Aufgabe 3.1 (Decomposition)
Decompose the following MGTS into a set of perfect MGTS.

Aufgabe 3.2 (Rackoff's bound)
Consider the Petri net $N=(\{1,2,3,4\},\{a, b, c, x\}, W)$ with multiplicities as depicted below. The initial marking of interest is $M_{0}=(1,0,0,0)^{T}$ and the final marking is $M_{f}=(1,0,10,100)^{T}$.

Compute the values $m\left(3, M_{0}\right)$ and $f(3)$ and argue why they are correct.
Aufgabe 3.3 (Boundedness problem)
A Petri net is bounded if the set of reachable markings is finite, and unbounded otherwise. We consider the boundedness problem: Given a Petri net $N=\left(S, T, W, M_{0}\right)$ with initial marking of size n decide whether N is bounded. Similar to the coverability problem the boundedness problem is decidable using coverability graphs. In this excercise we want
to show that it is decidable in EXPSPACE. Recall that a vector $M \in \mathbb{Z}^{S}$ is i-bounded if the first i counters are positive and $i-r$-bounded if the first i counters have values in $\{1, \ldots, r\}$. We call a sequence of vectors M_{1}, \ldots, M_{k} in \mathbb{Z}^{S} self-covering if there is some $j \in[1, k]$ such that $M_{j}<M_{k}$ (where we write $M_{1}<M_{2}$ if $M_{1} \leq M_{2}$ and $M_{1} \neq M_{2}$). A run is self-covering if the marking sequence of it is self-covering.
(a) Show that N is unbounded iff there is a self-covering run. More precisely, show that N is unbounded iff there are transition sequences $\sigma_{1}, \sigma_{2} \in T^{*}$ such that $M_{0}\left[\sigma_{1}\right\rangle M_{1}\left[\sigma_{2}\right\rangle M_{2}$ and $M_{1}<M_{2}$.
(b) For all $r>1$ and $0 \leq i \leq|S|$ one can show the following: if there is a $i-r$-bounded self-covering run, then there is a short $i-r$-bounded self-covering run of length at most $r^{n^{c}}$ for some constant c.
Use this to show $g(i+1) \leq\left(2^{n} g(i)\right)^{n^{c}}$ with

$$
\begin{aligned}
m(i, M) & :=\min \left\{|\sigma| \mid \sigma \in \mathbb{Z}^{S^{*}} \text { is } i \text {-bounded self-covering run from } M\right\} \\
g(i) & :=\max \left\{\operatorname{m}(i, M) \mid M \in \mathbb{Z}^{S}\right\}
\end{aligned}
$$

Give a bound for $g(0)$.

Aufgabe 3.4 (Transducer Trick)
Let $\left.\left(V_{1},\left(q_{0},(0,0)^{T}\right)\right),\left(q_{1},(2,0)^{T}\right)\right)$ and $\left.\left(V_{2},\left(q_{2},(1,0)^{T}\right)\right),\left(q_{3},(1,0)^{T}\right)\right)$ be two initalized VASS over the alphabet $\Sigma=\{a, b\}$ where V_{1} and V_{2} are given by:

Give another VASS V such that $L(V)$ is regular separable from D_{2} (Dyck language with two counters) if and only if $L\left(V_{1}\right)$ is regular separable from $L\left(V_{2}\right)$.

Abgabe bis 28.05.2024 um 23:59 Uhr per Mail an jan.gruenke1@tu-bs.de.

