Exercises to the lecture
Algorithmic Automata Theory
Sheet 5
Dr. Prakash Saivasan
Delivery until 21.05.2019 at 15:00
Exercise 5.1 (Language Concatenation)
Consider two regular languages L_{1} and L_{2} over the alphabet Σ such that for all $u, v, w \in \Sigma^{*}$ and $n \in \mathbb{N}, u . v^{n} . w \in L_{i} \Longleftrightarrow u . v^{n+1} . w \in L_{i}$ for $i \in\{1,2\}$. Prove that for any $u, v, w \in \Sigma^{*}$ and $n \in \mathbb{N}, u \cdot v^{n} \cdot w \in L_{1} \cdot L_{2} \Longleftrightarrow u \cdot v^{n+1} \cdot w \in L_{1} \cdot L_{2}$

Exercise 5.2 (Counting Languages)
Recall that a language L is counting iff

$$
\forall n_{0}, \exists n \geq n_{0}, \exists u, v, w \in \Sigma^{*}:\left(u v^{n} w \in L \Longleftrightarrow u v^{n+1} w \notin L\right)
$$

Decide whether the following languages are counting:

- $b(a b b)^{*}$
- $a(b b b)^{*} a a$

