Regular Separability of VASS Reachability Languages

Eren Keskin and Roland Meyer TU Braunschweig

1. Regular Separability

Regular Separability

 $\mathbb{X} \in \{\mathbb{Z}, \mathbb{N}\}.$

Reachability languages.

X-REGSEP: Given: Initialized VASS V_1 and V_2 over Σ . Question: Does $L_{\mathbb{X}}(V_1) \mid L_{\mathbb{X}}(V_2)$ hold?

 $L_1 \mid L_2$: $\exists R \subseteq \Sigma^* \text{ regular. } L_1 \subseteq R \land R \cap L_2 = \emptyset$. Write $R: L_1 \mid L_2$.

VS.

Regular Separability

Example:

1. $\{a^n . b^n \mid n \in \mathbb{N}\} \mid \{a^n . b^{n+1} \mid n \in \mathbb{N}\}.$

Yes! Separator: Even.Even U Odd.Odd.

2. $\{a^n . b^{\leq n} \mid n \in \mathbb{N}\} \neq \{a^n . b^{>n} \mid n \in \mathbb{N}\}$.

No! Assume $A : L_1 | L_2$ and A has m states. Consider $a^{m+1} \cdot b^{m+1} \in L_1 \subseteq L(A)$.

Discussion:

Separability tries to understand the gap between languages.

Insight:

Modulo seems to play an important role!

Regular Separability

Known:

Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP'17]: \mathbb{Z} -REGSEP is decidable.

Goal:

Theorem: ℕ-REGSEP is decidable.

2. Transducer Trick [Lorenzo, Wojtek

[Lorenzo, Wojtek, Slawek, Charles, ICALP'17] [Wojtek and Georg, LICS'20]

Transducer Trick

Goal: Take only one language as input.

Lemma: $L(V) \mid L(U) \iff L(V) \mid T_U(D_n)$ $\Leftrightarrow T_U^{-1}(L(V)) \mid D$

 $\Leftrightarrow \quad L(V') \mid D_n \; .$

Visible VAS: a_i leads to an increment of counter *i*.

 $T_U^{-1}(L(V)) \mid D_n$ over $\Sigma_n := \{a_i, \bar{a}_i \mid i \in dy := [1,n]\}$

3. Intermezzo: Reachability

Approximations:

Coverability graphs: Good: Can keep counters non-negative. Bad: Cannot guarantee precise counter values.

Marking Equation:

Good: Can guarantee precise counter values. **Bad:** Cannot keep counters non-negative.

Solution: Combine the two.

Challenge: Coverability graphs need pumping to guarantee non-negativity. Pumping has to respect the marking equation.

Solution: Only pump where the solution space is unbounded.

- x[j] with j = 2
- x[e] with $e \in \sigma$ have to be unbounded in the solution space.

Lemma: Consider $A \cdot x = b$ over \mathbb{N}^k and variable x[i].

- x[i] is unbounded in $sol(A \cdot x = b)$
- Support = the set of unbounded variables.
- Support solution = $s \in sol(A \cdot x = 0)$ giving a positive value to all variables in the support.

Note: Homogeneous solutions are stable under addition.

$\Leftrightarrow \exists s \in sol(A \cdot x = 0) . s(x[i]) > 0.$

So far: Pumping where the solution space is unbounded

Problem: σ may not match a support solution s.

Idea: Turn $s - \psi(\sigma)$ into a path.

- x[e] with $e \in \sigma$ have to be unbounded x[j] with j = 2 in the solution space.
 - = pumping should yield a support solution.

Lemma (Euler-Kirchhoff): Let G = (V, E) be a strongly connected directed graph. Let $x : \mathbb{N}^E$ satisfy

$$\sum_{e=(-,v)} x[e] = \sum_{e=(v,-)} x[e] \qquad \forall v$$
$$x \ge 1$$

Then there is a cycle c in G with $\psi(c) = x$. Also write $c = \langle x \rangle$.

 $\in V$

Realization.

Deciding Reachability G**Decorated SCC** A precovering graph (PG) is a strongly connected VASS: (v_{root}, c_2)

Definition:

- These markings agree on where to put ω .
- The PG has a root (v_{root}, c) with decoration c.

• The nodes are decorated by gen. markings, like in coverability graphs.

Specialization: Preserve concrete values, may concretize ω .

There are gen. entry/exit markings (v_{root}, c_1) , (v_{root}, c_2) with $c_1, c_2 \sqsubseteq_{\omega} c$.

Definition: A PG is perfect, if

- all edge variables are in the support,
- $Up(G) \neq \emptyset \neq Down(G)$:

 $u \in Up(G) = cycle$ in G exec. from c_1 increasing the counters in $\Omega(c) \setminus \Omega(c_1)$. $v \in Down(G) = cycle$ in G by exec. from c_2 decreasing $\Omega(c) \setminus \Omega(c_2)$.

• all variables decorated ω in the entry and exit markings are in the support,

Pumping should yield a support solution:

Let s be a support solution with

$$d := s - \psi(u) - \psi(v) \ge 1 .$$

$$w = \langle d \rangle$$
.

Now $\psi(u) + \psi(w) + \psi(v) = s$ and we say they match.

This is why we have connectivity and all edges should be in the support!

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

Insight:

v has a strictly negative effect on the ω counters

Pumping:

u, w, v and s match \Rightarrow $u^c \cdot w^c \cdot v^c$ and $c \cdot s$ match.

With

k := least number of $u \cdot w$ needed to execute w. c := k + least number of further u needed to execute $u^k \cdot w^k$

the sequence becomes an \mathbb{N} -run/executable.

 \Rightarrow *u*. *w* must have a strictly positive effect.

Lambert's Iteration Lemma [TCS'92]: For c large enough, one can even fit in a \mathbb{Z} -cycle that reaches the exit from the entry marking:

$$u^c \cdot \rho \cdot w^c \cdot v^c$$
.

Notably, it stays non-negative.

Note:

This works for all \mathbb{Z} -runs, and all choices of (u, w, v)that match a support solution.

Since pumping happens in a support solution, this still solves reachability.

Problem: Precovering graphs may not be perfect.

Solution: Decompose them into sequences of precovering graphs, MGTS:

- **Deciding Reachability:**
- As long as perfectness fails, decomposition is guaranteed to succeed.
- It yields finite sets of MGTS that are smaller in a well-founded order.
- Hence, perfectness will eventually hold.
- For perfect MGTS,
 - \mathbb{N} -reachability holds $\Leftrightarrow \mathbb{Z}$ -reachability holds.

Acceptance on MGTS:

- C := Counters that have to stay non-negative.
 - $\leq :=$ Preorder to compare markings at red nodes for acceptance.

The \mathbb{Z} -runs for reachability satisfy $IAcc_{\mathbb{Z}, \sqsubseteq \omega}$.

4. DMGTS

Doubly-Marked MGTS $W = (U, \mu)$:

U = MGTS over Σ_n with counters $sj \uplus dy$ with dy visible. $\mu \ge 1$.

Strategy: Define language $L_{sj}(W)$ and $L_{dy}(W)$. Use perfectness to achieve

$$L_{sj}(W) \mid D_n \qquad \Leftrightarrow \qquad L_{\mathbb{Z},sj}(V)$$

Keep dy counters non-negative.

Acceptance:

- $(I)Acc_{dy}(W) := (I)Acc_{dy,\sqsubseteq_{\omega}[dy]}(W)$
- $(I)Acc_{\mathbb{Z},dy}(W) := (I)Acc_{\mathbb{Z},\sqsubseteq_{\omega}[dy]}(W)$
 - $IAcc_{sj}(W) := IAcc_{sj,\sqsubseteq_{\omega}[sj]}(W)$
 - $IAcc_{\mathbb{Z},sj}(W) := IAcc_{\mathbb{Z},\sqsubseteq_{\omega}[sj]}(W)$

Specialization only makes requirements on dy.

Trick 3: Intersection. Trick 4: Modulo-μ Specialization.

$$IAcc_{dy,\sqsubseteq^{\mu}_{\omega}[dy]}(W)$$
$$IAcc_{\mathbb{Z},\sqsubseteq^{\mu}_{\omega}[dy]}(W)$$

 \bigcap

Modulo- μ Specialization:

 $x \sqsubseteq_{\omega}^{\mu} k$, if $k = \omega$ or $x \equiv k \mod \mu$.

Lemma (Monotonicity of Modulo- μ Internetiate Acceptance):

$$\rho \in IAcc_{\mathbb{Z},\sqsubseteq_{\omega}^{\mu}[dy]}(W) \quad \Rightarrow$$

Increase the Dyck counters in all configurations by μ .

> Trick 5: Monotonicity.

 $\rho + \mu \in IAcc_{\mathbb{Z}, \sqsubseteq_{\omega}}(W)$

Thanks to this, we could have replaced dy by \mathbb{Z} in $IAcc_{sj}(W)$.

Languages:

 $L_{sd}(W) := \{\lambda(\rho) \mid \rho \in IAcc_{sd}(W)\}$ $L_{\mathbb{Z},sd}(W) := \{\lambda_{\sharp}(\rho) \mid \rho \in IAcc_{\mathbb{Z},sd}(W)\}$

Zero-Reaching:

$W. c_{in}[dy] = 0 = W. c_{out}[dy]$.

Faithfulness: Zero-reaching +

 $Acc_{\mathbb{Z},dy}(W) \cap IAcc_{\mathbb{Z},\sqsubseteq}(W)$ $IAcc_{\mathbb{Z},dv}(W)$.

Faithful:

Intermediate acceptance modulo- $\mu \Leftrightarrow$ ordinary intermediate acceptance, provided we fix initial and final values.

Perfectness: W is perfect, if it is faithful and for all $G \in W$.

$Up(G) \neq \emptyset \neq Down(G)$.

 $\forall e \in G.E.e \in supp(Char_{si}(W)) \land e \in supp(Char_{dy}(W))$.

 $\forall j \in sd. G. c_{io}[j] = \omega \implies x[G, io, j] \in supp(Char_{sd}(W))$.

5. Deciding Regular Separability

Theorem: Let U be an initialized VASS over Σ_n .

Then $L(U) \mid D_n$ is decidable.

Deciding Regular Separability

Algorithm:

Deciding Regular Separability

Algorithm:

- 1. Turn the given VASS U into an initial DMGTS W.
- 2. Decompose W into finite sets Perf and Fin.
- For the DMGTS $T \in Fin$,

 $L_{sj}(T) \mid D_n$.

For the DMGTS $S \in Perf$,

 $L_{sj}(S) \mid D_n \iff L_{\mathbb{Z},sj}(S) \mid L_{\mathbb{Z},dy}(S)$.

3. Check $L_{\mathbb{Z},sj}(S) \mid L_{\mathbb{Z},dy}(S)$ using [ICALP'17]. If all checks pass return true, else return false.

Reduce N-REGSEP to Z-REGSEP using perfectness!

Needed: Initial DMTS, decomposition, separability transfer.

Perfect

Deciding Regular Separability: Initial DMGTS

Definition: Let (U, c_{init}, c_{final}) be a VAS with counters sj.

The associated initial DMGTS is $W = (G, \mu)$ with $\mu = 1$ and

 $v_{root} \xrightarrow{a,(x,y_a)} v_{root}$, if $v \xrightarrow{a,x} v$ in U. $(v_{root}, (c_{final}, 0))$ All decorated ω . Maintain dy.

Deciding Regular Separability: Initial DMGTS

Lemma (Initial DMGTS):

1.
$$L_{sj}(W) = L(U)$$
.

2. W is faithful.

Proof: 1. $L_{si}(W)$ additionally requires acceptance modulo μ on dy. As $\mu = 1$ and the extremal markings are 0 on dy, this is no restriction.

2. W is zero-reaching by definition. Moreover, there are no intermediate markings. Hence, acceptance and intermediate acceptance on dy coincide:

$$Acc_{\mathbb{Z},dy}(W) \cap IAcc_{\mathbb{Z},\sqsubseteq_{\omega}^{\mu}[dy]}($$

We can now show $L_{si}(W) \mid D_n$ and rely on faithfulness.

 $(W) \subseteq Acc_{\mathbb{Z},dy}(W) = IAcc_{\mathbb{Z},dy}(W).$

Deciding Regular Separability: Decomposition

Proposition (Decomposition): Given a faithful DMTS W, we can compute finite sets

Perf and *Fin* of DMGTS,

where

- $\forall S \in Perf$. S is perfect,
- $\forall T \in Fin$. $L_{si}(T) \mid D_n$,
- $L_{sj}(W) = L_{sj}(Perf) \cup L_{sj}(Fin)$.

Separating

Perfect

Deciding Regular Separability: Decomposition

Proposition (Separability Transfer): If S is perfect,

$$L_{sj}(S) \mid D_n \quad \Leftrightarrow \quad L_{\mathbb{Z},sj}(S) \mid D_n$$

Lemma:

Given a DMGTS W, we can compute (\mathbb{Z} -)VASS U_{sj} and U_{dy} with $L_{\mathbb{Z},sd}(S) = L_{\mathbb{Z}}(U_{sd})$.

Proof:

Auxiliary counters for each intermediate marking. Maintain them until that marking is reached. Check their values at the end.

We can rely on the decision procedure for \mathbb{Z} -REGSEP from [ICALP'17].

$$\mathcal{I}_{\mathbb{Z},dy}(S)$$

Deciding Regular Separability

Algorithm:

- 1. Turn the given VASS U into an initial DMGTS W.
- 2. Decompose W into finite sets *Perf* and *Fin*. For the DMGTS $S \in Perf$,

$L_{si}(S) \mid D_n \quad \Leftrightarrow \quad L_{\mathbb{Z},si}(S) \mid L_{\mathbb{Z},dv}(S)$.

3. For each $S \in Perf$, compute VASS U_{sj} and U_{dy} with $L_{\mathbb{Z}}(U_{sd}) = L_{\mathbb{Z},sd}(S)$.

4. Check $L_{\mathbb{Z}}(U_{sj}) \mid L_{\mathbb{Z}}(U_{dy})$ using [ICALP'17].

5. If all $S \in Perf$ pass the check, then return true, else return false.

It remains to prove decomposition and separability transfer!

6. Separability Transfer

Proposition: Let S be perfect. Then

 $L_{\mathbb{Z},sj}(S) \mid L_{\mathbb{Z},dy}(S) \quad \Leftrightarrow \quad L_{sj}(S) \mid D_n.$

6.1 Separability

Lemma: Let S be faithful. Then

 $L_{\mathbb{Z},sj}(S) \mid L_{\mathbb{Z},dy}(S) \implies L_{sj}(S) \mid D_n.$

Separability

Language intersection.

Approach:

Reuse a separator for the \mathbb{Z} -languages:

$$B^{\sharp}: L_{\mathbb{Z},sj}(S) \mid L_{\mathbb{Z},dy}(S) \quad \stackrel{!}{\Rightarrow} \quad B^{\sharp} \times$$

Note: Every \mathbb{Z} -separator can be turned into an \mathbb{N} -separator. A^{\sharp} only depends on *S*, but is independent of B^{\sharp} .

Separability

Lemma: Let S be faithful. We can construct an NFA A^{\sharp} so that for all B^{\sharp} .

$$B^{\sharp}: L_{\mathbb{Z},sj}(S) \mid L_{\mathbb{Z},dy}(S) =$$

Task: Restrict B^{\sharp} to make it disjoint from D_n^{\sharp} .

 $\Rightarrow \quad B^{\sharp} \times A^{\sharp} : L_{\mathbb{Z},sj}(S) \mid D_n^{\sharp} .$

 $L(B^{\sharp} \times A^{\sharp}) \cap D_n^{\sharp} \stackrel{\text{assumption}}{\subseteq} L(B^{\sharp}) \cap L_{\mathbb{Z},dy}(S) \stackrel{\text{premise}}{=} \emptyset$.

Separability: Disjointness

1. Failure of $L(B^{\sharp}) \cap D_n^{\sharp} \subseteq L_{\mathbb{Z},dy}(S)$:

 B^{\sharp} may not follow the control flow of S.

1. Definition:

 $A_{s}^{\sharp} := NFA(S).$

1. Check of $L(B^{\sharp} \times A_{S}^{\sharp}) \cap D_{n}^{\sharp} \subseteq L_{\mathbb{Z},d_{V}}(S)$:

Consider $w \in L(B^{\sharp} \times A_{S}^{\sharp}) \cap D_{n}^{\sharp}$.

Then w labels a run ρ through S.

As $w \in D_n^{\sharp}$ and S is visible, ρ takes the Dyck counters in S from 0 to 0. Hence,

$$\rho \in Acc_{\mathbb{Z},dy}(S)$$
.

Separability: Disjointness

2. Failure of $L(B^{\sharp} \times A_{\varsigma}^{\sharp}) \cap D_{n}^{\sharp} \subseteq L_{\mathbb{Z},dv}(S)$:

 $L_{\mathbb{Z},dy}(S)$ is not defined via $Acc_{\mathbb{Z},dy}(S)$ but via $IAcc_{\mathbb{Z},dy}(S)$. The run may not reach intermediate values.

2. Solution: Faithfulness

 $Acc_{\mathbb{Z},dy}(S) \cap IAcc_{\mathbb{Z},\sqsubseteq^{\mu}[dy]}(S) \subseteq IAcc_{\mathbb{Z},dy}(S)$.

Track the control flow as before. Track the dy counters modulo μ . Check the dy counters when entering and exiting precovering graphs.

Separability: Disjointness

Proof of $L(B^{\sharp} \times A^{\sharp}) \cap D_n^{\sharp} \subseteq L_{\mathbb{Z},dv}(S)$:

Consider $w \in L(B^{\sharp} \times A^{\sharp}) \cap D_{n}^{\sharp}$.

Then w labels a run ρ through S.

As before, we have $\rho \in Acc_{\mathbb{Z},dy}(S)$.

But additionally, we now get $\rho \in IAcc_{\mathbb{Z}, \square_{p}}(S)$.

Faithfulness yields

$$\rho \in IAcc_{\mathbb{Z},dy}(S) \ .$$

Trick 7 in Action: Faithfulness gives us disjointness from D_n^{\sharp} .

Separability: Inclusion Problem: $L_{\mathbb{Z},si}(S) \subseteq L(B^{\sharp} \times A^{\sharp})$?

Yes! $L_{\mathbb{Z},Si}(S) \subseteq L(B^{\sharp})$ by assumption.

For $L_{\mathbb{Z},si}(S) \subseteq L(A^{\sharp})$, note that

 $IAcc_{\mathbb{Z},sj}(S) = IAcc_{\mathbb{Z},\sqsubseteq}(S)$

The latter intersection guarantees the inclusion!

Trick 3 in Action: The intersection in the definition of $IAcc_{\mathbb{Z},si}(S)$ is what allows us to restrict the \mathbb{Z} -separator!

 \bigcap

 $IAcc_{\mathbb{Z},\sqsubseteq^{\mu}[dy]}(S)$.

The # is not needed for this direction of separability transfer!

6.2 Intermezzo: Büchi Boxes

Intermezzo: Büchi Boxes

Goal: Understand what a separator can distinguish [Büchi'62].

Definition: An NFA A over Σ induces an equivalence on Σ^* by

 $u \sim_A v$, if $\forall p, q \in A \cdot Q \cdot p - d$

Intuition:

Words are equivalent, if they induce the same state changes. Equivalence classes therefore correspond to relations on states.

$$\stackrel{u}{\rightarrow} q \quad \Leftrightarrow \quad p \stackrel{v}{\rightarrow} q$$

Intermezzo: Büchi Boxes

Example:

Classes = relations on states: $[a]_{\sim_{A}} \cdot [c \cdot c]_{\sim_{A}} = \{a, b\} \cdot \{c \cdot c, d\}$

 $a \sim_{A} b \qquad a \nsim_{A} v \quad v$ $c \cdot c \sim_{A} d \qquad c \cdot c \cdot c \sim_{A} a \cdot a$ $a \nsim_A v \quad v \neq b$

 $[a]_{\sim_{A}} \cdot [c \cdot c]_{\sim_{A}} = \{a, b\} \cdot \{c \cdot c, d\} = \{a \cdot c \cdot c, a \cdot d, b \cdot c \cdot c, b \cdot d\} = [a \cdot c \cdot c]_{\sim_{A}}$

Intermezzo: Büchi Boxes

Lemma (Büchi):

1. \sim_A is a congruence wrt. concatenation:

 $\forall u_1, u_2, v_1, v_2. \quad u_1 \sim_A u_2 \land v_1 \sim_A v_2 \quad \Rightarrow \quad u_1 \cdot v_1 \sim_A u_2 \cdot v_2.$

2. \sim_A has finite index.

- 3. $\forall c \in \Sigma^*/_{\sim_A}$. $c \subseteq L(A) \lor c \cap L(A) = \emptyset$.
- 4. $\forall c \in \Sigma^* /_{\sim_A}$. *c* is a regular language.

Proof:

1. routine, 2. count the boxes, 3. by definition, 4.

$$[u]_{\sim_{A}} = \bigcap_{\substack{p,q \in A . Q \\ p \stackrel{u}{\rightarrow} q}} L(A_{p,q}) \cap \bigcap_{\substack{p,q \in A . Q \\ p \stackrel{u}{\rightarrow} q}} \overline{L(A_{p,q})}$$

6.3 Inseparability

Lemma: Let S be perfect. Then

$L_{\mathbb{Z},sj}(S) \nmid L_{\mathbb{Z},dy}(S) \implies L_{sj}(S) \restriction D_n.$

Inseparability

Strategy:

Towards a contradiction, assume $A : L_{s_i}(S) \mid D_n$. We construct words

$$o_{sj} \in L_{sj}(S)$$
 and $o_{dy} \in L_d$

Contradiction:

$$o_{sj} \in L(A)$$
 $\stackrel{\text{Büchi 3.}}{\Rightarrow} o_{dy} \in O_{sj} \notin L(A)$

$d_{y} \in L_{dy}(S) \subseteq D_n \quad \text{with} \quad o_{sj} \sim_A o_{dy}.$

$L(A) \quad \Rightarrow \quad L(A) \cap D_n \neq \emptyset \ . \quad \Box$ $\Rightarrow \quad L_{sj}(S) \nsubseteq L(A) \ .$

Inseparability

Construction:

Use Lambert's iteration lemma twice:

$$o_{sj} = \lambda(u_0^c \cdot g_0^c \cdot w_{sj,0}^c \cdot v_0^c \cdot t_1 \dots \delta(u_0^c \cdot h_0^c \cdot w_{dy,0}^c \cdot v_0^c \cdot t_1))$$

Note: We can assume a common pumping constant c.

Strategy (cont.): For $o_{sj} \sim_A o_{dy}$, using Büchi 1. we need

 $\forall 0 \leq i \leq k \, . \quad \lambda(g_i) \sim_A \lambda(h_i) \quad \wedge \quad \lambda(w_{si,i}) \sim_A \lambda(w_{dy,i}) \, .$

Trick 8 in Action: The pumping sequences u_i and v_i are shared between $L_{si}(S)$ and $L_{dv}(S)$.

 $.t_k . u_k^c . g_k^c . w_{sj,k}^c . v_k^c)$ $\in L_{sj}(S)$ $\in L_{dv}(S)$. $\dots t_k \cdot u_k^c \cdot h_k^c \cdot w_{dv,k}^c \cdot v_k^c)$

Inseparability: $\lambda(g_i) \sim_A \lambda(h_i)$

Construction:

 $o_{sj} = \lambda(u_0^c \cdot g_0^c \cdot w_{sj,0}^c \cdot v_0^c \cdot t_1 \dots t_k \cdot u_k^c \cdot g_k^c \cdot w_{si,k}^c \cdot v_k^c)$ Y V $o_{dv} = \lambda(u_0^c \cdot h_0^c \cdot w_{dv,0}^c \cdot v_0^c \cdot t_1 \dots t_k \cdot u_k^c \cdot h_k^c \cdot w_{dv,k}^c \cdot v_k^c)$

When solving reachability, $g_0 \dots g_k$ resp. $h_0 \dots h_k$ can be arbitrary \mathbb{Z} -runs.

We need $\lambda(g_i) \sim \lambda(h_i)$.

The premise $L_{\mathbb{Z},sj}(S) \nmid L_{\mathbb{Z},dy}(S)$ provides equivalent \mathbb{Z} -runs.

Inseparability: $\lambda(g_i) \sim_A \lambda(h_i)$

Goal: Use the premise $L_{\mathbb{Z},sj}(S) \nmid L_{\mathbb{Z},dy}(S)$ to obtain equivalent \mathbb{Z} -runs.

Idea: Understand how \sim_A yields separability, then use contraposition.

Lemma: Let A be an NFA so that

for all pairs of words

$$w_0 . (a_1, \sharp) ... (a_k, \sharp) . w_k \in L_{\mathbb{Z}, sj}(S)$$

 $v_0 . (a_1, \sharp) ... (a_k, \sharp) . v_k \in L_{\mathbb{Z}, dy}(S)$

there is $0 \le i \le k$ with $w_i \not\sim_A v_i$.

Then $L_{\mathbb{Z},sj}(S) \mid L_{\mathbb{Z},dy}(S)$.

Inseparability: $\lambda(g_i) \sim \lambda(h_i)$

Lemma: Let A be an NFA so that

for all pairs of words ... there is $w_i \not\sim_A v_i$.

Then $L_{\mathbb{Z},si}(S) \mid L_{\mathbb{Z},dv}(S)$.

Construction of g_i and h_i :

Apply the lemma in contraposition to the premise $L_{\mathbb{Z},sj}(S) \nmid L_{\mathbb{Z},dy}(S)$.

This yields a pair of words as in the lemma with $w_i \sim_A v_i$ for all i.

Then the g_i and h_i are loops in the PGs of S with

$$\lambda(g_i) = w_i$$
 $\lambda(h_i) = v_i$ for all *i*

Inseparability: $\lambda(g_i) \sim_A \lambda(h_i)$

Lemma: Let A be an NFA so that

for all pairs of words ... there is $w_i \not\sim_A v_i$.

Then $L_{\mathbb{Z},sj}(S) \mid L_{\mathbb{Z},dy}(S)$.

Proof: Define

$$L := \bigcup_{\substack{w_0.(a_1, \sharp)...(a_k, \sharp).w_k \in L_{\mathbb{Z},sj}(S)}} [w_0]_{\sim_A} . (a_1, \sharp)...(a_k, \sharp) . [w_k]_{\sim_A}$$

L is regular:

The union is finite as \sim_A has finite index by Büchi 2. The classes are regular by Büchi 4.

L is a separator:

 $L_{\mathbb{Z},si}(S) \subseteq L$ by definition.

Assume $L \cap L_{\mathbb{Z},dy}(S) \neq \emptyset$.

Then there is $v_0 . (a_1, \sharp) ... (a_k, \sharp) . v_k \in L_{\mathbb{Z}, dv}(S)$ for which there is $w_0 . (a_1, \sharp) ... (a_k, \sharp) . w_k \in L_{\mathbb{Z},sj}(S)$

with $w_i \sim_A v_i$ for all i.

Trick 6 in Action: The *‡* is essential here. To conclude $w_i \sim_A v_i$ for all *i*, we use that \sim_A only relates words without \ddagger .

Inseparability: $\lambda(g_i) \sim_A \lambda(h_i)$

Construction:

$$o_{sj} = \lambda(u_0^c \cdot g_0^c \cdot w_{sj,0}^c)$$

$$= \lambda(u_0^c \cdot h_0^c \cdot w_{dy,0}^c)$$

 $v_0^c \cdot t_1 \dots t_k \cdot u_k^c \cdot g_k^c \cdot w_{si,k}^c \cdot v_k^c$ Z $0 \cdot v_0^c \cdot t_1 \dots t_k \cdot u_k^c \cdot h_k^c \cdot w_{dy,k}^c \cdot v_k^c)$

Construction:

$$o_{sj} = \lambda(u_0^c \cdot g_0^c \cdot w_{sj,0}^c \cdot v_0^c \cdot t_1 \dots t_k \cdot u_k^c \cdot g_k^c \cdot w_{sj,k}^c \cdot v_k^c)$$

$$\delta^{(1)} = \lambda(u_0^c \cdot g_0^c \cdot w_{dy,0}^c \cdot v_0^c \cdot t_1 \dots t_k \cdot u_k^c \cdot g_k^c \cdot w_{dy,k}^c \cdot v_k^c)$$

Actually: We will also modify the support solutions and covering sequences.

Inseparability: $\lambda(w_{sj,i}) \sim_A \lambda(w_{dy,i})$

Goal: Construct support solutions s_{si} and s_{dv} and for all $0 \le i \le k$

$$u_i \in Up(G_i) \quad v_i \in Dow$$

with $\lambda(w_{sj,i}) \sim_A \lambda(w_{dy,i})$ so that $\psi(u_i) + \psi(w_{si,i}) + \psi(v_i) = s_{si}[G_i \cdot E]$ $\psi(u_i) + \psi(w_{dv,i}) + \psi(v_i) = s_{dv}[G_i \cdot E] .$

Need matching to invoke Lambert's iteration lemma.

Inseparability: $\lambda(w_{si,i}) \sim_A \lambda(w_{dy,i})$

- $vn(G_i)$ $W_{si.i}$ $W_{dy,i}$

(Matching)

Notation: Fix an index $0 \le i \le k$ and call the

$u_i \in Up(G_i)$ $v_i \in Down(G_i)$

we want to construct u, v, w_{si} , and w_{dy} .

Inseparability: $\lambda(w_{si,i}) \sim_A \lambda(w_{dy,i})$

 $W_{dy,i}$ $W_{sj,i}$

Idea:

For the construction of w_{si} and w_{dy} , use pumping.

Construction:

Assume A has n states. We define

$$w_{sj} := diff^n . rem$$

 $w_{dy} := diff^{n+c \cdot n!} . rem$.

The runs diff and rem and the constant c will be fixed when we analyze (Matching).

No matter how, $\lambda(w_{sj}) \sim_A \lambda(w_{dy})$ will hold.

Inseparability: $\lambda(w_{si}) \sim_A \lambda(w_{dy})$

Lemma:

Let A be a DFA over Σ with n states and let $c \in \mathbb{N}$. Then for all $u, v \in \Sigma^*$, we have

$$u^n \cdot v \sim_A u^{n+c \cdot n!} \cdot v$$
.

Proof:

Consider states p and q in A. To show

$$p \xrightarrow{u^n.v} q \quad \Leftrightarrow \quad p \xrightarrow{u^{n+c\cdot n!}.v} q$$

it suffices to show that A reaches the same state when reading u^n and $u^{n+c \cdot n!}$ from p.

Inseparability: $\lambda(w_{si}) \sim_A \lambda(w_{dy})$

Lemma:

Let A be a DFA over Σ with n states and let $c \in \mathbb{N}$. Then for all $u, v \in \Sigma^*$, we have

$$u^n \cdot v \sim_A u^{n+c \cdot n!} \cdot v$$
.

Proof:

We show that *A* reaches the same state when reading u^n and $u^{n+c \cdot n!}$ from p.

Let q_i be the state in A reached after reading u^i from p, where $u^0 := \varepsilon$. By the pigeonhole principle, there are

 $0 \le i < j \le n$ with $q_i = q_j$.

As A is a DFA, u^n and $u^j \cdot u^{j-i} \cdot u^{n-j} = u^{n+(j-i)}$ both end up in q_n . We not only repeat u^{j-i} once, but

$$\frac{c \cdot n!}{j-i}$$
 many times.

Thanks to the factorial and $c \in \mathbb{N}$, this is a positive integer. This means also $u^{n+c \cdot n!}$ ends up in q_n .

Inseparability: $\lambda(w_{sj}) \sim_A \lambda(w_{dy})$

Want: $u \in Up(G)$, $v \in Down(G)$, diff, and rem, and support solutions s_{si} and s_{dy} that match.

$$u'_i \in Up(G_i) \qquad v'_i \in Dow$$

so that

$$s'_{sd}[G_i \cdot E] - \psi(u'_i) - \psi(u'_$$

Inseparability: $\lambda(w_{si}) \sim_A \lambda(w_{dv})$

Have: By perfectness, support solutions s'_{si} and s'_{dv} and for all $0 \le i \le k$. $wn(G_i)$

 $\psi(v_i) \geq 1$.

Needed:

$$\psi(u) + \psi(w_{sj}) + \psi(v) =$$

$$\psi(u) + \psi(w_{dy}) + \psi(v) =$$

Recall: $w_{sj} = diff^n \cdot rem$ and $w_{dv} = diff^{n+c \cdot n!} \cdot rem$.

Consequence: Need

Inseparability: $\lambda(w_{si}) \sim_A \lambda(w_{dv})$

 $S_{si}[E]$ $S_{dv}[E]$.

 $\psi(u) + n \cdot \psi(diff) + \psi(rem) + \psi(v) = s_{si}[E]$ $\psi(u) + (n + c \cdot n!) \cdot \psi(diff) + \psi(rem) + \psi(v) = s_{dv}[E] .$

(Matching)

Consequence: Need

 $\psi(u) + n \cdot \psi(diff)$ $\psi(u) + (n + c \cdot n!) \cdot \psi(diff)$

Consequence: We subtract the equations to isolate $\psi(diff)$:

$$c \cdot n! \cdot \psi(diff) = s_{dy}[E] - s_{sj}[E] = (s_{dy} - s_{sj})[E]$$
.

Inseparability: $\lambda(w_{si}) \sim_A \lambda(w_{dv})$

$$+\psi(rem) + \psi(v) = s_{sj}[E]$$

+ $\psi(rem) + \psi(v) = s_{dy}[E]$.

Consequence: We subtract the equations to isolate $\psi(diff)$ and get

$$c \cdot n! \cdot \psi(diff) = (s_{dy} \cdot$$

Define:

$$s_{sd} := c \cdot n! \cdot s'_{sd}$$
.

Consequence: We can factor out $c \cdot n!$ and get rid of it,

$$c \cdot n! \cdot \psi(diff) = c \cdot n! \cdot (s'_{dy} - s'_{sj})[E] .$$

Inseparability: $\lambda(w_{sj}) \sim_A \lambda(w_{dy})$

- $-s_{sj}[E]$.

Definition: To obtain $\psi(diff) = (s'_{dy} - s'_{sj})[E]$, we set

$$diff := \langle (s'_{dy} - s'_{sj})[E]$$

Remark: To invoke Euler-Kirchhoff, we need (We can assume s'_{dv} has been scaled to guarantee this.

Inseparability: $\lambda(w_{si}) \sim_A \lambda(w_{dv})$

$$(s'_{dy} - s'_{sj})[E] \ge 1$$
.

Recall: We need matching

$$\psi(u) + \psi(w_{sj}) + \psi(v) = d$$

Consequence: Inserting the choice of s_{si} yields

 $\psi(u) + n \cdot \psi(diff) + \psi(rem) + \psi(v) = c \cdot n! \cdot s'_{si}[E] .$

Consequence:

$$\psi(rem) = c \cdot n! \cdot s'_{sj}[E] - \psi(u) - \psi(v) - n \cdot \psi(diff)$$

Inseparability: $\lambda(w_{si}) \sim_A \lambda(w_{dv})$

- $S_{si}[E]$.

Consequence:

$$\psi(rem) = c \cdot n! \cdot s'_{sj}[E] - \psi$$

Idea: To apply Euler-Kirchhoff, the right-hand side has to be ≥ 1 .

Define:

$$u := (u')^{c \cdot n!}$$
 $v := (v')^{c \cdot n!}$.

Inseparability: $\lambda(w_{sj}) \sim_A \lambda(w_{dy})$

$\psi(u) - \psi(v) - n \cdot \psi(diff)$.

Consequence:

$$\begin{split} \psi(rem) &= c \cdot n! \cdot s'_{sj}[E] - \psi(u) - \psi(v) - n \cdot \psi(diff) \\ &= c \cdot n! \cdot s'_{sj}[E] - c \cdot n! \cdot \psi(u') - c \cdot n! \cdot \psi(v') - n \cdot \psi(diff) \\ &= c \cdot n! \cdot \underbrace{(s'_{sj}[E] - \psi(u') - \psi(v'))}_{\geq 1} - n \cdot \psi(diff) \; . \end{split}$$

Definition:

c := least value so that $\psi(r)$

Defininition:

$$rem := \langle c \cdot n! \cdot (s'_{sj}[E] - \psi(u') - \psi(v')) - n \cdot \psi(diff) \rangle .$$

Inseparability: $\lambda(w_{sj}) \sim_A \lambda(w_{dy})$

$$em) \geq 1$$
.

Remark:

The choice of *c* is not local to *G* but global in that it has to hold for all PGs in S.

Inseparability: $\lambda(w_{sj}) \sim_A \lambda(w_{dy})$

7. Decomposition Proposition: Given a fait

Proposition: Given a faithful DMGTS W, we can compute finite sets Perf and Fin of DMGTS so that

(i) $\forall S \in Perf. S \text{ is perfect}.$ (ii) $\forall T \in Fin. L_{sj}(T) \mid D_n.$ (iii) $L_{sj}(W) = L_{sj}(Perf) \cup L_{sj}(Fin).$

Decomposition

Approach:

Capture a single decomposition step. Rely on well-foundedness.

Lemma (Step):

There is a computable function dec(-) that takes a DMGTS W as follows

imperfect, $sol(Char_{sj}(W)) \neq \emptyset \neq sol(Char_{dy}(W))$. faithful,

It returns finite sets (X, Y) = dec(W) of DMGTS with

(a) $\forall S \in X$. *S* is faithful and S < W. (b) $\forall T \in Y. L_{si}(T) \mid D_n$. (c) $L_{sj}(W) = L_{sj}(X) \cup L_{sj}(Y)$.

Faithfulness is an invariant!

If not perfect, you can decompose.

(b) and (c) as required by decomposition.

Decomposition

algo(input: a faithful DMGTS W Jutput: Perf and Fin if W is perfect then return $Perf = \{W\}$, $Fin = \emptyset$; else if $sol(Char_{si}(W)) = \emptyset$ then return $Perf = \emptyset$, $Fin = \emptyset$; else if $sol(Char_{dy}(W)) = \emptyset$ then return $Perf = \emptyset$, $Fin = \{W\}$; else (X, Y) = dec(W); $Perf = \emptyset; Fin = Y;$ for all $S \in X$ begin $(Perf_{S}, Fin_{S}) = algo(S);$ $Perf = Perf \cup Perf_{S};$ $Fin = Fin \cup Fin_S;$ end for all end else

end

(i), (ii), (iii) trivial

 $sol(Char_{sj}(W)) = \emptyset \implies L_{\mathbb{Z},sj}(W) = \emptyset$ $\Rightarrow L_{si}(W) = \emptyset$.

Goal:

(i) $\forall S \in Perf. S \text{ is perfect}$. (ii) $\forall T \in Fin \ L_{si}(T) \mid D_n$. (iii) $L_{si}(W) = L_{si}(Perf) \cup L_{si}(Fin)$.

 $sol(Char_{dy}(W)) = \emptyset \quad \Rightarrow \quad L_{\mathbb{Z},dy}(W) = \emptyset$ $\Rightarrow \quad L_{\mathbb{Z},sj}(W) \mid L_{\mathbb{Z},dy}(W)$ {Separability Transfer} $\Rightarrow L_{si}(W) \mid D_n$.

Decomposition: Step Lemma

Fact: Let W be faithful.

 $W \text{ is not perfect} \quad \Leftrightarrow \quad \exists G \in W. (1)$ $(1) \ G. \ c_{io}[j] = \omega \land G. \ c_{io}[j] \notin supp(Char_{sd}(G)) .$ $(2) \ e \in G. E \land e \notin supp(Char_{sd}(G)) .$

Approach: Case distinction.

$\exists G \in W.(1) \lor (2) \lor (3)$ with

(3) $Up(W) = \emptyset \lor Down(G) = \emptyset$.

7.1 Case $j \notin supp(Char_{sd}(W))$

Fact: If $j \notin supp(Char_{sd}(W))$,

 $A_{sd} := \{s[j] \mid s \in sol(Char_{sd}(W))\}$

is finite, non-empty, and $\subseteq \mathbb{N}$.

Lemma in the beginning.

Shape of $Char_{sd}(W)$.

7.1.1 Case sd = sj

Let $W = (U, \mu)$.

Define:

$X := \{ (U_a, \mu) \mid a \in A_{sj} \} \qquad Y := \emptyset .$

U with the value of jat the moment of interest modified from ω to a.

Step Lemma: Case $j \notin supp(Char_{si}(W))$

Proof:

(c)
$$L_{sj}(W) = L_{sj}(X)$$
.

 \subseteq Consider $\rho \in IAcc_{si}(W)$. Then ρ solves the characteristic equations. Hence, counter j assumes a value $a \in A_{sj}$ at the moment of interest. Hence, $\rho \in IAcc_{si}(U_a, \mu)$, and $(U_a, \mu) \in X$.

 \supseteq Concrete values make intermediate acceptance stronger.

(b) $\forall T \in Y...$ There is nothing to show.

Step Lemma: Case $j \notin supp(Char_{si}(W))$

Proof (cont.):

(a) Faithfulness.

We neither modified the edges nor the dy markings. Hence, faithfulness holds by the faithfulness of W.

(a) Descent

 $\Omega(G), G \cdot E, \text{ and } G \cdot c_{\overline{io}} \text{ stay unchanged.}$ We reduce $|\Omega(G, c_{io})|$.

Step Lemma: Case $j \notin supp(Char_{si}(W))$

7.1.2 Case sd = dy

This is the complicated case!

Setting: We change an extremal marking for a Dyck counter

from ω to a concrete value.

As a consequence, we have to check faithfulness.

Step Lemma: Case $j \notin supp(Char_{dy}(W))$

Setting: We have to check faithfulness.

Lemma (Modulo Trick): Consider $0 \le a, b < \nu$.

$$a \equiv b \mod \nu \Rightarrow$$

Discussion: (i) We will have $b \in A_{dv}$.

Hence, to apply the Modulo Trick, we need to

modify μ to ν with $\nu > \max A_{d\nu}$.

Step Lemma: Case $j \notin supp(Char_{dy}(W))$

Discussion:

(ii) We canot simply increase ν to exceed μ . We need

acceptance modulo $\nu \Rightarrow$ acceptance modulo μ .

This works, if μ divides ν . We thus set

$$\nu := \mu \cdot l$$

for an *l* defined later.

Step Lemma: Case $j \notin supp(Char_{dv}(W))$

Trick 10: Maintaining divisibility among the μ values.

Discussion:

(iii) If we modify μ to ν , we need to

modify the extremal markings of all PGs.

does not yield all solutions.

Step Lemma: Case $j \notin supp(Char_{dy}(W))$

Example:

 $x \equiv 2 \mod 3$.

Then

 $x \equiv 2 \mod 12$ $x \equiv 5 \mod 12$ $x \equiv 8 \mod 12$ $x \equiv 11 \mod 12$

together yield all solutions.

Step Lemma: Case $j \notin supp(Char_{dy}(W))$

• $x \equiv 2 \mod 12$

Lemma ($\mu - \nu$ -Modification): Let μ divide ν and consider $x, k \in \mathbb{Z}$.

$$x \equiv k \mod \mu$$

Example:

 \Leftrightarrow

Goal: Transfer the adaptation lemma to DMGTS.

Approach: Equate MGTS up to modulo equivalence

 $k \equiv i \mod \mu$

on the Dyck counters.

Definition (μ – Modification Equivalence):

$$G_1 \equiv_{\mu} G_2$$
, if $G_1 \cdot V = G_1 \cdot E =$

 $S_1 . up . S_2 \equiv_{\mu} S'_1 . up . S'_2$, if $S_1 \equiv_{\mu} S'_1 \wedge S_2 \equiv_{\mu} S'_2$.

- $G_2 \cdot V \qquad G_1 \cdot c_{io}[sj] = G_2 \cdot c_{io}[sj]$ $= G_2 \cdot E \qquad G_1 \cdot c_{io}[dy] \equiv G_2 \cdot c_{io}[dy] \mod \mu$

Lemma ($\mu - \nu$ -Modification for Intermediate Acceptance): Assume μ divides ν .

$$IAcc_{sj}(U,\mu) = \bigcup_{\substack{V \equiv_{\mu} U}} IAc$$
$$0 \le V < \nu$$

Note:

This is a direct lift of the $\mu - \nu$ -Modification Lemma.

- $V \equiv_{\mu} U$ corresponds to $i \equiv k \mod \mu$.
- $0 \le V < \nu$ corresponds to $0 \le i < \nu$.
- The union is the existential quantifier.

Step Lemma: Case $j \notin supp(Char_{dv}(W))$

 $cc_{si}(V,\nu)$.

All extremal markings take values from $[0, \nu - 1] \cup \{\omega\}$.

Discussion:

(iv) If we modify the extremal markings of all PGs, we have to check faithfulness also there.

To apply the Modulo Trick,

 ν has to be larger than all values in extremal markings.

Recall $\nu := \mu \cdot l$. We thus set

 $l := \max A_{dv} \cup$ values in extremal markings.

Step Lemma: Case $j \notin supp(Char_{dy}(W))$

Remark:

We do not maintain the invariant that μ is larger than the values in the extremal markings.

This would force us to repeat the argument for Case (1) in Cases (2) + (3).

Step Lemma: Case $j \notin supp(Char_{dv}(W))$

Not just $A_{dv}!$

$Z := \{ (V, \nu) \mid V \equiv_{\mu} U_{a}, 0 \le V < \nu, 0 \le a < \mu, V. c_{in}[dy] = 0 \}$

Zero-reaching

Dyck counters $\not\equiv 0 \mod \nu$.

Note:

We cannot just take the values from A_{dv} . Hence, A_{dv} may not contain enough values.

- They stem from $Char_{dy}(W)$ which reaches intermediate values precisely. In $IAcc_{sj}(W)$, we only need to reach intermediate Dyck values modulo μ .

Proof (of the Step Lemma): Let $W = (U, \mu)$.

(c) $L_{si}(W) = L_{si}(X) \cup L_{si}(Y)$.

Similar to the Case sd = sj, we have

$$IAcc_{sj}(U,\mu) = \bigcup_{0 \le a < \mu} IAcc_{sj}(U_a,\mu)$$
.

With the $\mu - \nu$ -Modification Lemma for Intermediate Acceptance,

$$IAcc_{sj}(U_a, \mu) = \bigcup_{\substack{V \equiv_{\mu} U_a \\ 0 \le V < \nu}} IAcc_{sj}(V, \nu) .$$

We argue that we do not lose words by assuming in V

the initial values for dy zero modulo ν instead of zero modulo μ .

Consider $\rho \in IAcc_{sj}(U_a, \mu)$.

As U_a is zero-reaching, ρ starts from a multiple of μ on dy , say μ for simplicity. By the monotonicity of modulo acceptance, $\rho + (\nu - \mu) = \rho + (l - 1) \cdot \mu \in IAcc_{sj}(U_a, \mu)$. This run is labeled by the same word and starts from ν on dy. Hence, it will be accepted by $V \equiv_{\mu} U_a$ where the Dyck counters are initially 0.

Trick 5 in Action: Monotonicity of modulo- μ intermediate acceptance.

Proof (cont.): (b) $\forall T \in Y. L_{si}(T) \mid D_n$.

Consider $T \in Y$. By construction, $T \cdot c_{in}[dy] = 0$ and $T \cdot c_{out}[dy] \neq 0$. This means $\rho \in IAcc_{si}(T)$ has an effect $c \not\equiv 0 \mod \nu$ on dy. By visibility of T and the VAS accepting D_n , we have $\lambda(\rho) \notin D_n$.

Hence, an NFA that tracks the Dyck counters modulo ν and accepts upon values $\neq 0$ shows separability.

Proof (cont.):

(a) Descent

As in the case sd = sj.

Proof (cont.): Recall that $S = (V, \nu)$ and $W = (U, \mu)$. Faithfulness

 $Acc_{\mathbb{Z},dy}(S) \cap IAcc_{\mathbb{Z},\subseteq^{\nu}[dy]}(S) \subseteq IAcc_{\mathbb{Z},dy}(S)$

is a consequence of

(1) $Acc_{\mathbb{Z},dy}(S) \cap IAcc_{\mathbb{Z},\subseteq^{\nu}[dy]}(S) \subseteq IAcc_{\mathbb{Z},dy}(W)$ $IAcc_{\mathbb{Z},dy}(W) \cap IAcc_{\mathbb{Z},\subseteq_{\omega}}(S) \subseteq IAcc_{\mathbb{Z},dy}(S)$. (2)

Step Lemma: Case $j \notin supp(Char_{dv}(W))$

Proof (cont.): For

we use

 $Acc_{\mathbb{Z},dy}(S) \subseteq Acc_{\mathbb{Z},dy}(W)$ $IAcc_{\mathbb{Z},\sqsubseteq}(S) \subseteq IAcc_{\mathbb{Z},\sqsubseteq}(W)$

and the faithfulness of W.

$Acc_{\mathbb{Z},d_{\mathcal{V}}}(S) \cap IAcc_{\mathbb{Z},\mathbb{C}^{\nu}[d_{\mathcal{V}}]}(S) \subseteq IAcc_{\mathbb{Z},d_{\mathcal{V}}}(W)$ (1)

<u>S and W are zero-reaching.</u> We only change an intermediate value, which acceptance does not see.

 μ divides ν .

Step Lemma: Case $j \notin supp(Char_{dy}(W))$

Proof (cont.): For

 $IAcc_{\mathbb{Z},dy}(W) \cap IAcc_{\mathbb{Z},\sqsubseteq_{\omega}^{\nu}[dy]}(S) \subseteq IAcc_{\mathbb{Z},dy}(S)$.

Consider ρ in the intersection. Consider counter j that we changed from ω to a concrete value.

As $\rho \in \underline{IAcc_{\mathbb{Z},dy}(W)}$, ρ solves $Char_{dy}(W)$.

Hence, it reaches a value $b \in A_{dv}$ at the moment of interest.

As $\rho \in \underline{IAcc}_{\mathbb{Z}, \sqsubseteq \omega[dy]}(S)$, it also reaches the value *a* that replaces ω in *S*, but only modulo ν .

We have $0 \le a, b$ by the definition of intermediate acceptance.

We have $b < \nu$ by the choice of ν . We have $a < \nu$ by the construction of *S*.

Modulo intermediate acceptance means $a \equiv b \mod \nu$. The Modulo Trick shows a=b.

Step Lemma: Case $j \notin supp(Char_{dv}(W))$

Proof (cont.): For

 $IAcc_{\mathbb{Z},dy}(W) \cap IAcc_{\mathbb{Z},\subseteq^{\nu}[dy]}(S) \subseteq IAcc_{\mathbb{Z},dy}(S)$.

Consider a counter different from j or j but another moment.

As $\rho \in \underline{IAcc_{\mathbb{Z},dv}(W)}$, ρ reaches an intermediate value b given in W.

We again have $b < \nu$ by the choice of ν .

Now the same argument applies.

Case (1): Modified entire DMGTS. Cases (2) + (3): Modify a single PG. Goal: Develop techniques that allow us to

reason about a single PG and lift the result to the entire DMGTS.

Definition: MGTS context

$C[\bullet] ::= \bullet | C[\bullet] . up . W | W . up . C[\bullet].$

- DMGTS insertion: For $W = (S, \mu)$ let

Lemma: Well-founded order stable under insertion

$$W_1 \leq W_2 \qquad \Rightarrow$$

Replace \bullet by S.

 $C[W] := (C[S], \mu).$

 $C[W_1] \le C[W_2] \; .$

Approach: For Cases (2) + (3), consider $C[(G, \mu)]$,

decompose (G, μ) into sets of DMGTS U and V, define

 $X := C[U] := \{C[(S, \mu)] \mid (S, \mu) \in U\}$

Y := C[V] .

- Goal: Lift faithfulness of $C[(G, \mu)]$ to C[U].
- Approach: Establish a relation between (G, μ) and the DMGTS in U.
- Same μ . Definition: - (S, μ) is a specialization of (G, μ) , if
 - 1. $S \cdot c_{io} \sqsubseteq_{io} G \cdot c_{io}$. 2. $\forall \rho \in Runs_{\mathbb{Z}}(S)$. $\exists \sigma \in Runs_{\mathbb{Z}}(G)$. $\sigma \approx \rho$. 3. $\forall \rho \in IAcc_{\mathbb{Z}, \sqsubseteq_{\omega}}[dy]}(S)$ with $\rho[first/last][dy] \sqsubseteq_{\omega} G \cdot c_{io}$.
- If W_1 is a specialization of W_2 , then $C[W_1]$ is a specialization of $C[W_2]$.

Smaller language.

Preserve faithfulness.

 $\rho \in IAcc_{\mathbb{Z},dv}(S).$

Lemma: Let W_1 be a specialization of W_2 .

 $L_{si}(W_1) \subseteq L_{si}(W_2).$ W_2 faithful \Rightarrow W_1 faithful.

Intuition: Why does decomposition for Cases (2) + (3) guarantee

Decompositions for (2) + (3) unroll G into DMGTS.

Hence, runs in the new DMGTS respects these values.

Only need to worry about $L_{si}(W) \subseteq L_{si}(X \cup Y)$.

- $\forall \rho \in IAcc_{\mathbb{Z}, \sqsubseteq_{\omega}}[d_{\mathcal{Y}}](S)$ with $\rho[first/last][d_{\mathcal{Y}}] \sqsubseteq_{\omega} G \cdot c_{i\rho}$. $\rho \in IAcc_{\mathbb{Z}, d_{\mathcal{Y}}}(S)$?

New intermediate counter values = consistent assignments in G or values in coverability graph for G.

7.3 Case $e \notin supp(Char_{sd}(W))$

Observation: If *e* is not in the support, there is

an upper bound $l \in \mathbb{N}$

on the number of times e can be taken.

Idea: Decompose G so that every occurrence of e leads to a new PG.

Definition:

U = DMGTS that admit at most l occurrences of e. $V_{si} = \emptyset$.

 V_{dy} = DMGTS that expect l + 1 occurrences of e,

afterwards return to the root of G.

Case (2): $e \notin supp(Char_{sd}(W))$

Lemma: Let (G, μ) contain edge e with $e \notin supp(Char_{sd}(C[(G, \mu)])))$. With elementary resources, we can compute sets U and Vcontaining specializations of (G, μ) that satisfy:

> $\forall S \in U.S < (G, \mu).$ $\forall \rho \in IAcc_{si}(G,\mu) \, \exists \sigma \in IAcc_{si}(U \cup V) \, \sigma \approx \rho \, .$ $\forall T \in V$. *Char*(*C*[*T*]) is infeasible.

Case (2): $e \notin supp(Char_{sd}(W))$

Faithfulness already done!

Descent also done!

Separability also done!

