05.06	.2024

Übungen zur Vorlesung Concurrency Theory Blatt 4

Prof. Dr. Roland Meyer	
Jan Grünke	Abgabe bis 18.06.2024 um 23:59 Uhr

Aufgabe 4.1 (Intersection non-emptiness of VASS reachability languages)

Let V_1, V_2 be two initialized VASS over Σ . The intersection non-emptiness problem asks whether $L(V_1) \cap L(V_2) \neq \emptyset$ holds. Show that intersection non-emptiness is deciable for VASS reachability languages.

Note: This is the first step in the procedure that decides regular separability.

Aufgabe 4.2 (VASS languages are closed under rational transductions)

Let V be an initialized VASS over Σ and $T \subseteq \Sigma^* \times \Gamma^*$ a rational transduction between Σ and Γ . Show that the language $T(L(V)) = \{T(w) \mid w \in L(V)\}$ is a VASS reachability language.

Aufgabe 4.3 (Büchi boxes)

Let $A = (Q, \Sigma, q_0, \delta, Q_F)$ be an NFA over an alphabet Σ . The transition equivalence relation $\sim_A \subseteq \Sigma^* \times \Sigma^*$ is defined by $v \sim_A w$ if for all $q, q' \in Q$ we have $q \xrightarrow{v} q'$ iff $q \xrightarrow{w} q'$.

- (a) Show that \sim_A is an equivalence relation with finitely many equivalence classes.
- (b) Show that for every word $w \in \Sigma^*$ the equivalence class $[w]_{\sim_A} := \{v \in \Sigma^* \mid v \sim_A w\}$ is a regular language.

Hint: First show that
$$L_{q,q'} := \left\{ w \in \Sigma^* \mid q \xrightarrow{w} q' \right\}$$
 is regular.

Aufgabe 4.4 (The Ackermann function)

The three-argument Ackermann function φ is defined recursively as follows.

 $\varphi \colon \mathbb{N}^3 \to \mathbb{N}$ $\varphi(m, n, 0)$ m + n= $\varphi(m,0,1)$ = 0 $\varphi(m,0,2)$ =1 for x > 2 $\varphi(m,0,x)$ =m $\varphi(m,\varphi(m,n-1,x),x-1)$ for n > 0 and x > 0 $\varphi(m, n, x)$ =

(a) Formally prove the following equalities using induction:

$$\varphi(m, n, 0) = m + n,$$
 $\varphi(m, n, 1) = m \cdot n,$ $\varphi(m, n, 2) = m^n.$

(b) Nowadays, one usually considers the following two-parameter variant.

$$\begin{array}{rcl} A \colon \mathbb{N}^2 \to \mathbb{N} \\ A(0,n) &=& n+1 \\ A(m,0) &=& A(m-1,1) & \text{for } m > 0 \\ A(m,n) &=& A(m-1,A(m,n-1)) & \text{for } m > 0 \text{ and } n > 0 \end{array}$$

For example, we have

 $A(1,2) = A(0,A(1,1)) = A(0,A(0,A(1,0))) = A(0,A(0,A(0,1))) = A(0,A(0,2)) = A(0,3) = 4 \, .$

Similar to this computation, write down a full evaluation of A(2,3).

Abgabe bis 18.06.2024 um 23:59 Uhr per Mail an jan.gruenke1@tu-bs.de.