Exercises to the lecture
Algorithmic Automata Theory
Sheet 6

Exercise 6.1 (Presburger formulas \& Parikh images)

1. Present a Presburger formula $\varphi$ such that every bound variable occurs in precisely one atomic expression and such that

$$
\operatorname{Sol}(\varphi)=\left\{\left.\binom{2 n+1}{n+3} \right\rvert\, n \in \mathbb{N}\right\} \cup\left\{\left.\binom{3 n+1}{2 n+2} \right\rvert\, n \in \mathbb{N}\right\} .
$$

2. The Parikh image $\Psi: \Sigma^{*} \rightarrow \mathbb{N}^{\Sigma}$ mapps each word $w$ to the vector $\Psi(w)$, where the components store the number of occurrences of each letter in $w$. For a language $\mathcal{L} \subseteq \Sigma^{*}$, let $\Psi(\mathcal{L})=\{\Psi(w) \mid w \in \mathcal{L}\}$. For example for $\Sigma=\{a, b, c\}$ :

$$
\Psi(a b a b c b)=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) \text { and } \Psi\left((a a)^{*}(b b b)^{*}\right)=\left\{\left.\left(\begin{array}{c}
2 n \\
3 m \\
0
\end{array}\right) \right\rvert\, n, m \in \mathbb{N}\right\} .
$$

Give an NFA $A$ so that $\Psi(\mathcal{L} A)=\operatorname{Sol}(\varphi)$ for the $\operatorname{Presburger}$ formula $\varphi$ from a).

Exercise 6.2 ("Presburger $\Rightarrow$ NFA" for atomic formulas with equality)
One can modify the algorithm for $\vec{a} \vec{x} \leq b$ to produce an NFA for $\vec{a} \vec{x}=b$ by making the state $0 \in \mathbb{Z}$ the only accepting state and by changing the transition relation so that a transition

$$
q \xrightarrow{\vec{\beta}} \frac{1}{2}(q-\vec{a} \vec{\beta})
$$

is only added if $q-\vec{a} \vec{\beta}$ is even.

1. Use the modified algorithm to construct a finite automaton for $x-2 y=1$.
2. Verify your result in 1 by checking that

$$
\mathcal{L} A_{x-2 y=1}=\mathcal{L} A_{x-2 y \leq 1} \cap \mathcal{L} A_{-x+2 y \leq-1} .
$$

Exercise 6.3 (NBA Complementation)
Consider the NBA $A$ over $\Sigma=\{a, b\}$ below:


Use Büchi's complementation method discussed in class to compute $L(A)$ and $\overline{L(A)}$.
Exercise 6.4 (Muller Automata)
A Nondeterministic Muller Automaton (NMA) is a tuple $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$. The first four components are as in Büchi automata. $F=\left\{Q_{F}^{1}, \ldots, Q_{F}^{n}\right\} \subseteq \mathcal{P}(Q)$ is a set of sets of states instead of a single set of states. The idea is to accept a run if the set of states that occur infinitely often matches one of the $Q_{F}^{i}$ exactly. Formally, a run $r$ of $A$ is accepting if $\operatorname{Inf}(r) \in F$ where $\operatorname{Inf}(r)$ is the set of states that are visited infinitely often in $r$. As for Büchi automata, we call $A$ a Deterministic Muller Automaton (DMA) if for each $q \in Q$ and $a \in \Sigma$ there is exactly one state $q^{\prime} \in Q$ such that $\left(q, a, q^{\prime}\right) \in \delta$.

1. Given an NBA $A$, show that there is an NMA $A_{N M A}$ such that $L\left(A_{N M A}\right)=L(A)$.
2. Show that DMA are strictly more expressive than DBA.
3. Given a DMA $A$, show that there is an NBA $A_{N B A}$ such that $L\left(A_{N B A}\right)=L(A)$.
4. Prove that DMA are closed under complement, i.e. for every DMA $A$ there exists a DMA $\bar{A}$ with $L(\bar{A})=\overline{L(A)}$.
