SS 2024 15.05.2024

# Übungen zur Vorlesung Concurrency Theory Blatt 3

Prof. Dr. Roland Meyer Jan Grünke

Abgabe bis 28.05.2024 um 23:59 Uhr

### Aufgabe 3.1 (Decomposition)

Decompose the following MGTS into a set of perfect MGTS.



### Aufgabe 3.2 (Rackoff's bound)

Consider the Petri net  $N = (\{1, 2, 3, 4\}, \{a, b, c, x\}, W)$  with multiplicities as depicted below. The initial marking of interest is  $M_0 = (1, 0, 0, 0)^T$  and the final marking is  $M_f = (1, 0, 10, 100)^T$ .



Compute the values  $m(3, M_0)$  and f(3) and argue why they are correct.

#### Aufgabe 3.3 (Boundedness problem)

A Petri net is bounded if the set of reachable markings is finite, and unbounded otherwise. We consider the boundedness problem: Given a Petri net  $N = (S, T, W, M_0)$  with initial marking of size n decide whether N is bounded. Similar to the coverability problem the boundedness problem is decidable using coverability graphs. In this excercise we want

to show that it is decidable in EXPSPACE. Recall that a vector  $M \in \mathbb{Z}^S$  is *i*-bounded if the first *i* counters are positive and i-r-bounded if the first *i* counters have values in  $\{1,...,r\}$ . We call a sequence of vectors  $M_1,...,M_k$  in  $\mathbb{Z}^S$  self-covering if there is some  $j \in [1,k]$  such that  $M_j < M_k$  (where we write  $M_1 < M_2$  if  $M_1 \le M_2$  and  $M_1 \ne M_2$ ). A run is self-covering if the marking sequence of it is self-covering.

- (a) Show that N is unbounded iff there is a self-covering run. More precisely, show that N is unbounded iff there are transition sequences  $\sigma_1, \sigma_2 \in T^*$  such that  $M_0[\sigma_1\rangle M_1[\sigma_2\rangle M_2$  and  $M_1 < M_2$ .
- (b) For all r > 1 and  $0 \le i \le |S|$  one can show the following: if there is a i-r-bounded self-covering run, then there is a short i-r-bounded self-covering run of length at most  $r^{n^c}$  for some constant c.

Use this to show  $g(i+1) \leq (2^n g(i))^{n^c}$  with

$$m(i,M) := \min \left\{ |\sigma| \mid \sigma \in \mathbb{Z}^{S^*} \text{ is } i\text{-bounded self-covering run from } M \right\}$$
 
$$g(i) := \max \left\{ m(i,M) \mid M \in \mathbb{Z}^S \right\}.$$

Give a bound for g(0).

## Aufgabe 3.4 (Transducer Trick)

Let  $(V_1, (q_0, (0, 0)^T)), (q_1, (2, 0)^T))$  and  $(V_2, (q_2, (1, 0)^T)), (q_3, (1, 0)^T))$  be two initalized VASS over the alphabet  $\Sigma = \{a, b\}$  where  $V_1$  and  $V_2$  are given by:



Give another VASS V such that L(V) is regular separable from  $D_2$  (Dyck language with two counters) if and only if  $L(V_1)$  is regular separable from  $L(V_2)$ .

Abgabe bis 28.05.2024 um 23:59 Uhr per Mail an jan.gruenke1@tu-bs.de.