Übungen zur Vorlesung
 Concurrency Theory
 Blatt 4

Prof. Dr. Roland Meyer
Jan Grünke
Abgabe bis 18.06.2024 um 23:59 Uhr
Aufgabe 4.1 (Intersection non-emptiness of VASS reachability languages)
Let V_{1}, V_{2} be two initalized VASS over Σ. The intersection non-emptiness problem asks whether $L\left(V_{1}\right) \cap L\left(V_{2}\right) \neq \emptyset$ holds. Show that intersection non-emptiness is decdiable for VASS reachability languages.
Note: This is the first step in the procedure that decides regular separability.
Aufgabe 4.2 (VASS languages are closed under rational transductions)
Let V be an initalized VASS over Σ and $T \subseteq \Sigma^{*} \times \Gamma^{*}$ a rational transduction between Σ and Γ. Show that the language $T(L(V))=\{T(w) \mid w \in L(V)\}$ is a VASS reachability language.

Aufgabe 4.3 (Büchi boxes)

Let $A=\left(Q, \Sigma, q_{0}, \delta, Q_{F}\right)$ be an NFA over an alphabet Σ. The transition equivalence relation $\sim_{A} \subseteq \Sigma^{*} \times \Sigma^{*}$ is defined by $v \sim_{A} w$ if for all $q, q^{\prime} \in Q$ we have $q \xrightarrow{v} q^{\prime}$ iff $q \xrightarrow{w} q^{\prime}$.
(a) Show that \sim_{A} is an equivalence relation with finitely many equivalence classes.
(b) Show that for every word $w \in \Sigma^{*}$ the equivalence class $[w]_{\sim_{A}}:=\left\{v \in \Sigma^{*} \mid v \sim_{A} w\right\}$ is a regular language.
Hint: First show that $L_{q, q^{\prime}}:=\left\{w \in \Sigma^{*} \mid q \xrightarrow{w} q^{\prime}\right\}$ is regular.

Aufgabe 4.4 (The Ackermann function)

The three-argument Ackermann function φ is defined recursively as follows.

$$
\begin{array}{lll}
\varphi: \mathbb{N}^{3} \rightarrow \mathbb{N} & & \\
\varphi(m, n, 0) & =m+n & \\
\varphi(m, 0,1) & =0 & \\
\varphi(m, 0,2) & =1 & \text { for } x>2 \\
\varphi(m, 0, x) & =m & \text { for } n>0 \text { and } x>0 \\
\varphi(m, n, x) & =\varphi(m, \varphi(m, n-1, x), x-1)
\end{array}
$$

(a) Formally prove the following equalities using induction:

$$
\varphi(m, n, 0)=m+n, \quad \varphi(m, n, 1)=m \cdot n, \quad \varphi(m, n, 2)=m^{n} .
$$

(b) Nowadays, one usually considers the following two-parameter variant.

$$
\begin{array}{rlr}
A: \mathbb{N}^{2} \rightarrow \mathbb{N} & & \\
A(0, n) & =n+1 & \\
A(m, 0) & =A(m-1,1) & \text { for } m>0 \\
A(m, n) & =A(m-1, A(m, n-1)) & \text { for } m>0 \text { and } n>0
\end{array}
$$

For example, we have

$$
A(1,2)=A(0, A(1,1))=A(0, A(0, A(1,0)))=A(0, A(0, A(0,1)))=A(0, A(0,2))=A(0,3)=4 .
$$

Similar to this computation, write down a full evaluation of $A(2,3)$.

Abgabe bis 18.06.2024 um 23:59 Uhr per Mail an jan.gruenke1@tu-bs.de.

