\right) \cdot w_{k} \in L_{\mathbb{Z}, s j}(S) \\
v_{0} \cdot\left(a_{1}, \sharp\right) \ldots\left(a_{k}, \sharp\right) \cdot v_{k} \in L_{\mathbb{Z}, d y}(S)
\end{array}
$$

there is $0 \leq i \leq k$ with $w_{i} \rtimes_{A} v_{i}$.
Then $L_{\mathbb{Z}, j j}(S) \mid L_{\mathbb{Z}, d y}(S)$.

Inseparability: $\lambda\left(g_{i}\right) \sim_{A} \lambda\left(h_{i}\right)$

Lemma: Let A be an NFA so that
for all pairs of words \ldots there is $w_{i} \sim_{A} v_{i}$.
Then $L_{\mathbb{Z}, s j}(S) \mid L_{\mathbb{Z}, d y}(S)$.
Construction of g_{i} and h_{i} :
Apply the lemma in contraposition to the premise $L_{\mathbb{Z}, s j}(S) \nmid L_{\mathbb{Z}, d y}(S)$.

This yields a pair of words as in the lemma with $w_{i} \sim_{A} v_{i}$ for all i.

Then the g_{i} and h_{i} are loops in the PGs of S with

$$
\lambda\left(g_{i}\right)=w_{i} \quad \lambda\left(h_{i}\right)=v_{i} \quad \text { for all } i .
$$

Inseparability: $\lambda\left(g_{i}\right) \sim_{A} \lambda\left(h_{i}\right)$

Lemma: Let A be an NFA so that

for all pairs of words \ldots there is $w_{i} \sim_{A} v_{i}$.
Then $L_{\mathbb{Z}, s j}(S) \mid L_{\mathbb{Z}, d y}(S)$
Proof: Define

$$
L:=\bigcup_{w_{0} \cdot\left(a_{1}, \sharp\right) \ldots\left(a_{k}, \sharp\right) \cdot w_{k} \in L_{\mathbb{Z}, s j}(S)}\left[w_{0}\right]_{\sim_{A}} \cdot\left(a_{1}, \sharp\right) \ldots\left(a_{k}, \sharp\right) \cdot\left[w_{k}\right]_{\sim_{A}}
$$

L is regular:

The union is finite as \sim_{A} has finite index by Büchi 2 .
The classes are regular by Büchi 4
L is a separator:
$L_{\mathbb{Z}, s j}(S) \subseteq L$ by definition.

Assume $L \cap L_{\mathbb{Z}, d y}(S) \neq \varnothing$.
Then there is $v_{0} .\left(a_{1}, \sharp\right) \ldots\left(a_{k}, \sharp\right) . v_{k} \in L_{\mathbb{Z}, d y}(S)$
for which there is $w_{0} \cdot\left(a_{1}, \sharp\right) \ldots\left(a_{k}, \sharp\right) . w_{k} \in L_{\mathbb{Z}, s j}(S)$

Inseparability: $\lambda\left(g_{i}\right) \sim_{A} \lambda\left(h_{i}\right)$

Construction:

$$
\begin{aligned}
o_{s j} & =\lambda\left(u_{0}^{c} \cdot g_{0}^{c} \cdot w_{s j, 0}^{c} \cdot v_{0}^{c} \cdot t_{1} \ldots t_{k} \cdot u_{k}^{c} \cdot g_{k}^{c} \cdot w_{s j, k}^{c} \cdot v_{k}^{c}\right) \\
\tau^{4} & 2^{4} \\
o_{d y}= & \lambda\left(u_{0}^{c} \cdot h_{0}^{c} \cdot w_{d y, 0}^{c} \cdot v_{0}^{c} \cdot t_{1} \ldots t_{k} \cdot u_{k}^{c} \cdot h_{k}^{c} \cdot w_{d y, k}^{c} \cdot v_{k}^{c}\right)
\end{aligned}
$$

Inseparability: $\lambda\left(w_{s j, i}\right) \sim_{A} \lambda\left(w_{d y, i}\right)$

Construction:

$$
\begin{aligned}
& o_{s j}=\lambda\left(u_{0}^{c} \cdot g_{0}^{c} \cdot w_{s j, 0}^{c} \cdot v_{0}^{c} \cdot t_{1} \ldots t_{k} \cdot u_{k}^{c} \cdot g_{k}^{c} \cdot w_{s j, k}^{c} \cdot v_{k}^{c}\right) \\
& 2^{c}
\end{aligned}
$$

Actually: We will also modify the support solutions and covering sequences.

Inseparability: $\lambda\left(w_{s j, i}\right) \sim_{A} \lambda\left(w_{d y, i}\right)$

Goal: Construct support solutions $s_{s j}$ and $s_{d y}$ and for all $0 \leq i \leq k$

$$
u_{i} \in U p\left(G_{i}\right) \quad v_{i} \in \operatorname{Down}\left(G_{i}\right) \quad w_{s j, i} \quad w_{d y, i}
$$

with $\lambda\left(w_{s j, i}\right) \sim_{A} \lambda\left(w_{d y, i}\right)$ so that

$$
\begin{gathered}
\psi\left(u_{i}\right)+\psi\left(w_{s j, i}\right)+\psi\left(v_{i}\right)=s_{s j}\left[G_{i} \cdot E\right] \\
\psi\left(u_{i}\right)+\psi\left(w_{d y, i}\right)+\psi\left(v_{i}\right)=s_{d y}\left[G_{i} \cdot E\right] .
\end{gathered}
$$

(Matching)

Need matching to invoke Lambert's iteration lemma.

Inseparability: $\lambda\left(w_{s j, i}\right) \sim_{A} \lambda\left(w_{d y, i}\right)$

Notation:
Fix an index $0 \leq i \leq k$ and call the

$$
u_{i} \in U p\left(G_{i}\right) \quad v_{i} \in \operatorname{Down}\left(G_{i}\right) \quad w_{s j, i} \quad w_{d y, i}
$$

we want to construct $u, v, w_{s j}$, and $w_{d y}$.

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Idea:

For the construction of $w_{s j}$ and $w_{d y}$, use pumping.

Construction:

Assume A has n states.
We define

$$
\begin{aligned}
w_{s j} & :=\text { diff }^{n} \cdot \mathrm{rem} \\
w_{d y} & :=\text { diff }^{n+c \cdot n!} \cdot \mathrm{rem}
\end{aligned}
$$

The runs diff and rem and the constant c will be fixed when we analyze (Matching).
No matter how, $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$ will hold.

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Lemma:

Let A be a DFA over Σ with n states and let $c \in \mathbb{N}$.
Then for all $u, v \in \Sigma^{*}$, we have

$$
u^{n} \cdot v \sim_{A} u^{n+c \cdot n!} \cdot v
$$

Proof:

Consider states p and q in A.
To show

$$
p \xrightarrow{u^{n} \cdot v} q \quad \Leftrightarrow \quad p \xrightarrow{u^{n+c \cdot n!} \cdot v} q
$$

it suffices to show that A reaches the same state when reading u^{n} and $u^{n+c \cdot n!}$ from p.

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Lemma:

Let A be a DFA over Σ with n states and let $c \in \mathbb{N}$.
Then for all $u, v \in \Sigma^{*}$, we have

$$
u^{n} \cdot v \sim_{A} u^{n+c \cdot n!} \cdot v
$$

Proof:

We show that A reaches the same state
when reading u^{n} and $u^{n+c \cdot n!}$ from p.
Let q_{i} be the state in A reached after reading u^{i} from p, where $u^{0}:=\varepsilon$. By the pigeonhole principle, there are

$$
0 \leq i<j \leq n \quad \text { with } \quad q_{i}=q_{j}
$$

As A is a DFA, u^{n} and $u^{j} \cdot u^{j-i} \cdot u^{n-j}=u^{n+(j-i)}$ both end up in q_{n}.
We not only repeat u^{j-i} once, but

$$
\frac{c \cdot n!}{j-i} \text { many times. }
$$

Thanks to the factorial and $c \in \mathbb{N}$, this is a positive integer.
This means also $u^{n+c \cdot n!}$ ends up in q_{n}.

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Want: $u \in U p(G), v \in \operatorname{Down}(G), \operatorname{diff}$, and rem, and support solutions $s_{s j}$ and $s_{d y}$ that match.

Have: By perfectness, support solutions $s_{s j}^{\prime}$ and $s_{d y}^{\prime}$ and for all $0 \leq i \leq k$.

$$
u_{i}^{\prime} \in U p\left(G_{i}\right) \quad v_{i}^{\prime} \in \operatorname{Down}\left(G_{i}\right)
$$

so that

$$
s_{s d}^{\prime}\left[G_{i} . E\right]-\psi\left(u_{i}^{\prime}\right)-\psi\left(v_{i}^{\prime}\right) \geq 1
$$

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Needed:

$$
\begin{gathered}
\psi(u)+\psi\left(w_{s j}\right)+\psi(v)=s_{s j}[E] \\
\psi(u)+\psi\left(w_{d y}\right)+\psi(v)=s_{d y}[E] .
\end{gathered}
$$

Recall: $w_{s j}=$ diff n. rem and $w_{d y}=$ diff $n+c \cdot n!$ rem.
Consequence: Need

$$
\begin{aligned}
\psi(u)+n \cdot \psi(\text { diff })+\psi(\text { rem })+\psi(v) & =s_{s j}[E] \\
\psi(u)+(n+c \cdot n!) \cdot \psi(\text { diff })+\psi(\text { rem })+\psi(v) & =s_{d y}[E] .
\end{aligned}
$$

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Consequence: Need

$$
\begin{aligned}
\psi(\pi)+n \cdot \psi(d i f f)+\psi(n e m)+\psi(V) & =s_{s j}[E] \\
\psi(\pi)+(n+c \cdot n!) \cdot \psi(d i f f)+\psi(n e m)+\psi(V) & =s_{d y}[E] .
\end{aligned}
$$

Consequence: We subtract the equations to isolate $\psi($ diff $)$:

$$
c \cdot n!\cdot \psi(d i f f)=s_{d y}[E]-s_{s j}[E]=\left(s_{d y}-s_{s j}\right)[E] .
$$

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Consequence: We subtract the equations to isolate $\psi($ diff $)$ and get

$$
c \cdot n!\cdot \psi(d i f f)=\left(s_{d y}-s_{s j}\right)[E] .
$$

Define:

$$
s_{s d}:=c \cdot n!\cdot s_{s d}^{\prime}
$$

Consequence: We can factor out $c \cdot n!$ and get rid of it,

$$
\leadsto \pi!\cdot \psi(d i f f)=c \pi!\cdot\left(s_{d y}^{\prime}-s_{s j}^{\prime}\right)[E] .
$$

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Definition: To obtain $\psi($ diff $)=\left(s_{d y}^{\prime}-s_{s j}^{\prime}\right)[E]$, we set

$$
\text { diff }:=\left\langle\left(s_{d y}^{\prime}-s_{s j}^{\prime}\right)[E]\right\rangle
$$

Remark:
To invoke Euler-Kirchhoff, we need $\left(s_{d y}^{\prime}-s_{s j}^{\prime}\right)[E] \geq 1$.
We can assume $s_{d y}^{\prime}$ has been scaled to guarantee this.

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Recall: We need matching

$$
\psi(u)+\psi\left(w_{s j}\right)+\psi(v)=s_{s j}[E] .
$$

Consequence: Inserting the choice of $s_{s j}$ yields

$$
\psi(u)+n \cdot \psi(\text { diff })+\psi(\text { rem })+\psi(v)=c \cdot n!\cdot s_{s j}^{\prime}[E] .
$$

Consequence:

$$
\psi(r e m)=c \cdot n!\cdot s_{s j}^{\prime}[E]-\psi(u)-\psi(v)-n \cdot \psi(\text { diff }) .
$$

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Consequence:

$$
\psi(\text { rem })=c \cdot n!\cdot s_{s j}^{\prime}[E]-\psi(u)-\psi(v)-n \cdot \psi(\text { diff }) .
$$

Idea: To apply Euler-Kirchhoff, the right-hand side has to be ≥ 1.
Define:

$$
u:=\left(u^{\prime}\right)^{c \cdot n!} \quad v:=\left(v^{\prime}\right)^{c \cdot n!}
$$

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Consequence:

$$
\begin{aligned}
\psi(\text { rem }) & =c \cdot n!\cdot s_{s j}^{\prime}[E]-\psi(u)-\psi(v)-n \cdot \psi(\text { diff }) \\
& =c \cdot n!\cdot s_{s j}^{\prime}[E]-c \cdot n!\cdot \psi\left(u^{\prime}\right)-c \cdot n!\cdot \psi\left(v^{\prime}\right)-n \cdot \psi(\text { diff }) \\
& =c \cdot n!\cdot \underbrace{\left(s_{s j}^{\prime}[E]-\psi\left(u^{\prime}\right)-\psi\left(v^{\prime}\right)\right)}_{\geq 1}-n \cdot \psi(\text { diff }) .
\end{aligned}
$$

Definition:

$$
c:=\text { least value so that } \psi(r e m) \geq 1
$$

Defininition:

$$
\mathrm{rem}:=\left\langle c \cdot n!\cdot\left(s_{s j}^{\prime}[E]-\psi\left(u^{\prime}\right)-\psi\left(v^{\prime}\right)\right)-n \cdot \psi(\text { diff })\right\rangle
$$

Inseparability: $\lambda\left(w_{s j}\right) \sim_{A} \lambda\left(w_{d y}\right)$

Remark:

The choice of c is not local to G
but global in that it has to hold for all PGs in S.

7. Decomposition

Proposition: Given a faithful DMGTS W, we can compute finite sets Perf and Fin of DMGTS so that
(i) $\forall S \in$ Perf. S is perfect.
(ii) $\forall T \in$ Fin. $L_{s j}(T) \mid D_{n}$.
(iii) $L_{s j}(W)=L_{s j}($ Perf $) \cup L_{s j}($ Fin $)$.

Decomposition

Approach:

Capture a single decomposition step.
Rely on well-foundedness.
Lemma (Step):
There is a computabie function $\operatorname{dec}(-)$ that take a DMGTS W as follows
faithful, imperfect, $\quad \operatorname{sol}\left(\operatorname{Char}_{s j}(W)\right) \neq \varnothing \neq \operatorname{sol}\left(\operatorname{Char}_{d y}(W)\right)$.
It returns finite sets $(X, Y)=\operatorname{dec}(W)$ of DMGTS with
If not perfect, you can decompose.
(a) $\forall S \in X$. S is faithful and $S<W$.
(b) $\forall T \in Y . L_{s j}(T) \mid D_{n}$.
(c) $L_{s j}(W)=L_{s j}(X) \cup L_{s j}(Y)$.
(b) and (c) as required by decomposition.

Decomposition

algo(input: a faithful DMGTS W output: Perf and Fin

$$
\begin{aligned}
\operatorname{sol}\left(\operatorname{Char}_{s j}(W)\right)=\varnothing & \Rightarrow L_{\mathbb{Z}, s j}(W)=\varnothing \\
& \Rightarrow L_{s j}(W)=\varnothing
\end{aligned}
$$

if W is perfect then
return $\operatorname{Perf}=\{W\}$, Fin $=\varnothing$;
else if $\operatorname{sol}\left(\operatorname{Char}_{s j}(W)\right)=\varnothing$ then
Goal:
return $\operatorname{Perf}=\varnothing$, Fin $=\varnothing$;
else if $\operatorname{sol}\left(\operatorname{Char}_{d y}(W)\right)=\varnothing$ then
return Perf $=\varnothing$, Fin $=\{W\}$;
(i) $\forall S \in \operatorname{Perf}$. S is perfect. else
$(X, Y)=\operatorname{dec}(W)$;
(ii) $\forall T \in$ Fin. $L_{s j}(T) \mid D_{n}$.

Perf $=\varnothing$; Fin $=Y$;
for all $S \in X$ begin
(iii) $L_{s j}(W)=L_{s j}($ Perf $) \cup L_{s j}($ Fin $)$.
$\left(\right.$ Perf $_{S}$, Fin $\left._{S}\right)=\operatorname{algo}(S)$;
Perf $=$ Perf \cup Perf $_{S}$;
Fin $=F i n \cup$ Fin $_{S}$;
end for all
end else
end
$\operatorname{sol}\left(\operatorname{Char}_{d y}(W)\right)=\varnothing \quad \Rightarrow \quad L_{\mathbb{Z}, d y}(W)=\varnothing$
$\Rightarrow \quad L_{\mathbb{Z}, j j}(W) \mid L_{\mathbb{Z}, d x}(W)$
\{Separability Transfer $\} \Rightarrow L_{s j}(W) \mid D_{n}$.

Decomposition: Step Lemma

Fact: Let W be faithful.

$$
W \text { is not perfect } \quad \Leftrightarrow \quad \exists G \in W .(1) \vee(2) \vee(3) \text { with }
$$

(1) $G . c_{i o}[j]=\omega \wedge G . c_{i o}[j] \notin \operatorname{supp}\left(\operatorname{Char}_{s d}(G)\right)$.
(2) $e \in G . E \wedge e \notin \operatorname{supp}\left(\operatorname{Char}_{s d}(G)\right)$.
(3) $U p(W)=\varnothing \vee \operatorname{Down}(G)=\varnothing$.

Approach: Case distinction.

7.1 Case $j \notin \operatorname{supp}\left(\right.$ Char $\left._{s d}(W)\right)$

Step Lemma: Case $j \notin \operatorname{supp}\left(\right.$ Char $\left._{s d}(W)\right)$

Fact: If $j \notin \operatorname{supp}\left(\operatorname{Char}_{s d}(W)\right)$,

$$
A_{s d}:=\left\{s[j] \mid s \in \operatorname{sol}\left(\operatorname{Char}_{s d}(W)\right)\right\}
$$

is finite, non-empty, and $\subseteq \mathbb{N}$.

7.1.1 Case $s d=s j$

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{s j}(W)\right)$

Let $W=(U, \mu)$.
Define:

$$
X:=\left\{\left(U_{a}, \mu\right) \mid a \in A_{s j}\right\} \quad Y:=\varnothing .
$$

U with the value of j
at the moment of interest modified from ω to a.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{s j}(W)\right)$

Proof:
(c) $L_{s j}(W)=L_{s j}(X)$.
\subseteq Consider $\rho \in \operatorname{IAcc} c_{s j}(W)$.
Then ρ solves the characteristic equations.
Hence, counter j assumes a value $a \in A_{s j}$ at the moment of interest.
Hence, $\rho \in \operatorname{IAcc}_{s j}\left(U_{a}, \mu\right)$, and $\left(U_{a}, \mu\right) \in X$.
\supseteq Concrete values make intermediate acceptance stronger.
(b) $\forall T \in Y \ldots$ There is nothing to show.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{s j}(W)\right)$

Proof (cont.):

(a) Faithfulness.

We neither modified the edges nor the $d y$ markings. Hence, faithfulness holds by the faithfulness of W.
(a) Descent
$\Omega(G), G . E$, and $G . c_{\overline{i o}}$ stay unchanged.
We reduce $\left|\Omega\left(G . c_{i o}\right)\right|$.

7.1.2 Case $s d=d y$

This is the complicated case!

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Setting:

We change an extremal marking for a Dyck counter
from ω to a concrete value.
As a consequence, we have to check faithfulness.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Setting: We have to check faithfulness.
Lemma (Modulo Trick):
Consider $0 \leq a, b<\nu$.

$$
a \equiv b \bmod \nu \quad \Rightarrow \quad a=b
$$

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Discussion:
(i) We will have $b \in A_{d y}$.

Hence, to apply the Modulo Trick, we need to

$$
\text { modify } \mu \text { to } \nu \quad \text { with } \quad \nu>\max A_{d y}
$$

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Discussion:

(ii) We canot simply increase ν to exceed μ.

We need

```
acceptance modulo \nu m}\mathrm{ acceptance modulo }\mu\mathrm{ .
```

This works, if μ divides ν. We thus set

$$
\nu:=\mu \cdot l
$$

for an l defined later.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Discussion:
(iii) If we modify μ to ν, we need to
modify the extremal markings of all PGs.
Example:

$$
x \equiv 2 \bmod 3
$$

Let $l=4$ and thus $\nu=3 \cdot 4=12$. Then

$$
x \equiv 2 \bmod 12
$$

does not yield all solutions.

Make sure not to lose the red values.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Example:

$$
x \equiv 2 \bmod 3
$$

Then

$$
\begin{aligned}
& x \equiv 2 \bmod 12 \\
& x \equiv 5 \bmod 12 \\
& x \equiv 8 \bmod 12 \\
& x \equiv 11 \bmod 12
\end{aligned}
$$

together yield all solutions.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Lemma ($\mu-\nu-$ Modification): Let μ divide ν and consider $x, k \in \mathbb{Z}$.

$$
x \equiv k \bmod \mu \quad \Leftrightarrow \quad \exists 0 \leq i<\nu \cdot \begin{aligned}
& x \equiv i \bmod \nu \\
& i \equiv k \bmod \mu
\end{aligned}
$$

Example:

$$
x \equiv 2 \bmod 3 \quad \Leftrightarrow \quad \exists i \in \overline{\{2,}
$$

Trick 11:
Adapt intermediate markings to $i \equiv k \bmod \mu$.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Goal: Transfer the adaptation lemma to DMGTS.
Approach: Equate MGTS up to modulo equivalence

$$
k \equiv i \bmod \mu
$$

on the Dyck counters.
Definition (μ-Modification Equivalence):

$$
\begin{array}{ll}
G_{1} \equiv_{\mu} G_{2}, & \text { if } \quad \begin{array}{l}
G_{1} \cdot V=G_{2} \cdot V \\
G_{1} \cdot E=G_{2} \cdot E
\end{array} \quad G_{1} \cdot c_{i o}[s j]=G_{2} \cdot c_{i o}[s j] \\
S_{1} \cdot c_{i o}[d y] \equiv G_{2} \cdot c_{i o}[d y] \bmod \mu \\
S_{1} \cdot u p . S_{2} \equiv{ }_{\mu} S_{1}^{\prime} \cdot u p . S_{2}^{\prime}, & \text { if } \quad S_{1} \equiv{ }_{\mu} S_{1}^{\prime} \wedge S_{2} \equiv_{\mu} S_{2}^{\prime} .
\end{array}
$$

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Lemma ($\mu-\nu$-Modification for Intermediate Acceptance):
Assume μ divides ν.

$$
I A c c_{s j}(U, \mu)=\bigcup_{\substack{V \equiv \equiv_{\mu} U \\ 0 \leqq V<\nu}} I A c c_{s j}(V, \nu) .
$$

Note:
This is a direct lift of the $\mu-\nu-$ Modification Lemma.

All extremal markings
take values from $[0, \nu-1] \cup\{\omega\}$.

- $V \equiv{ }_{\mu} U$ corresponds to $i \equiv k \bmod \mu$.
- $0 \leq V<\nu$ corresponds to $0 \leq i<\nu$.
- The union is the existential quantifier.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Discussion:

(iv) If we modify the extremal markings of all PGs, we have to check faithfulness also there.

To apply the Modulo Trick,
ν has to be larger than all values in extremal markings.

Recall $\nu:=\mu \cdot l$. We thus set

$$
l:=\max A_{d y} \cup \text { values in extremal markings. }
$$

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Remark:

We do not maintain the invariant that
μ is larger than the values in the extremal markings.
This would force us to repeat the argument for Case (1) in Cases (2) + (3).

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Not just $A_{d y}!$
Definition:

$$
Z:=\left\{(V, \nu) \mid V \equiv_{\mu} U_{a}, 0 \leq V<\nu, 0 \leq a<\mu, V . c_{i n}[d y]=0\right\}
$$

$$
X:=\left\{(V, \nu) \in Z \mid V \cdot c_{\text {out }}[d y]=0\right\}
$$

$$
Y:=Z \backslash X
$$

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Note:

We cannot just take the values from $A_{d y}$.
They stem from $\operatorname{Char}_{d y}(W)$ which reaches intermediate values precisely. In $I A c c_{s j}(W)$, we only need to reach intermediate Dyck values modulo μ. Hence, $A_{d y}$ may not contain enough values.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Proof (of the Step Lemma):
Let $W=(U, \mu)$
(c) $L_{s j}(W)=L_{s j}(X) \cup L_{s j}(Y)$.

Similar to the Case $s d=s j$, we have

$$
\operatorname{IAcc} c_{s j}(U, \mu)=\bigcup_{0 \leq a<\mu} \operatorname{IAcc} s j\left(U_{a}, \mu\right)
$$

With the $\mu-\nu$-Modification Lemma for Intermediate Acceptance,

$$
\operatorname{IAcc} c_{s j}\left(U_{a}, \mu\right)=\bigcup_{\substack{V \equiv_{\mu} U_{a} \\ 0 \leq V<\nu}} \operatorname{IAcc}_{s j}(V, \nu)
$$

We argue that we do not lose words by assuming in V
the initial values for $d y$ zero modulo ν instead of zero modulo μ
Consider $\rho \in \operatorname{IAcc} s j\left(U_{a}, \mu\right)$
As U_{a} is zero-reaching, ρ starts from a multiple of μ on $d y$, say μ for simplicity.
By the monotonicity of modulo acceptance, $\rho+(\nu-\mu)=\rho+(l-1) \cdot \mu \in \operatorname{IAcc} c_{s j}\left(U_{a}, \mu\right)$
This run is labeled by the same word and starts from ν on $d y$
Hence, it will be accepted by $V \equiv_{\mu} U_{a}$ where the Dyck counters are initially 0 .

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Proof (cont.):
(b) $\forall T \in Y . L_{s j}(T) \mid D_{n}$.

Consider $T \in Y$.
By construction, $T . c_{\text {in }}[d y]=0$ and $T . c_{\text {out }}[d y] \neq 0$.
This means $\rho \in I A c c_{s j}(T)$ has an effect $c \not \equiv 0 \bmod \nu$ on $d y$.
By visibility of T and the VAS accepting D_{n}, we have $\lambda(\rho) \notin D_{n}$.

Hence, an NFA that tracks the Dyck counters modulo ν and accepts upon values $\neq 0$ shows separability.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Proof (cont.):
(a) Descent

As in the case $s d=s j$.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Proof (cont.): Recall that $S=(V, \nu)$ and $W=(U, \mu)$.
Faithfulness

$$
A c c_{\mathbb{Z}, d y}(S) \cap I A c c_{\mathbb{Z}, \sqsubseteq_{\omega}^{\nu}[d y]}(S) \quad \subseteq \quad I A c c_{\mathbb{Z}, d y}(S)
$$

is a consequence of

$$
\begin{align*}
& A c c_{\mathbb{Z}, d y}(S) \cap I A c c_{\mathbb{Z}, \Xi_{\omega}^{\nu}[d y]}(S) \subseteq \operatorname{IAcc}_{\mathbb{Z}, d y}(W) \tag{1}\\
& I A c c_{\mathbb{Z}, d y}(W) \cap I A c c_{\mathbb{Z},\left\lceil_{\omega}^{u}[d y]\right.}(S) \subseteq \quad \operatorname{IAcc}{\underset{\mathbb{Z}}{ }, d y}(S) . \tag{2}
\end{align*}
$$

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Proof (cont.): For

$$
\begin{equation*}
A c c_{\mathbb{Z}, d y}(S) \cap I A c c_{\mathbb{Z}, \underline{E}_{\omega}^{\nu}[d y]}(S) \subseteq \quad I A c c_{\mathbb{Z}, d y}(W) \tag{1}
\end{equation*}
$$

we use
S and W are zero-reaching.
We only change an intermediate value, which acceptance does not see.

$$
\begin{aligned}
A c c_{\mathbb{Z}, d y}(S) & \subseteq{\widehat{A c c_{\mathbb{Z}, d y}}}(W) \\
I A c c_{\mathbb{Z}, \complement_{\omega}^{\nu}[d y]}(S) & \subseteq I A c c_{\mathbb{Z}, \underline{\Xi}_{\omega}^{\mu}[d y]}(W)
\end{aligned}
$$

and the faithfulness of W.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Proof (cont.): For

$$
I A c c_{\mathbb{Z}, d y}(W) \cap I A c c_{\mathbb{Z}, \sqsubseteq_{\omega}^{\nu}[d y]}(S) \quad \subseteq \quad I A c c_{\mathbb{Z}, d y}(S) .
$$

Consider ρ in the intersection.
Consider counter j that we changed from ω to a concrete value
As $\rho \in I A c c_{\mathbb{Z}, d y}(W), \rho$ solves $\operatorname{Char}_{d y}(W)$.
Hence, it reaches a value $b \in A_{d y}$ at the moment of interest.
As $\rho \in I A c c_{\mathbb{Z}, \Xi_{\omega}^{\nu}[d y]}(S)$, it also reaches the value a that replaces ω in S, but only modulo ν.
We have $0 \leq a, b$ by the definition of intermediate acceptance.
We have $b<\nu$ by the choice of ν.
We have $a<\nu$ by the construction of S.
Modulo intermediate acceptance means $a \equiv b \bmod \nu$.
The Modulo Trick shows a=b.

Step Lemma: Case $j \notin \operatorname{supp}\left(\operatorname{Char}_{d y}(W)\right)$

Proof (cont.): For

$$
I A c c_{\mathbb{Z}, d y}(W) \cap I A c c_{\mathbb{Z}, \sqsubseteq_{\omega}^{\nu}[d y]}(S) \subseteq \quad I A c c_{\mathbb{Z}, d y}(S)
$$

Consider a counter different from j or j but another moment.
As $\rho \in I A c c_{\mathbb{Z}, d y}(W), \rho$ reaches an intermediate value b given in W.
We again have $b<\nu$ by the choice of ν.
Now the same argument applies.

7.2 Reasoning Locally about Faithfulness

Reasoning Locally about Faithfulness

Case (1): Modified entire DMGTS.
Cases (2) + (3): Modify a single PG.
Goal: Develop techniques that allow us to
reason about a single PG and lift the result to the entire DMGTS.

Reasoning Locally about Faithfulness

Definition:

MGTS context

$$
C[\bullet]::=\bullet|C[\bullet] . u p . W| \text { W.up. } C[\bullet] .
$$

DMGTS insertion: For $W=(S, \mu)$ let

$$
C[W]:=(C[S], \mu) .
$$

Lemma: Well-founded order stable under insertion

$$
W_{1} \leq W_{2} \quad \Rightarrow \quad C\left[W_{1}\right] \leq C\left[W_{2}\right] .
$$

Reasoning Locally about Faithfulness

Approach: For Cases (2) + (3), consider $C[(G, \mu)]$,
decompose (G, μ) into sets of DMGTS U and V, define

$$
X:=C[U]:=\{C[(S, \mu)] \mid(S, \mu) \in U\} \quad Y:=C[V]
$$

Reasoning Locally about Faithfulness

Goal: Lift faithfulness of $C[(G, \mu)]$ to $C[U]$.
Approach: Establish a relation between (G, μ) and the DMGTS in U.

Definition:

Same μ.

- (S, μ) is a specialization of (G, μ), if

Smaller language.

$$
\text { 1. } S . c_{i o} \sqsubseteq_{\omega} G . c_{i o} .
$$

2. $\forall \rho \in \operatorname{Runs}_{\mathbb{Z}}(S) . \exists \sigma \in \operatorname{Runs}_{\mathbb{Z}}(G)$. $\quad \sigma \approx \rho$.
3. $\forall \rho \in I A c c_{\mathbb{Z}, \sqsubseteq_{\omega}^{\mu}[d y]}(S)$ with $\rho[$ first $/ l a s t][d y] \sqsubseteq_{\omega} G . c_{i o} . \quad \rho \in I A c c_{\mathbb{Z}, d y}(S)$.

- If W_{1} is a specialization of W_{2}, then $C\left[W_{1}\right]$ is a specialization of $C\left[W_{2}\right]$.

Reasoning Locally about Faithfulness

Lemma: Let W_{1} be a specialization of W_{2}.
Only need to worry about $L_{s j}(W) \subseteq L_{s j}(X \cup Y)$.

$$
\begin{aligned}
& L_{s j}\left(W_{1}\right) \subseteq L_{s j}\left(W_{2}\right) \\
& W_{2} \text { faithful } \quad \Rightarrow \quad W_{1} \text { faithful. }
\end{aligned}
$$

Intuition: Why does decomposition for Cases (2) + (3) guarantee

$$
\forall \rho \in I A c c_{\mathbb{Z}, \underline{\Xi}_{\omega}^{\mu}}[d y][S) \text { with } \rho[\text { first } / l a s t][d y] \sqsubseteq_{\omega} G . c_{i o} . \quad \rho \in I A c c_{\mathbb{Z}, d y}(S) ?
$$

Decompositions for (2) + (3) unroll G into DMGTS.
New intermediate counter values $=$ consistent assignments in G or values in coverability graph for G.
Hence, runs in the new DMGTS respects these values.
7.3 Case $e \notin \operatorname{supp}\left(\operatorname{Char}_{s d}(W)\right)$

Case (2): $e \notin \operatorname{supp}\left(\operatorname{Char}_{s d}(W)\right)$

Observation: If e is not in the support, there is

```
an upper bound l\in\mathbb{N}
```

on the number of times e can be taken.

Idea: Decompose G so that every occurrence of e leads to a new PG.
Definition:
$U=$ DMGTS that admit at most l occurrences of e.
$V_{s j}=\varnothing$.
$V_{d y}=$ DMGTS that expect $l+1$ occurrences of e, afterwards return to the root of G.

Case (2): $e \notin \operatorname{supp}\left(\operatorname{Char}_{s d}(W)\right)$

Lemma: Let (G, μ) contain edge e with $e \notin \operatorname{sump}_{T}\left(\operatorname{Char}_{s d}(C[(G, \mu)])\right)$. With elementary resources, we cancompute sets U and V containing specializations of (G, μ) that satisfy:

$$
\begin{aligned}
& \forall S \in U . S<(G, \mu) . \\
& \forall \rho \in \operatorname{IAcc} c_{s j}(G, \mu) . \exists \sigma \in \operatorname{IAcc} c_{s j}(U \cup V) . \quad \sigma \approx \rho . \\
& \forall T \in V . \quad \operatorname{Char}(C[T]) \text { is infeasible. }
\end{aligned}
$$

