Exercises to the lecture Algorithmic Automata Theory Sheet 1

Dr. Prakash Saivasan

Delivery until 07.05.2019 at 15:00

Exercise 1.1 (Ehrenfeucht-Fraïssé Games)

Let $n \in \mathbb{N}$ be arbitrary. Which is the maximal number of rounds $k \in \mathbb{N}$ such that the duplicator has a winning strategy for $G_k((ab)^{2n+1}, (ba)^{2n+1})$? *Hint:* First see what happens for n = 1 and n = 2.

Exercise 1.2 (Star-Free Languages)

Prove or disprove whether the following languages over $\Sigma = \{a, b\}$ are star-free:

- 1. $(ab \cup ba)^*$
- 2. $(a \cup bab)^*$
- 3. $\mathcal{L}_{odd} = \{ w \in \Sigma^* \mid w \text{ has odd length} \}$

Exercise 1.3 (Star-Free \Rightarrow FO[<]-definable)

- 1. Show that FO[<]-definable languages are closed under concatenation.
- 2. Prove using structural induction that every star-free language is FO[<]-definable.

Delivery until 07.05.2019 at 15:00 into the box next to 343 or in the class